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Abstract: This research study proposes a novel (3+1)-dimensional Painlevé integrable KdV-type equa-
tion that generalizes well-known equations in soliton theory and nonlinear sciences. It illustrates the Painlevé
analysis to establish the complete integrability of the proposed equation. We employ the Cole-Hopf transfor-
mations to get the bilinear equation in an auxiliary function and further construct it into Hirota’s bilinear
form. Utilizing the Hirota bilinear technique, we obtain the soliton solutions of kink types and their in-
teractions up to the third order. It examines the rogue waves of the higher order using a direct symbolic
approach up to the third order. For constructing the rogue waves, we transform the investigated equation
from (3+1)-dimensional to a (1+1)-dimensional partial differential equation and form its Hirota bilinear
form in transformed variables. It demonstrates the dynamics for the obtained kink-soliton and rogue wave
solutions with appropriate parameter values using the symbolic system Mathematica. The interaction so-
lutions of rogue waves show the dominating nature of more giant waves over smaller waves. We analyze
the rogue dynamics in both the transformed and original variables. Solitons as solitary waves and rogue
waves as extreme or monster waves are alluring concepts in various fields of nonlinear sciences, including
oceanography, optical fibers, plasma physics, dynamical systems, and engineering.

Keywords: Bilinear form; Painlevé analysis; Interaction solutions; Hirota bilinear technique; Direct
symbolic approach.

1 Introduction

In soliton theory and nonlinear sciences, solitons [1–7] have attracted researchers and scientists as a fascinat-
ing wave phenomenon. Having an equilibrium between dispersion and nonlinearity, they are distinguished
by their ability to preserve their form and stability across vast distances. Solitons are essential for high-speed
fiber optic communication systems called optical solitons or soliton pulses. By adjusting for the material’s
nonlinearity and the medium’s dispersion, soliton transmission over extended distances can occur without
significant distortion. This feature is necessary for reliable and efficient data transport in optical communi-
cation networks. Dispersive solitary waves or solitons are helpful in wave energy conversion, oceanography,
and coastal engineering. Understanding and controlling these solitons can help to prevent coastal erosion,
enhance wave prediction, and maximize wave energy extraction. The combination of the plasma’s dispersive
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properties and the nonlinearity caused by particle interactions results in these solitons. They are helpful in
many areas of plasma physics study, including fusion investigations, plasma heating, and wave propagation
in magnetized plasma. Solitons are essential to understand and use in various domains, from optical com-
munication and high-speed data transfer to coastal management and quantum technology development.
Localized substantial solitary waves in space-time, often known as rogue waves [8–14], possess a significant
amplitude. These unpredictable waves have the potential to harm humans seriously. The evolution of rogue
waves is a topic of great interest to many experts from different fields of nonlinear sciences. Rogues are
more significant than the surrounding waves, making them noticeable due to their unusually high height.
Nonlinear science studies rogue waves due to its contradiction of models for linear waves. The research on
rogue waves predicts their occurrence and understands their underlying physics. The singularity in rogue
wave solutions is a critical feature of their dynamics. Singularities occur when wave amplitudes theoretically
approach infinity within finite time, corresponding to extreme and sudden amplification. This behavior is of-
ten linked to constructive interference among wave components and the inherent nonlinearity of the system,
leading to ”wave focusing.” Techniques such as Painlevé analysis are applied to the governing equations to
analyze these singularities. Such tools help to identify the locations and conditions under which singularities
arise, offering insights into the mechanisms behind rogue wave formation. Phase shifts and arbitrary pa-
rameters in the solutions of nonlinear PDEs shape the structure and behavior of rogue waves; such solutions
are called singular-like solutions. Adjusting these parameters allows us to simulate how energy concentrates
into singular points, influencing rogue waves’ peak height and transiency. Researchers observe similar phe-
nomena by understanding these dynamics, essential for practical applications ranging from oceanography
and meteorology to optics and quantum mechanics.
The improvement of maritime safety is one significant usage. One can use prediction models or algorithms
to provide earlier observation and awareness systems to prevent harm caused by rogue waves. The maritime
sector, gas or oil outlets, and infrastructure near the coast could all benefit from knowing this informa-
tion. Therefore, we may attain greater functional security and affordable solutions by comprehending the
dynamical analysis of building safe structures and designing strategies to reduce the impact of rogues. The
study of solitons and rogue waves has garnered significant attention in recent decades due to their fasci-
nating properties and broad applications in oceanography, optical fibers, plasma physics, and engineering
fields. Various soliton equations, such as the (1+1)-dimensional Korteweg-de Vries (KdV) and the (2+1)-
dimensional Kadomtsev-Petviashvili (KP) equations, have been widely explored for their ability to model
nonlinear wave phenomena. However, these lower-dimensional systems often need to capture the complex-
ities of higher-dimensional dynamics in real-world applications. Moreover, while many methods exist to
verify the integrability and solvability of soliton equations, higher-order soliton and rogue wave interactions
remain under explored, particularly in high-dimensional settings, and still need to be explored. Furthermore,
studies on rogue wave dynamics contribute to our understanding of problematic situations, interactions of
waves, and the emergence of more significant occurrences in several nonlinear phenomena.

In this research, we propose and investigate an (3+1)-D KdV-type generalized nonlinear equation as

uxxxy + α1uyt + α2(uxuy)x + α3uxx + α4uzz = 0, (1)

where αi=1,2,3,4 are as real parameters, and generalizes well-known equations:

− (3+1)-D Hirota bilinear equation [15] with α1 = −1, α2 = 3, α3 = 0, α4 = −3

uxxxy − uyt + 3(uxuy)x − 3uzz = 0, (2)

− (3+1)-D Jimbo-Miwa equation [16] with α1 = 2, α2 = 3, α3 = 0, α4 = −3

uxxxy + 2uyt + 3(uxuy)x − 3uzz = 0, (3)
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− (2+1)-D BLMP equation [17] with α1 = 1, α2 = −3, α3 = α4 = 0

uxxxy + uyt − 3(uxuy)x = 0, (4)

− (2+1)-D KP equation [18] under the transformation y → x, z → y, ux → u with α1 = 1, α2 = 6, α3 =
0, α4 = ±3

(ut + 6uux + uxxx)x ± 3uyy = 0, (5)

− (1+1)-D KdV equation [19] under the transformation y → x, z → x, ux → u with α1 = 1, α2 = 6, α3 =
α4 = 0

ut + 6uux + uxxx = 0, (6)

Localized solutions, including soliton, lump, breather, and others, are carried by the integrable evolution
equation in specific directions. Analyzing the integrability of the nonlinear PDEs might result in exact and
analytical solutions. The Painlevé test [20–22] can be used to verify the complete integrability of a nonlinear
PDE. Finding out if a PDE can pass the test of Painlevé analysis gets somewhat tedious. However, symbolic
systems make this investigation possible, like the system software Mathematica and Matlab. We look for
particular explanations to understand the peculiarities of several facts accurately in various disciplines of
nonlinear science. As mentioned previously, NLPDE has drawn the attention of several scholars to its ability
to provide a wide range of solutions and closely simulate real-world scenarios. The dynamic analysis of rogue
wave behavior resulting from nonlinear PDEs has made it an attractive research field for highlighting basic
principles in water engineering, plasma, nonlinear sciences, and shallow water waves. Compared to existing
literature, this work stands out by extending the dimension of the equation and offering a new approach to
analyzing rogue wave interactions. While previous studies have mainly focused on lower-dimensional soliton
solutions and first-order rogue waves, this research pushes the boundaries by considering higher-dimensional
systems and providing third-order solutions. The symbolic computations carried out using Mathematica
further enhance the precision and applicability of the solutions, making this method both efficient and ef-
fective for studying complex nonlinear wave phenomena. This efficiency and effectiveness make the method
practical for current research and suggest its potential for further exploration and application in other non-
linear systems.
Nonlinear PDEs [23–31] deals with nonlinear functions used as models for complicated physical systems
in various scientific domains. They are challenging to examine since no general analysis technique exists.
Usually, each equation needs to be examined independently as a problem. Nonetheless, there are some
circumstances in which broad approaches are appropriate. These techniques discretize the problem into a
smaller grid after which they estimate the solution using mathematical procedures. Several methods are
being used to obtain the analytic and exact solutions, such as the Darboux transformation [32–34]; the
simplified Hirota’s technique [35, 36]; the Bäcklund transformation [37, 38]; the Bilinear Neural Network
Method [39,40]; Lie symmetry analysis [41–43]; the Hirota’s bilinearization technique [44–47]; and others.

The manuscript is structured as follows: The following section investigates the Painlevé integra-
bility of the proposed KdV-type nonlinear equation. In Section 3, we construct Hirota’s bilinear form using
the Cole-Hopf transformation and obtain the soliton solutions up to third order and depict the dynamics of
the these solutions. Section 4 constructs the rogue wave solutions utilizing a direct symbolic approach with
the bilinear form of the equation in transformed variables. It finds the rogue waves up to the third order
and plots the dynamical structures for the obtained rogue solutions. In Section 5, we discuss the findings
concerning the dynamic behaviors of the shown graphics, and the last section concludes the remarks of our
work and highlight its future scope.
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2 Integrability: Painlevé Analysis

A reliable method for analyzing the integrability of nonlinear PDEs is the Painlevé test. The primary
goal of this analysis is to find movable singularity-free solutions for a nonlinear PDE. If a PDE passes the
Painlevé test, it is considered P-integrable, indicating that complex structures can be solved using specialized
functions. By verifying integrable conditions, Weiss et al. [48] provided the Painlev’e test to assess the
integrability of the nonlinear PDEs. Three steps make up this analysis: first, it looks at the leading-order
analysis; second, it finds the resonances; and third, it verifies the resonance conditions completely. If the
simple poles of the solutions correspond to all moveable singularities, then the test is considered P-integrable.
The field u is expanded by Laurent’s series about the singular manifold g = 0 of an analytical function g as

u =

∞∑
λ=0

uλg
λ+Λ, (7)

where Λ and uλ; are integer and arbitrary functions, respectively. On substitution of equation (7) in (1),
with leading order analysis, we get

Λ = −1,

with

u0 =
6gx
α2

.

It gets the resonances as
λ = −1, 1, 4, 6.

The resonance λ = −1 shows the arbitrary choice for singular manifold g = 0. The analysis finds the
functions uλ explicitly for λ = 0, 2, 3, 5 and as arbitrary for positive resonances. The positive resonances
satisfied the compatibility conditions. Thus, the investigated KdV-type equation is Painlevé integrable.

3 Bilinear form and N-soliton solutions

We take Φi as the phase in the Eq. (1) as

Φi = pix+ qiy + riz − wit, (8)

with wi as dispersions and pi, qi, ri real parameters. Putting u = eΦi into equation (1) for linear terms, we
get the dispersion as

wi =
α3p

2
i + p3i qi + α4r

2
i

α1qi
. (9)

Considering the Cole-Hopf transformation of auxiliary function f as

u = P (log f)x, (10)

and puting with f(U, V ) = 1 + eΦ1 and equation (9) into equation (1). On solving for P , we get

P =
6

α2
.

Now, we can transform the equation (1) with Eq. (10) in f as

ffxxxy − 3fxfxxy + 3fxxfxy − fxxxfy + α1(ffyt − ftfy) + α3(ffxx − f2
x) + α4(ffzz − f2

z ) = 0 (11)
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that is a bilinear equation and can be shown in Hirota’s bilinear form. Hirota [19] designed the differential
operators Dk : k = x, y, z, t as

Dr1
x Dr2

y Dr3
z Dr4

t U(x, y, z, t)V (x, y, z, t) =(
∂

∂x
− ∂

∂x′

)r1 ( ∂

∂y
− ∂

∂y′

)r2 ( ∂

∂z
− ∂

∂z′

)r3 ( ∂

∂t
− ∂

∂t′

)r4

U(x, y, z, t)V (x′, y′, z′, t′)|x=x′,y=y′,z=z′,t=t′ ,

with x′, y′, z′, t′ as formal variables and and ri : 1 ≤ i ≤ 4 as the positive integers.
Thus, the equation (11) has its Hirota’s bilinear form as[

D3
xDy + α1DyDt + α3D

2
x + α4D

2
z

]
f.f = 0. (12)

We obtain the N -soliton solution by considering an expression for the function f in closed-form given by
Hirota as

f =
∑
η=0,1

exp

 N∑
i=1

ηiΦi +
N∑

1=i<j

Aijηiηj

 , (13)

where
∑

η=0,1 indicates the summation of all possible combinations for ηi = 0, 1 for 1 ≤ i ≤ N .

3.1 Single kink-soliton

For N = 1 in equation (13), we have η1 = 0 and 1 so we take f as

f = f1 = 1 + eΦ1 = 1 + ep1x+q1y+r1z−w1t, (14)

which satisfied the equation (12). Thus, on substituting (14) with its derivative in the equation (10), we get
1-soliton solution

u = u1 =
6p1e

p1x+q1y+r1z

α2

(
exp

(
t(α3p21+p31q1+α4r21)

α1q1

)
+ ep1x+q1y+r1z

) , (15)

3.2 Two kink-solitons

Having N = 2 in the equation (13), we have η1 = η2 = 0, 1. So there will be four combinations of {η1, η2}
as (0, 0), (0, 1), (1, 0) and (1, 1), therefore, the function f is

f = f2 = 1 + eΦ1 + eΦ2 + eA12+Φ1+Φ2 = 1 + eΦ1 + eΦ2 + a12e
Φ1+Φ2 , (16)

where a12 = eA12 .
On substituting the equation (16) into Eq. (12), we get

a12 =
p21q2 (α3q2 − 3p2q1 (q1 − q2)) + p2p1q1q2 (3p2 (q1 − q2)− 2α3) + α3p

2
2q

2
1 + α4 (q2r1 − q1r2)

2

p21q2 (α3q2 − 3p2q1 (q1 + q2))− p2p1q1q2 (3p2 (q1 + q2) + 2α3) + α3p22q
2
1 + α4 (q2r1 − q1r2) 2

(17)

Thus, by putting Eq. (16) with (17) into (10), gives a 2-soliton solution for Eq. (1) as

u = u2 =
6

α2
(log f2)x (18)
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Figure 1: Dynamics of single kink-soliton for (15) with z = 0. (d)-(e) and (g)-(i) depict the contour plots
in xy-plane and 2D plots at different time t, respectively.

3.3 Three kink-solitons

For N = 3 in Eq. (13), we have η1, η2, η3 = 0, 1 so the total combinations for {η1, η2, η3} will be eight as
{(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}, therefore, the function f is as

f = f3 = 1 + eΦ1 + eΦ2 + eΦ3 + a12e
Φ1+Φ2 + a13e

Φ1+Φ3 + a23e
Φ2+Φ3 + b123e

Φ1+Φ2+Φ3 , (19)

where aij = eAij and b123 = eA12+A13+A23 = a12 + a13 + a23.
The equation (17) can be generalized as

aij =
p2i qj (α3qj − 3qipj (qi − qj)) + piqipjqj (3pj (qi − qj)− 2α3) + α3q

2
i p

2
j + α4 (riqj − qirj)

2

p2i qj (α3qj − 3qipj (qi + qj))− piqipjqj (3pj (qi + qj) + 2α3) + α3q2i p
2
j + α4 (riqj − qirj) 2

, (20)
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Figure 2: Dynamics of two kink-solitons for (18) with z = 0. (d)-(e) depicts the contour plots for (a)-(c)
in xy-plane.

for the auxiliary function f = 1 + eΦ1 + eΦ2 + aije
Φ1+Φ2 ; 1 = i < j = 3. By substituting the Eq. (19) with

(20) into the Eq. (10), we obtain the 3-soliton solution as

u = u3 =
6

α2
(log f3)x (21)

4 Bilinear form and rogue waves

We consider the transformations u = u(ξ, η) with ξ = x + t and η = y + z in equation (1). Thus, we get
transformed equation as

α2uηuξξ + α4uηη + α2uξuξη + α1uξη + α3uξξ + uξξξη = 0. (22)

Taking the phase Φi in equation (22)
Φi = piξ − wiη, (23)

having wi as dispersions and pi as real-parameter. Putting u(ξ, η) = eΦi into the Eq. (22), with linear terms,
get

wi =
α1pi + p3i ± pi

√
α2
1 − 4α3α4 + 2α1p2i + p4i

2α4
. (24)
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Figure 3: Dynamics of three kink-solitons for (21) with z = 0. (d)-(e) depicts the contour plots for (a)-(c)
in xy-plane.

Considering the logarithmic transformation

u(ξ, η) = P (log f)ξ, (25)

with P as constant and f as auxiliary function. Putting the transformation (25) with f(ξ, η) = 1+ eΦ1 into
equation (22) gives

P =
6

α2
.

So, the transformation (25) gives a biilinear equation in f of the equation (22) as

ffξξξη − 3fξfξξη + 3fξηfξξ − fηfξξξ + α1(ffξη − fηfξ) + α3(ffξξ − f2
ξ ) + α4(ffηη − f2

η ) = 0. (26)

Using Hirota’s differential operators Di : i = ξ, η

Dn1
ξ Dn2

η f(ξ, η)g(ξ, η) =

(
∂

∂ξ
− ∂

∂ξ′

)n1
(

∂

∂η
− ∂

∂η′

)n2

f(ξ, η)g(ξ′, η′)|ξ=ξ′,η=η′ ,

with ξ′, η′ as formal variables and and ni : i = 1, 2 as positive integers, the equation (26) has its Hirota’s
bilinear form as [

D3
ξDη + α1DξDη + α3D

2
ξ + α4D

2
η

]
f.f = 0, (27)

which shows the similar pattern for D-operators to the bilinear equation (12) in original variables x, y, z, t.
We obtain the rogue waves solutions by considering the function f [49, 50] as
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f(ξ, η) =

n(n+1)
2∑

k=0

k∑
j=0

cn(n+1)−2k,2jξ
n(n+1)−2kη2j , (28)

where n and cr,s; r, s ∈ {0, 2, · · · , k(k + 1)} are positive integer and the constants, respectively.

4.1 First-order rogue waves

For n = 1 in equation (28), we take auxiliary function f(ξ, η) as

f = f1 = c2,0ξ
2 + c0,2η

2 + c0,0. (29)

On having equation (29) into the equation (27), and equating zero the coefficients of distinct powers of
ξrηs; r, s ∈ Z, we obtain a system of equations

2α4c0,0c0,2 + 2α3c0,0c2,0 = 0,

2α4c0,2c2,0 − 2α3c
2
2,0 = 0,

2α3c0,2c2,0 − 2α4c
2
0,2 = 0. (30)

On solving above system, we get parameter values as

c0,0 = 0, c0,2 =
α4c0,2
α3

, c2,0 = c2,0. (31)

Thus, the function f in (29) becomes

f = f1 = c0,2

(
α4ξ

2

α3
+ η2

)
. (32)

On substituting the equation (32) into (25), we get a solution of 1st-order rogue waves as

u(ξ, η) = u1 =
12α4ξ

α2 (α3η2 + α4ξ2)
. (33)

4.2 Second-order rogue waves

For 2nd-order rogue waves, we take f for n = 2 in equation (28) as

f = f2 = c6,0ξ
6 + c4,2ξ

4η2 + c4,0ξ
4 + c2,4ξ

2η4 + c2,2ξ
2η2 + c2,0ξ

2 + c0,6η
6 + c0,4η

4 + c0,2η
2 + c0,0. (34)

Substituting Eq. (34) into the Eq. (27), and equating zero the coefficients of distinct powers of ξrηs; r, s ∈ Z,
gives a system. On solving the system, we get values

c0,0 =
29α4c4,2
2α3

1α3
, c0,2 =

231c4,2
4α2

1

, c0,4 =
5α3c4,2
α1α4

, c0,6 =
α2
3c4,2
3α2

4

,

c2,0 = −9α4c4,2
4α2

1α3
, c2,2 =

12c4,2
α1

, c2,4 =
α3c4,2
α4

, c4,0 = −α4c4,2
α1α3

, c4,2 = c4,2

c6,0 =
α4c4,2
3α3

. (35)
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Figure 4: Dynamics of first-order rogue waves for solution (33) in transformed variables ξ and η. (a)-(b)
depicts the 3D profiles in ξη-plane, and (d)-(f) shows the contour plots for the (a)-(c).

Thus, the function f in (34) becomes

f = f2 =
c4,2
12

(
12α3η

4ξ2

α4
+

144η2ξ2

α1
+

4α2
3η

6

α2
4

+
60α3η

4

α1α4
+

693η2

α2
1

+

4α4ξ
6

α3
− 12α4ξ

4

α1α3
− 27α4ξ

2

α2
1α3

+
174α4

α3
1α3

+ 12η2ξ4). (36)

On putting equation (36) into (25), we get a solution for 2nd-order rogue waves as

u(ξ, η) = u2 =
36ξ

(
4α3η4

α4
+ 48η2

α1
− 8α4ξ2

α1α3
+ 4α4ξ4

α3
− 9α4

α2
1α3

+ 8η2ξ2
)

α2

(
12α3η4ξ2

α4
+ 144η2ξ2

α1
+

4α2
3η

6

α2
4

+ 60α3η4

α1α4
+ 693η2

α2
1

+ 4α4ξ6

α3
− 12α4ξ4

α1α3
− 27α4ξ2

α2
1α3

+ 174α4

α3
1α3

+ 12η2ξ4
) .

(37)
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(d) (e) (f)

Figure 5: Dynamical profiles of (33) in the starting variables x, y, z, and t under transformed variables
ξ = x+ t and η = y + z. (a)-(c) and (d)-(f) depict 3D profiles in xt and xy-planes, respectively.

4.3 Third-order rogue waves

Take n = 3 in equation (28), we get auxiliary function f as

f = f3 = c12,0ξ
12 + c10,2ξ

10η2 + c10,0ξ
10 + c8,4ξ

8η4 + c8,2ξ
8η2 + c8,0ξ

8 + c6,6ξ
6η6 + c6,4ξ

6η4 + c6,2ξ
6η2+

c6,0ξ
6 + c4,8ξ

4η8 + c4,6ξ
4η6 + c4,4ξ

4η4 + c4,2ξ
4η2 + c4,0ξ

4 + c2,10ξ
2η10 + c2,8ξ

2η8 + c2,6ξ
2η6+

c2,4ξ
2η4 + c2,2ξ

2η2 + c2,0ξ
2 + c0,12η

12 + c0,10η
10 + c0,8η

8 + c0,6η
6 + c0,4η

4 + c0,2η
2 + c0,0. (38)

Substituting Eq. (38) into the Eq. (27), and equating zero the coefficients of distinct powers of ξrηs; r, s ∈ Z,
gives a system. On solving this system, we get values as

c0,0 =
7353680000α4c10,2

1113α6
1α3

, c0,2 = −6077833600c10,2
371α5

1

, c0,4 = −6359200α3c10,2
7α4

1α4
, c0,6 = −800α2

3c10,2
3α3

1α
2
4

,

c0,8 =
160α3

3c10,2
α2
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Figure 6: Dynamics of second-order rogue waves for solution (37) in transformed variables ξ and η. (a)-(b)
depicts the 3D profiles in ξη-plane, and (d)-(f) shows the contour plots for the (a)-(c).
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with a10,2 as an arbitrary parameter. Thus, the equation (29) becomes
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Figure 7: Dynamical profiles of second-order rogue waves for (37) in the starting variables x, y, z, and t
under transformed variables ξ = x + t and η = y + z. (a)-(c) and (d)-(f) depict 3D profiles in xt and
xy-planes, respectively.

On having equation (40) into (25), we get a solution of 3rd-order rogue waves as

u = u3 =
6

α2
(log f3)ξ. (41)

5 Results and findings

The proposed KdV-type evolution equation showed the completely integrable using Painlevé analysis. Thus,
it has soliton solutions for kink type with the Hirota bilinear technique. The first-order soliton solution
generated the single kink-soliton, and the second and third-order soliton solutions showed the interaction
solutions for two and three kink-solitons with an appropriate selection of parameters. After that, the rogue
wave solutions for the investigated equation utilize a direct symbolic approach. The first-order rogue solution
generated a single rogue wave solution, and second and third-order rogue solutions gave the interactions of
rogue waves. The dynamics of rogue wave solutions have been shown in transformed variables ξ, η, and in
the starting variables x, y, z, t in ξη, xt, and xy planes. In this context, the dynamical findings are as follows:

- Figure-1 show the one solitons of kink-type, and the solitons (a) and (c) are propagating to the right,
while (b) is propagating to the left of x-axis. The illustrated kink-solitons have the parameter values
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Figure 8: Dynamics of third-order rogue waves for solution (37) in transformed variables ξ and η. (a)-(b)
depicts the 3D profiles in ξη-plane, and (d)-(f) shows the contour plots for the (a)-(c).

as (a) p1 = q1 = r1 = 1, αi = 1, 1 ≤ i ≤ 4; (b) p1 = 1, q1 = −0.3, r1 = α1 = 1, α2 = −1, α3 = α4 = 1;
and (c) p1 = 1, q1 = 0.4, r1 = 0, α1 = 1, α2 = −1, α3 = α4 = 1.

- In Figure-2, we show the two-soliton solutions of kink-types. The dynamics depicts the interactions of
the two kink-type soliton solutions with chosen parameter values. The showed kink-solitons have the
parameter values as (a) p1 = 1, p2 = −1, q1 = 0.5 = q2, r1 = 0.5 = r2, α1 = 1, α2 = −1, α3 = α4 = 1;
(b) p1 = 1, p2 = −1, q1 = 0.7, q2 = 0.5, r1 = 0.5 = r2, α1 = 1, α2 = −1, α3 = α4 = 1; and (c)
p1 = 1, p2 = −1, q1 = 0.7, q2 = 0.5, r1 = 0.5 = r2, α1 = 1, α2 = −1, α3 = α4 = 1.

- Figure-3 depict the three-soliton solutions of kink-types. The dynamics depicts the interactions of
the three kink-type soliton solutions with chosen parameters. The showed kink-solitons have the
parameter values as (a) p1 = 1, p2 = −1 = p3, q1 = 0.7, q2 = 0.5, q3 = 0.6, r1 = 0.5 = r2 = r3, α1 =
1, α2 = −1, α3 = α4 = 1; (b) p1 = 1, p2 = −1 = p3, q1 = 1.5, q2 = 0.5 = q3, r1 = 0.5 = r2, r3 =
0.6, α1 = 1, α2 = −1, α3 = α4 = 1; and (c) p1 = −1, p2 = 1, p3 = −1, q1 = 0.7, q2 = 0.5, q3 = 0.6, r1 =
0.5 = r2 = r3, α1 = 1, α2 = −1, α3 = α4 = 1.

- In Figure-4 and 5, we illustrate the rogue waves of first order which depict the single rogues with
singularities at ξ = η = 0. For all three plots in Figure-4, positive and negative direction of ξ shows
the bright and the dark part of the rogue wave dynamics. Figure-5 depicts the single rogue wave
structures in the original variables x, y, z, t. (a)-(c) shows the periodic behavior w.r.t. time variable
in xt-plane with y = z = 0 and (d)-(f) shows the single rogue waves in xy-plane with z = t = 0. The
showed single rogue waves for both figures have the parameter values as (a) α2 = 5, α3 = α4 = 1; (b)
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(a) (b) (c)

(d) (e) (f)

Figure 9: Dynamical profiles of third-order rogue waves for (41) in the starting variables x, y, z, and t under
transformed variables ξ = x+ t and η = y + z. (a)-(c) and (d)-(f) depict 3D profiles in xt and xy-planes,
respectively.

α2 = 10, α3 = 5, α4 = 1; and (c) α2 = 1, α3 = 3, α4 = 5.

- Figure-6 and 7 depict the rogue waves of second order which show the two rogues having dominating
nature of extreme rogue waves to the smaller rogues. For all three graphs in Figure-6, the two rogues
intersect at ξ = η = 0 with having their bight and dark parts. Figure-7 shows the two rogue wave
structures in the original variables x, y, z, t. (a)-(c) shows the periodic nature w.r.t. time variable, in
xt-plane with y = z = 0 and (d)-(f) shows the two rogue waves in xy-plane with z = t = 0. The showed
second-order rogue waves for both figures have the parameter values as (a) α1 = 0.2, α2 = −0.8, α3 =
α4 = 1; (b) α1 = 0.3, α2 = 0.2, α3 = 1, α4 = 2; and (c) α1 = 0.1, α2 = −0.5, α3 = −3, α4 = −2.

- In Figure-8 and 9, we illustrate the third-order rogue waves that depict the four rogue waves having
dominating nature of extreme rogue waves to the smaller rogues. For all three plots in Figure-8, the
four rogues depict the intersections having their bight and dark parts. Figure-9 shows the four rogue
wave structures in the original variables x, y, z, t. (a)-(c) shows the periodicity w.r.t. time variable in
xt-plane with y = z = 0 and (d)-(f) shows the four rogue waves in xy-plane with z = t = 0. The
showed third-order rogue waves for both figures have the parameter values as (a) α1 = −0.3, α2 =
0.1, α3 = −0.7, α4 = −0.5; (b) α1 = −0.6, α2 = −0.1, α3 = 0.1, α4 = 0.2; and (c) α1 = −0.5, α2 =
−0.05, α3 = 0.4, α4 = 0.1.
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6 Conclusions

This research article proposed a new Painlevé integrable (3+1)-dimensional generalized nonlinear KdV-
type equation. The Painlevé analysis confirmed the complete integrability. We constructed the bilinear
form in Hirota’s D-operators with the Cole-Hopf transformation of the auxiliary function. Using the Hirota
bilinear technique, the soliton solutions for the investigated equation were formed in the third order, showing
their type as kinks, and the second and third orders have the interactions of kink-solitons. After that, we
constructed the rogue wave solutions for the proposed equation utilizing the direct symbolic approach with
a logarithmic transformation to construct the bilinear form. We obtained the rogue wave solutions, and in
second and third-order solutions, the waves showed the dominating nature of large rogues over the smaller
rogues. Using the symbolic software Mathematica, we have shown the dynamics for the higher-order solitons
and rogue waves with appropriate parameter values. Dynamics for the rogue waves were studied in both
transformed and starting variables, which helps to understand the nature of rogues in starting variables
concerning the transformed variables.
The proposed equation generalizes the well-known equations having applications in nonlinear sciences and
soliton theory. Thus, this equation can explore water wave solutions such as lumps, breathers, and other
periodic waves. We studied this equation using two methods for soliton and rogue wave solutions, so different
techniques can be used to construct several other solutions in nonlinear fields. Future work will focus on
extending the analysis to other high-dimensional nonlinear systems and exploring potential applications
in real-world scenarios such as fluid dynamics, fiber optics, and atmospheric science. This research could
provide valuable insights into wave behavior in extreme environments, paving the way for new advances in
nonlinear sciences and mathematical physics.
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