top of page

Submitted Articles

  1. Generalized soliton solutions of a (3+1)-dimensional evolution equation in higher-dimensional systems
    Brij Mohan*
     

  2. Novel wave propagation behavior in a nonlinear medium through the Paraxial wave equation in fiber optics
    Amit Kumar, Bhawna Singh, Brij Mohan*

Published Articles

  1. 2025 Novel exploration of nonlinear waves of a generalized (2+1)-dimensional extended Boussinesq equation: solitons, breathers and periodic background waves, Journal of Applied Mathematics and Symbolic Science, 1(1):14–26. (New Journal)
    Ved Pal Singh, Shiv Shankar Jha, Kusum, Brij Mohan*

    https://journalmanager.transitus.in/index.php/jamss/article/view/35

     

  2. ​2025 On investigation of kink-solitons and rogue waves to a new integrable (3+1)-dimensional KdV-type generalized equation in nonlinear sciences, Nonlinear Dynamics113:10261–10276, Q1, IF:5.6, SCIE, e-ISSN: 1573-269X, p-ISSN: 0924-090X.
    Brij Mohan, Sachin Kumar*, Raj Kumar
    https://doi.org/10.1007/s11071-024-10792-8
     

  3. 2025 Painleve analysis, restricted bright-dark N-solitons, and N-rogue waves of a (4+1)-dimensional variable-coefficient generalized KP equation in nonlinear sciences, Nonlinear Dynamics, 112:11373-11382Q1, IF:5.6, SCIE, e-ISSN: 1573-269X, p-ISSN: 0924-090X.
    Brij Mohan, Sachin Kumar*
    https://doi.org/10.1007/s11071-024-10645-4
     

  4. 2024 (Sept 30) Rogue-wave structures for a generalized (3+1)-dimensional nonlinear wave equation in liquid with gas bubbles, Physica Scripta, 99:105291, Q2, IF: 2.6, SCIE, ISSN: 1402-4896.
    Brij Mohan, Sachin Kumar*

    https://doi.org/10.1088/1402-4896/ad7cd9
     

  5. 2024 (Sept 11) Generalization and analytic exploration of soliton solutions for nonlinear evolution equations via a novel symbolic approach in fluids and nonlinear sciencesChinese Journal of Physics, 92:10-21, Q2, IF:4.6, SCIE, e-ISSN: 2309-9097, p-ISSN: 0577-9073.
    Brij Mohan, Sachin Kumar*

    https://doi.org/10.1016/j.cjph.2024.09.004
     

  6. 2024 (April 27) Bilinearization and new center-controlled N-rogue solutions to a (3+1)-dimensional generalized KdV-type equation in plasmas via direct symbolic approachNonlinear Dynamics, 112:11373-11382Q1, IF:5.6, SCIE, e-ISSN: 1573-269X, p-ISSN: 0924-090X.
    Sachin Kumar, Brij Mohan*

    https://doi.org/10.1007/s11071-024-09626-4
     

  7. 2023 (Dec 28) A novel analysis of Cole-Hopf transformations in different dimensions, solitons, and rogue waves for a (2 + 1)-dimensional shallow water wave equation of ion-acoustic waves in plasmas, Physics of Fluids, 35:127128, Q1, IF:4.6, SCIE, e-ISSN: 1089-7666, p-ISSN: 1070-6631.
    Sachin Kumar, Brij Mohan*

    https://doi.org/10.1063/5.0185772
     

  8. 2023 (Sept 28) Higher-order rogue waves and dispersive solitons of a novel P-type (3+1)-D evolution equation in soliton theory and nonlinear waves, Nonlinear Dynamics, 111:20275–20288, Q1, IF:5.6, SCIE, e-ISSN: 1573-269X, p-ISSN: 0924-090X.
    Brij Mohan, Sachin Kumar*, Raj Kumar

    https://doi.org/10.1007/s11071-023-08938-1
     

  9. 2023 (July 27) Newly formed center-controlled rogue wave and lump solutions of a generalized (3+1)-dimensional KdV-BBM equation via symbolic computation approach, Physica Scripta, 98(8):085237, Q2, IF: 2.9, SCIE, ISSN: 1402-4896.
    Sachin Kumar, Brij Mohan*, Raj Kumar

    https://doi.org/10.1088/1402-4896/ace862

     

  10. 2023 (July 08) A direct symbolic computation of center-controlled rogue waves to a new Painlevé-integrable (3+1)-D generalized nonlinear evolution equation in plasmas, Nonlinear Dynamics111:16395–16405, Q1, IF: 5.7, SCIEe-ISSN: 1573-269X, p-ISSN: 0924-090X.
    Sachin Kumar,
    Brij Mohan
    https://doi.org/10.1007/s11071-023-08683-5
     

  11. 2023 (Jan 4) Evolutionary dynamics of solitary wave profiles and abundant analytical solutions to a (3+1)-dimensional burgers system in ocean physics and hydrodynamicsJournal of Ocean Engineering and Science, 8(1):1-14, Q1, IF: 7.1, SCIE, ISSN: 2468-0133.
    Sachin Kumar, Amit Kumar*, 
    Brij Mohan 
    https://doi.org/10.1016/j.joes.2021.11.002
     

  12. 2022 (Nov 24) A generalized nonlinear fifth-order KdV-type equation with multiple soliton solutions: Painleve analysis and Hirota Bilinear techniquePhysica Scripta, 97(12):125214, Q2, IF: 3.1, SCIE, ISSN: 1402-4896
    Sachin Kumar, Brij Mohan
    https://doi.org/10.1088/1402-4896/aca2fa
     

  13. 2022 (Oct-Dec) Application of Hirota’s Direct Method to Nonlinear Partial Differential Equations: Bilinear Form and Soliton Solutions, Hans Shodh Sudha, 3(2):31-38, ISSN: 2582-9777.
    Brij Mohan*, Dasharath Meena, Sonali Das, Dushyant Kumar Rohilla, Nishant Parihar, Ajay, Divyansh Malik

    https://www.hansshodhsudha.com/volume3-issue2/manuscript%203.pdf

     

  14. 2022 (July 2) Lump, soliton, and interaction solutions to a generalized two-mode higher-order nonlinear evolution equation in plasma physicsNonlinear Dynamics, 110:693-704, Q1, IF: 5.7, SCIE. e-ISSN: 1573-269X, p-ISSN: 0924-090X.
    Sachin Kumar, Brij Mohan
    *, Raj Kumar 
    https://doi.org/10.1007/s11071-022-07647-5

     

  15. 2022 (Jan 20) A novel and efficient method for obtaining Hirota's bilinear form for the nonlinear evolution equation in (n+1) dimensions, Partial Differential Equations in Applied Mathematics, 5:100274, SCOPUS, ISSN: 2666-8181.
    Sachin Kumar*, Brij Mohan
     
    https://doi.org/10.1016/j.padiff.2022.100274
     

  16. 2022 (Feb 8) Generalized fifth-order nonlinear evolution equation for the Sawada-Kotera, Lax, and Caudrey-Dodd-Gibbon equations in plasma physics: Painleve analysis and multi-soliton solutionsPhysica Scripta, 97(3):035201, Q2, IF: 3.1, SCIE, ISSN: 1402-4896.
    Sachin Kumar,
    Brij Mohan*, Amit Kumar 
    https://doi.org/10.1088/1402-4896/ac4f9d
     

  17. 2021 (Nov 24) A study of multi-soliton solutions, breathers, lumps, and their interactions for Kadomtsev-Petviashvili equation with variable time coefficient using Hirota method, Physica Scripta, 96(12):125255, Q2, IF: 3.1, SCIE, ISSN: 1402-4896.
    Sachin Kumar*, Brij Mohan
     
    https://doi.org/10.1088/1402-4896/ac3879
     

Research on My Works

  1. Younas, U., Muhammad, J., et al. (2025). Higher dimensional nonlinear model arising to the diversity of fields: Dynamics of wave structures with M-fractional derivative, Partial Differential Equations in Applied Mathematics, 16:101284.
    https://doi.org/10.1016/j.padiff.2025.101284

     

  2. Aldwoah, K., Alabdi, I., Alsulami, A., et al. (2025). Deterministic and Chaotic Analysis in Multi-Order Solitons and Lump Solutions of a Generalized Nonlinear Evolution Equation via the Duffing Chaotic System. J Nonlinear Math Phys, 32:62.
    https://doi.org/10.1007/s44198-025-00317-1

     

  3. Majid Madadi, Mustafa Inc (2025). Determinantal solutions to the (3+1)-dimensional Painlevé-type evolution equation; Higher-order rogue and soliton waves, Wave Motion, 103624,
    https://doi.org/10.1016/j.wavemoti.2025.103624
     

  4. Tianlin Wang, Lin Tian, Zhimin Ma, et al. (2025). Bifurcation soliton solutions, M-lump, breather waves, and interaction solutions for (3+1)-dimensional P-type equation. Chaos, Solitons & Fractals, 192:115932.
    https://doi.org/10.1016/j.chaos.2024.115932
     

  5. Ghayad, M.S., Ahmed, H.M., Badra, N.M., et al. (2025). Wave propagation analysis of the fractional generalized (3+1)-dimensional P-Type equation with local M-derivative. J. Umm Al-Qura Univ. Appll. Sci.
    https://doi.org/10.1007/s43994-025-00238-1

     

  6. Algolam, M.S., Roshid, M.M., Alsharafi, M., et al. (2025) Bifurcation analysis, modulation instability, and dynamical analysis of soliton solutions for generalized (3 + 1)-dimensional nonlinear wave equation with m-fractional operator. Scientific Reports, 15:12929.
    ​https://doi.org/10.1038/s41598-025-95687-3
     

  7. Swati, Amit Prakash (2025). Analyzing breather waves and soliton solutions to the P-type (3+1)-dimensional evolution equation arising in mathematical physics. Modern Physics Letters B, 39:31.
    https://doi.org/10.1142/S0217984925501945
     

  8. Muhammad Naveed Rafiq, Haibo Chen (2024). Dynamics of three-wave solitons and other localized wave solutions to a new generalized (3+1)-dimensional P-type equation, Chaos, Solitons & Fractals, 180:114604.
    https://doi.org/10.1016/j.chaos.2024.114604

     

  9. Åženol, M., & Erol, M. Ö. (2024). New Conformable P-Type (3+1)-Dimensional Evolution Equation and its Analytical and Numerical Solutions. Journal of New Theory (46), 71-88.
    https://doi.org/10.53570/jnt.1420224
     

  10. Dhiman, S.K., Kumar, S. (2024). Analyzing specific waves and various dynamics of multi-peakons in a (3+1)-dimensional p-type equation using a newly created methodology. Nonlinear Dyn 112, 10277–10290 (2024).
    https://doi.org/10.1007/s11071-024-09588-7
     

  11. Bin He, New lump solutions of the (3+1)-dimensional generalized Camassa–Holm Kadomtsev–Petviashvili (gCH-KP) equation,
    Results in Physics, 61:107696.

    https://doi.org/10.1016/j.rinp.2024.107696

     

  12. Adil Jhangeer, Nauman Raza, et al. (2024). Qualitative behavior and variant soliton profiles of the generalized P-type equation with its sensitivity visualization. Alexandria Engineering Journal, 104:292-305.
    https://doi.org/10.1016/j.aej.2024.06.046
     

  13. Jamilu Sabi'u, Sekson Sirisubtawee, et al. (2024). Wave dynamics for the new generalized (3+1)-D Painlevé-type nonlinear evolution equation using efficient techniques. AIMS Mathematics, 9(11): 32366-32398.
    https://doi.org/10.3934/math.20241552

     

  14. Muhammad Nadeem, Omar Abu Arqub, et al. (2024). Bifurcation, chaotic analysis, and soliton solutions to the (3+1)-dimensional p-type model. Alexandria Engineering Journal, 107:245-253.
    https://doi.org/10.1016/j.aej.2024.07.032

    ​

Other Articles & Works

  1. 2024 (Jan-Mar) Ambedkarism, Buddhism, and Interrelation between them: Similarities and Differences
    Hans Shodh Sudha, 4(3):01-09, ISSN:2582-9777.
    Brij Mohan*
    Manuscript 1.pdf (hansshodhsudha.com)
     

  2. 2019 Revenue Generation Strategy through Selfish Mining focusing Multiple Pools of Honest Miners: Revisiting Eyal and Sirer (2014) Selfish Mining Strategy.
    Donghoon Chang, Pranav Jain,
    Brij Mohan
    https://doi.org/10.13140/RG.2.2.31415.85928

     

  3. 2016 Study and Security Analysis of Smart Cards, Innovation Project - HRC-304, University of Delhi, New Delhi, India.
    Arvind, Brij Mohan, Divya Kwatra

    https://doi.org/10.13140/RG.2.2.26311.21929

     

  4. 2009 Gaussian Integer Method of Index Calculus for Discrete Logarithm Problem in Prime Field, M.Tech., IIT Delhi, Delhi, India.
    Brij Mohan
    https://doi.org/10.13140/RG.2.2.20471.34726

     

bottom of page