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Abstract: In this work, we analyze the new generalized soliton solutions for the nonlinear partial dif-
ferential equations with a novel symbolic bilinear technique. The proposed approach constructs the soliton
solutions depending on the arbitrary parameters, which generalizes the soliton solutions with these addi-
tional parameters. Examining phase shifts and their dependence on the parameters influences how solitons
collide, merge, or pass through each other, which is essential for the nonlinear analysis of solitons. Us-
ing the proposed technique, we examine the well-known (1+1)-dimensional Korteweg-de Vries (KdV) and
(2+1)-dimensional Kadomtsev-Petviashvili (KP) equations with a comparative analysis of soliton solutions
in the Hirota technique. We construct the generalized solitons solutions for both examined equations up
to the third order, providing a better understanding of formed solitons with arbitrary parameter choices.
The Cole-Hopf transformations are used to construct the bilinear form in the auxiliary function using Hi-
rota’s D-operators for both investigated KdV and KP equations. It discusses the phase shift depending on
parameters and compares it to the phase shift in Hirota’s soliton solutions. We utilize Mathematica, a com-
puter algebra system, to obtain the generalized solitons and analyze the dynamic behavior of the obtained
solutions by finding the values for the parameters and the relationships among them. Solitons are localized
waves that appear in different fields of nonlinear sciences, such as oceanography, plasmas, fluid mechanics,
water engineering, optical fibers, and other sciences.

Keywords: Analytical method; Generalized Solitons; Symbolic bilinear method; Cole-Hopf transforma-
tion; KdV equation; KP equation.

1 Introduction

Investigating solitons in nonlinear fields is a fascinating and pivotal area of research, offering deep insights
into the behavior of solitary waves in diverse physical systems. Solitons, as well as stable and localized wave
solutions, are essential to study in nonlinear sciences. The nonlinear Korteweg-de Vries (KdV) equation [1],
Schrödinger equation [2], and Kadomtsev-Petviashvili (KP) equation [3] are renowned models that apprehend
soliton dynamics in various contexts, such as optics, plasma, and fluid dynamics. Understanding solitons’
formation, propagation, and interactions provides a deeper understanding of the relation among non-linearity,
dispersion, and other relevant factors in nonlinear systems. The study of solitons enhances our theoretical and
practical understanding of nonlinear phenomena. It holds practical implications, influencing technological
advancements and developing novel applications in ocean engineering, plasma physics, telecommunication,
and many nonlinear sciences.
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For decades, Hirota’s bilinear method [4, 5] and simplified Hirota method [6, 7] have been used to ob-
tain the soliton solutions of nonlinear partial differential equations (PDEs) in exact form, which uses the
perturbation for the auxiliary function in dependent variable transformation. Now, we have numerous com-
puter algebra systems or symbolic software available, such as Maple, Matlab, Mathematica, Octave, Maxima,
Scilab, and some are freeware. Using such software, we can quickly investigate the highly computational
work, such as finding exact solutions for nonlinear evolution equations. Researchers use several symbolic
or computational methods to study the nonlinear PDE, such as the Hirota’s bilinear approach for soliton
solutions, symbolic computational approach for rogue wave solutions, simplified Hirota technique for soli-
ton solutions, bilinear Bäcklund transformation for analytic solutions, Painelevé analysis for investigating
integrability, and others. Hirota’s bilinear method is popular among scientists and researchers for finding
the exact soliton solutions, which provides a systematic approach to finding N -soliton solutions where N
denotes the number of solitons. We can find several works in the literature to obtain the soliton solution
using the Hirota bilinear approach. However, the solutions in Hirota’s method do not provide the generalized
solutions to study them with several arbitrary parameters.

This work introduces a novel symbolic bilinear technique for constructing generalized soliton solutions
for nonlinear partial differential equations. The primary advantage of this method is its ability to incorpo-
rate arbitrary parameters into the solution, providing a more flexible and comprehensive framework than
traditional methods such as the Hirota bilinear technique. We demonstrate that the proposed approach’s
solutions are exact and generalized to those obtained through Hirota’s bilinear method. The investigation
reveals the effectiveness and advantages of the presented approach by comparing the new soliton solutions
with those of well-known KdV and KP equations. This flexibility allows for a detailed analysis of the be-
havior of soliton solutions under varying conditions, which can lead to new insights into the dynamics of
these solutions. Moreover, our technique extends Hirota’s soliton solutions by adding additional scaling
parameters, thus offering a generalized approach that can be applied to a broader range of problems. It is
particularly beneficial for examining complex systems where parameter variations can significantly impact
the solution’s properties. To ensure the robustness and validity of our proposed method, we performed a
comparative analysis with soliton solutions obtained using Hirota’s technique.
By applying our symbolic bilinear technique to the well-known (1+1)-dimensional Korteweg-de Vries (KdV)
[1] and (2+1)-dimensional Kadomtsev-Petviashvili (KP) [3] equations, we verified that the generalized soliton
solutions produced are consistent with established solutions, demonstrating the method’s accuracy. More-
over, we analyzed the dynamical behavior of these solutions under various parameter values to confirm their
stability and physical relevance. Using Mathematica allowed us to systematically explore the parameter
space, ensuring that the solutions are mathematically valid and physically meaningful. Additionally, the
ability to construct soliton solutions up to the third order highlighted the method’s effectiveness, showcas-
ing its potential for handling higher-order and more complex equations. These validations underscore the
reliability and efficiency of our novel symbolic bilinear technique. Future studies will strengthen this valida-
tion by applying the method to additional nonlinear PDEs and comparing the results with experimental or
observational data in relevant physical contexts.

Nonlinear partial differential equations (NLPDEs) represent a vast interdisciplinary domain within
physics and applied mathematics. They serve as mathematical models for complex physical systems across
diverse scientific fields. Investigating Nonlinear PDEs poses a formidable challenge due to the absence of
universal techniques for their analysis. Therefore, each equation necessitates independent examination as
a unique problem. However, certain situations may deserve broader approaches. Various techniques are
employed to derive analytic and exact solutions, encompassing methodologies such as the Darboux trans-
formation [8–11], simplified Hirota’s technique [12, 13], Bäcklund transformation [14, 15], Bilinear Neural
Network Method [16–19], Symbolic computation [20–27], Hirota’s bilinear approach [28–31], Symmetry
analysis [32,33], Pfaffian technique [34,35], and other methodologies.

The following section proposes the symbolic bilinear technique (SBT) and shows its different steps. In
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Section 3, we study the (1+1)-D KdV equation utilizing the proposed technique and construct the generalized
1-, 2-, and 3-soliton solutions with their dynamics for distinct parameter values. Section 4 studies the (2+1)-
D KP equation using SBT, obtains the generalized 1-, 2-, and 3-soliton solutions for distinct parameters,
and shows the dynamics for the constructed solutions. In Section 5, we discuss the findings for the soliton
solutions with the proposed technique, and at the end, we conclude the results and the work.

2 Symbolic Bilinear Technique (SBT)

Symbolic techniques [22–27] for solving nonlinear PDEs offer considerable advantages in mathematical
physics and nonlinear sciences. One significant benefit is the ability to derive exact solutions, which provide
deep insights into the underlying concepts and serve as benchmarks for validating complex phenomena.
These techniques facilitate a deeper analytical understanding of system behavior, revealing relationships
between variables and uncovering fundamental properties in soliton theory, plasma physics, and others.
Symbolic methods often simplify complex nonlinear PDEs, transforming them into more tractable forms.
Techniques like the Cole-Hopf transformation [28,29] and Hirota’s bilinear method [30,31] can convert non-
linear equations into linear or bilinear forms, making them easier to solve. Additionally, symbolic techniques
offer a systematic approach to finding higher-order solutions, such as solitons and rogue waves, which are
crucial for understanding the dynamics of nonlinear systems. Symbolic techniques are versatile and applica-
ble across various scientific disciplines, including fluid dynamics, plasma physics, and optical fibers, making
them powerful tools for researchers.

Let us assume a nonlinear partial differential equation of (n+1)-dimensions with n spatial coordinates
{x1, x2, x3, · · · , xn}, and one temporal coordinate t as

S(u, ut, ux1 , ux2 , ux3 , ux1x1 , ux1t, ux1x2 , ux1x1x1 , · · · ) = 0, (1)

which contains partial derivatives with independent variables {x1, x2, x3, · · · , xn, t} to dependent variable
function u.
First we transform the equation (1) by constructing a Cole-Hopf transformation [28–31]

u(x1, x2, x3, · · · , xn, t) = R(ln f)xm
i
, (2)

where R is a nonzero real constant and f(x1, x2, x3, · · · , xn, t) is an auxiliary function, m is the order of ith

independent variable xi, obtained by balancing between nonlinear and higher-order terms in PDE for xi.
The equation (1) is changed by Cole-Hopf transformation to a bilinear equation in auxiliary function f as

T (f, ft, fx1 , fx2 , fx3 , fx1x1 , fx1t, fx1x2 , fx1x1x1 , · · · ) = 0, (3)

which can be represented in the Hirota’s bilinear form with D-operators as

H(Dt, Dx1 , Dx2 , Dx3 , D
2
x1
, Dx1Dx2 , D

2
x2
, Dx2Dx3 , · · · )f.f = 0. (4)

For obtaining the N -soliton solution for equation (4), we express the auxiliary function f symbolically as

f =

{2N}∑
k{i=1,2,...,N}=0,1

ak1,k2,k3,...,kN e
k1ξ1+k2ξ2+k3ξ3+···+kN ξN , (5)

where ki = 0, 1 are the binary choices for 1 ≤ i ≤ N , 2N represents the number of terms, ak1,k2,k3,...,kN are
the real non-zero parameters to be determined, and ξi are the phases for the equation (4)
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For N = 1, we get k1 = 0, 1, therefore

f =

{2}∑
k1=0,1

ak1e
k1ξ1 = a0 + a1e

ξ1 .

For N = 2, we have k1, k2 = 0, 1, therefore

f =

{4}∑
k1,k2=0,1

ak1,k2e
k1ξ1+k2ξ2 = a0,0 + a1,0e

ξ1 + a0,1e
ξ2 + a1,1e

ξ1+ξ2 .

For N = 3, we get k1, k2, k3 = 0, 1 therefore

f =

{8}∑
k1,k2,k3=0,1

ak1,k2,k3e
k1ξ1+k2ξ2+k3ξ3

= a0,0,0 + a1,0,0e
ξ1 + a0,1,0e

ξ2 + a0,0,1e
ξ3 + a1,1,0e

ξ1+ξ2 + a1,0,1e
ξ1+ξ3 + a0,1,1e

ξ2+ξ3 + a1,1,1e
ξ1+ξ2+ξ3 .

Thus, the auxiliary functions f provide the N -soliton solutions of the bilinear equation (4) for different values
of N = 1, 2, 3, that are solutions to the equation (1). The symbolic bilinear technique obtains the generalized
N -soliton solutions depending on arbitrary parameters and observes that the Hirota’s N -soliton solutions [1]
using bilinear method [29–31] are as one case for the obtained solution by this symbolic approach.
For a0 = a1 = 1, a0,0 = a1,0 = a0,1 = 1, and a0,0,0 = a1,0,0 = a0,1,0 = a0,0,1 = 1, the above auxiliary
functions generate Hirota’s [1] 1-soliton, 2-soliton, and 3-soliton solutions, respectively. Thus, the solutions
by this approach have the opportunities to observe and study the behavior of solitons with different values
of these additional real parameters ak1,k2,k3,...,kN along with the constants presents in the phase variables for
the studied equations as discussed in the following section.

3 (1+1)-dimensional KdV equation

The nonlinear KdV equation [1] is an evolution equation that describes the evolution of one-dimensional,
weakly nonlinear, and long waves. It was first introduced in the field of hydrodynamics to model the behavior
of shallow water waves. The KdV equation is

ut + 6uux + uxxx = 0, (6)

where u is the dependent variable that represents the wave amplitude, x and t are the spatial coordinate and
time, respectively. The equation 6 is particularly notable for its soliton solutions, which are solitary wave
solutions that maintain their shape and speed during propagation. These solitons arise due to a balance
among nonlinear and dispersive terms in the equation. The nonlinear KdV equation has applications in
several domains, including plasma physics, fluid dynamics, and nonlinear optics, making it a fundamental
model for studying wave phenomena.
Let us consider the phase variable ξi in the KdV equation (6) as

ξi = µix− dit, (7)

with µi : i = 1, 2, ..., as constant parameters and di as the dispersion coefficients. On putting u = eξi in
linear terms of Eq. (6), we get the dispersion di = µ3

i .
Considering the transformation

u(x, t) = R(ln f)xx, (8)
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and putting it with f(x, t) = 1+eξ1 in Eq. (6). On solving, we get R as 2. Thus, the equation (8) transforms
the equation (6) into a bilinear equation in f as

ffxt − fxft + 3f2
xx − 4fxfxxx + ffxxxx = 0. (9)

Using the bilinear differential operators Di : i = X,T defined by Hirota [1] as

DR1
X DR2

T UV =

(
∂

∂X
− ∂

∂X′

)R1
(

∂

∂T
− ∂

∂T ′

)R2

U(X,T )V (X ′, T ′)|X=X′,T=T ′ ,

with X ′ and T ′ as the formal variables and Rj : j = 1, 2 as positive integers. Thus, the bilinear equation (9)
can be written in the Hirota’s bilinear form with bilinear differentials D as

[DxDt +D4
x]f.f = 0. (10)

For one soliton solution, we take the function f in Eq. (10) by having N = 1 in the equation (5) as

f1 = f(x, t) =

{2}∑
k1=0,1

ak1e
k1ξ1 = a0 + a1e

ξ1 = a0 + a1e
µ1x−d1t, (11)

which satisfies the bilinear equation (10) identically with arbitrary choices of a0 and a1. By substituting the
equations (11) into (8), we get a generalized solution for one-soliton as

u1(x, t) = u =
2a0a1µ

2
1e

µ3
1t+µ1x(

a0eµ
3
1t + a1eµ1x

)2 , (12)

that dependents on the arbitrary parameters a0 and a1. Therefore, we analyze the behavior and dynamics
of this 1-soliton solution for distinct values of these parameters. As, we have discussed that for a0 = a1 = 1
the solution will give the Hirota’s 1-soliton solution [1], thus, the obtained solution is a generalized 1-soliton
solution with arbitrary choice of non-zero parameters, and the dynamics are shown in figure 1.

With N = 2, the equation (5) gives auxiliary function f as

f2 = f =

{4}∑
k1,k2=0,1

ak1,k2e
k1ξ1+k2ξ2 = a0,0 + a1,0e

ξ1 + a0,1e
ξ2 + a1,1e

ξ1+ξ2 . (13)

By substituting the Eq. (13) into bilinear Eq. (10), and equating the coefficients of distinct expressions in
power of exponential functions to zero, we get

a1,1 =
(µ1 − µ2)

2a0,1a1,0
(µ1 + µ2) 2a0,0

. (14)

On substituting Eqs (13) into (8), give a two-soliton solution of equation (6) as

u2(x, t) = u = 2(ln f2)xx, (15)

that dependents on the arbitrary parameters a0,0, a0,1 and a1,0. Therefore, we study the dynamical behavior
of this 2-soliton solution for distinct values of these arbitrary non-zero parameters. For a0,0 = a0,1 = a1,0 = 1
the solution (15) will represent a Hirota’s 2-soliton solution [1] and the equation (14) shows the phase shift
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Figure 1: Dynamical profiles of 1-soliton solitons for (12) with µ1 = 0.3 and (a) a0 = 0.1, a1 = 0.9; (b)
a0 = 1, a1 = 1 (c) a0 = −0.5, a1 = −0.1; (d)-(f) and (g)-(i) depicts the contour and 2D plots for (a)-(c),
respectively.

in Hirota’s bilinear method. Thus, the obtained solution is a generalized 2-soliton solution with these
parameters, and the figure 2 shows the dynamics for this solution.

For N = 3 in Eq. (5), we consider the auxiliary function f as

f3 = f =

{8}∑
k1,k2,k3=0,1

ak1,k2,k3e
k1ξ1+k2ξ2+k3ξ3 (16)

= a0,0,0 + a1,0,0e
ξ1 + a0,1,0e

ξ2 + a0,0,1e
ξ3 + a1,1,0e

ξ1+ξ2 + a1,0,1e
ξ1+ξ3 + a0,1,1e

ξ2+ξ3 + a1,1,1e
ξ1+ξ2+ξ3 .

On substituting the Eq. (16) into the bilinear Eq. (10), and equating the coefficients of distinct expressions
in power of exponential functions to zero, we get

a1,1,0 =
(µ1 − µ2)

2a0,1,0a1,0,0
(µ1 + µ2) 2a0,0,0

, a0,1,1 =
(µ2 − µ3)

2a0,0,1a0,1,0
(µ2 + µ3) 2a0,0,0

, a1,0,1 =
(µ1 − µ3)

2a0,0,1a1,0,0
(µ1 + µ3) 2a0,0,0

,
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Figure 2: Dynamical profiles of 2-soliton solitons for (15) with µ1 = 0.7, µ2 = 1 and (a) a0,0 = 1, a1,0 =
1, a0,1 = 1 (b) a0,0 = 25, a1,0 = 0.5, a0,1 = 1 (c) a0,0 = 0.3, a1,0 = 10, a0,1 = 1; (d)-(f) and (g)-(i) depicts
the contour and 2D plots for (a)-(c), respectively.

a1,1,1 =
(µ1 − µ2)

2 (µ1 − µ3)
2 (µ2 − µ3)

2a0,0,1a0,1,0a1,0,0
(µ1 + µ2) 2 (µ1 + µ3) 2 (µ2 + µ3) 2a20,0,0

,

which shows the relation as

a1,1,1 = (a1,1,0 × a0,1,1 × a1,0,1)
a0,0,0

a1,0,0a0,1,0a0,0,1
, (17)

where a0,0,0, a1,0,0, a0,1,0 and a0,0,1 are arbitrary constants. Thus the equation (16) satisfies the equation (10)
as a solution with the above parameters. By substituting the equation (16) into (8), we establish a 3-soliton
solution as

u3(x, t) = u = 2(ln f3)xx, (18)

that dependents on the arbitrary parameters a0,0,0, a1,0,0, a0,1,0 and a0,0,1. Therefore, we study the behavior
with dynamics of this 3-soliton solution for distinct values of these non-zero parameters. For a0,0,0 =
a1,0,0 = a0,1,0 = a0,0,1 = 1 the solution (18) will represent a Hirota’s 3-soliton solution [1] and the equation
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(17) satisfies the disperssion relation for the parameters as in Hirota’s bilinear method, thus, the obtained
solution is a generalized three-soliton solution with arbitrary parameters, and the dynamics are shown in
figure 3.

(a) (b) (c)

-30 -20 -10 0 10 20 30

-30

-20

-10

0

10

20

30

x

t

(d)

-30 -20 -10 0 10 20 30

-30

-20

-10

0

10

20

30

x

t

(e)

-30 -20 -10 0 10 20 30

-30

-20

-10

0

10

20

30

x

t

(f)

-10 10 20 30
x

0.1

0.2

0.3

0.4

u

t=0 t=5 t=10

(g)

-10 10 20 30
x

0.1

0.2

0.3

0.4

u

t=0 t=5 t=10

(h)

-10 10 20 30
x

0.1

0.2

0.3

0.4

u

t=0 t=5 t=10

(i)

Figure 3: Dynamical profiles of 3-soliton solitons for (15) with µ1 = 0.7, µ2 = 1, µ3 = 0.5 and (a) a0,0,0 =
a1,0,0 = a0,1,0 = a0,0,1 = 1 (b) a0,0,0 = 4, a1,0,0 = 1, a0,1,0 = 8, a0,0,1 = 1 (c) a0,0,0 = 1, a1,0,0 = 10, a0,1,0 =
5, a0,0,1 = 1; (d)-(f) and (g)-(i) depicts the contour and 2D plots for (a)-(c), respectively.

4 (2+1)-dimensional KP equation

The nonlinear KP equation [3] significantly extends the Korteweg-de Vries (KdV) equation, specifically
developed to describe two-dimensional weakly nonlinear and dispersive waves. Its mathematical form is

(ut + 6uux + uxxx)x − uyy = 0, (19)

where u represents the wave amplitude, x, y and t are spatial and time coordinate, respectively. The
nonlinear KP equation is essential to studying solitons and integrable systems exhibiting rich and complex
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behaviors of wave interactions. Similar to the KdV equation, the KP equation supports solitons, but its
two-dimensional nature allows for more elaborate structures, such as two-soliton solutions that interact in
a nontrivial manner. The nonlinear KP equation finds applications in diverse fields, such as plasma, fluid
mechanics, and oceanography, contributing to our understanding of nonlinear wave phenomena in multiple
dimensions.
Let us consider the phase variable ξi in the KP equation (19) as

ξi = µix+ νiy − dit, (20)

with µi, νi : i = 1, 2, ..., as constant parameters and di as the dispersion coefficients. On putting u = eξi in

linear terms of Eq. (19), we get the dispersion di =
µ4
i−ν2i
µi

.
Considering the transformation

u(x, y, t) = R(ln f)xx, (21)

and putting it with f(x, y, t) = 1 + eξ1 in Eq. (19). On solving, we get R as 2. Thus, the equation (21)
transforms the equation (19) into a bilinear equation in f as

ffxt − fxft + 3f2
xx − 4fxfxxx + ffxxxx − ffyy + f2

y = 0. (22)

Using the bilinear operators Di : i = X,Y, T defined by Hirota [1] as

DR1
X DR2

Y DR3
T UV =

(
∂

∂X
− ∂

∂X′

)R1
(

∂

∂Y
− ∂

∂Y ′

)R2
(

∂

∂T
− ∂

∂T ′

)R3

U(X,Y, T )V (X ′, Y ′, T ′)|X=X′,Y=Y ′,T=T ′ ,

with X ′, Y ′ and T ′ as the formal variables and Rj : j = 1, 2, 3 as positive integers. Thus, the bilinear
equation (22) can be written in the Hirota’s bilinear form with bilinear differentials D as

[DxDt +D4
x −D2

y]f.f = 0. (23)

For N = 1 in the equation (5), we take the function f in Eq. (23) as

f1 = f(x, y, t) =

{2}∑
k1=0,1

ak1e
k1ξ1 = a0 + a1e

ξ1 = a0 + a1e
µ1x+ν1y−d1t, (24)

which satisfies the bilinear equation (23) identically with arbitrary choices of a0 and a1. By substituting the
equations (24) into (21), we get one-soliton solution as

u1(x, y, t) = u =
2a0a1µ

2
1e

ν21 t

µ1
+µ3

1t+µ1x+ν1y(
a1e

ν21 t

µ1
+µ1x+ν1y + a0eµ

3
1t

)
2

, (25)

that dependents on the parameters a0 and a1. Therefore, we observe the behavior and the dynamics of
this 1-soliton solution for distinct values of these non-zero parameters. For a0 = a1 = 1 the solution will
represent the Hirota’s 1-soliton solution [3], thus, the obtained solution is a generalized 1-soliton solutions
with these non-zero parameters, and the dynamics are shown in figure 4.

Having N = 2 in the equation (5), we take auxiliary function f as

f2 = f =

{4}∑
k1,k2=0,1

ak1,k2e
k1ξ1+k2ξ2 = a0,0 + a1,0e

ξ1 + a0,1e
ξ2 + a1,1e

ξ1+ξ2 . (26)
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Figure 4: Dynamical profiles of 1-soliton solutions for (25) with µ1 = 0.2, ν1 = −0.3, t = 0 and (a) a0 =
0.1, a1 = 0.2; (b) a0 = 0.8, a1 = 0.11 (c) a0 = 1, a1 = 20; (d)-(f) depicts the contour plots for (a)-(c),
respectively.

By substituting the Eq. (26) into the bilinear Eq. (23), and equating the coefficients of distinct expressions
in power of exponential functions to zero, we get

a1,1 =

(
3µ2

1µ
2
2(µ1 − µ2)

2 + (µ1ν2 − µ2ν1)
2
)
a0,1a1,0(

3µ2
1µ

2
2(µ1 + µ2)2 + (µ1ν2 − µ2ν1)2

)
a0,0

. (27)

On substituting Eq. (26) into the equation (21), give a two-soliton solution of equation (19) as

u2(x, t) = u = 2(ln f2)xx, (28)

that dependents on the arbitrary parameters a0,0, a0,1 and a1,0. Therefore, we study the dynamics of this
2-soliton solution for distinct values of these non-zero parameters. For a0,0 = a0,1 = a1,0 = 1, the solution
(28) will represent a Hirota’s 2-soliton solution [3] and the equation (27) shows the relation for the phase
shift as in Hirota’s bilinear method, thus, the obtained solution is a generalized 2-soliton solution with these
arbitrary parameters, and the figure 5 shows the dynamics of the solution.

For N = 3 in the equation (5), we consider the function f as

f3 = f =

{8}∑
k1,k2,k3=0,1

ak1,k2,k3e
k1ξ1+k2ξ2+k3ξ3 (29)

= a0,0,0 + a1,0,0e
ξ1 + a0,1,0e

ξ2 + a0,0,1e
ξ3 + a1,1,0e

ξ1+ξ2 + a1,0,1e
ξ1+ξ3 + a0,1,1e

ξ2+ξ3 + a1,1,1e
ξ1+ξ2+ξ3 .
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Figure 5: Dynamical profiles of 2-soliton solutions for (15) with µ1 = µ2 = 0.4, ν1 = 0.5, ν2 = −0.3, t = 0
and (a) a0,0 = 0.1, a1,0 = 0.2, a0,1 = 0.5 (b) a0,0 = 0.1, a1,0 = 0.2, a0,1 = 20 (c) a0,0 = 1, a1,0 = 20, a0,1 = 1;
(d)-(f) depicts the contour plots for (a)-(c), respectively.

On substituting the equation (29) into the bilinear Eq. (23), and equating the coefficients of distinct
expressions in power of exponential functions to zero, we get

a1,1,0 =

(
3µ2

1µ
2
2(µ1 − µ2)

2 + (µ1ν2 − µ2ν1)
2
)
a1,0,0a0,1,0(

3µ2
1µ

2
2(µ1 + µ2)2 + (µ1ν2 − µ2ν1)2

)
a0,0,0

,

a0,1,1 =

(
3µ2

2µ
2
3(µ2 − µ3)

2 + (µ2ν3 − µ3ν2)
2
)
a0,1,0a0,0,1(

3µ2
2µ

2
3(µ2 + µ3)2 + (µ2ν3 − µ3ν2)2

)
a0,0,0

,

a1,0,1 =

(
3µ2

1µ
2
3(µ1 − µ3)

2 + (µ1ν3 − µ3ν1)
2
)
a1,0,0a0,0,1(

3µ2
1µ

2
3(µ1 + µ3)2 + (µ1ν3 − µ3ν1)2

)
a0,0,0

,

a1,1,1 = (a1,1,0 × a0,1,1 × a1,0,1)
a0,0,0

a1,0,0a0,1,0a0,0,1
, (30)

where a0,0,0, a1,0,0, a0,1,0 and a0,0,1 are arbitrary constants. Thus the equation (29) satisfies the equation
(23) as a solution with the arbitrary non-zero parameters. By substituting the equation (29) into (21), we
establish a 3-soliton solution as

u3(x, y, t) = u = 2(ln f3)xx, (31)

that depends on the arbitrary parameters a0,0,0, a1,0,0, a0,1,0 and a0,0,1. Therefore, we study the dynamics of
this 3-soliton solution for distinct values of these non-zero parameters. For a0,0,0 = a1,0,0 = a0,1,0 = a0,0,1 = 1
the solution will represent Hirota’s 3-soliton solution [3] and the equation (30) satisfies the dispersion relation
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for the parameters as in Hirota’s bilinear technique, thus, the obtained solution is a generalized three-soliton
solution with these non-zero parameters, and the dynamics are shown in figure 6.
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Figure 6: Dynamical profiles of 3-soliton solutions for (31) with t = 0 and (a) a0,0,0 = a1,0,0 = a0,1,0 =
a0,0,1 = 1, µ1 = µ3 = 0.5, µ2 = 0.7, ν1 = 0.5, ν2 = 0.2, ν3 = 0.1 (b) a0,0,0 = 0.5, a1,0,0 = 0.3, a0,1,0 =
0.5, a0,0,1 = 1, µ1 = 0.4, µ2 = 0.3, µ3 = 0.5, ν1 = 0.3, ν2 = 0.2, ν3 = 0.1 (c) a0,0,0 = 0.1, a1,0,0 = 0.3, a0,1,0 =
0.5, a0,0,1 = 0.1, µ1 = 0.2, µ2 = 0.3, µ3 = 0.2, ν1 = 0.3, ν2 = 0.2, ν3 = 0.1; (d)-(f) depicts the contour plots
for (a)-(c), respectively.

5 Results and discussion

This work has analyzed the newly constructed generalized soliton solutions concerning arbitrary parameters
utilizing the proposed symbolic bilinear technique. Our analysis includes the examination of phase shifts
and their dependence on the parameters, which is essential for characterizing the interaction of solitons in
physical systems [1–4]. Additionally, the generalized solitons produced by our approach provide a more
realistic representation of physical processes due to the inclusion of arbitrary parameters. This approach
verifies that the solutions obtained in Hirota’s bilinear approach [1, 3] for the studied equations are a case
for the established generalized solutions. We have shown a comparative analysis of the existing solutions
for well-known KdV and KP equations using Hirota’s bilinear method and the solutions using our proposed
approach. Researchers and investigators can apply this technique to the other equations to more broadly
understand the behavior and physical appearance of the solutions for a nonlinear system [5–9].
The analysis of generalized soliton solutions using the symbolic bilinear technique reveals several critical
aspects of their physical significance. These include the flexibility introduced by arbitrary parameters, the
importance of phase shifts in soliton interactions, and the validation of the proposed approach against es-
tablished methods. Generalized soliton solutions that arbitrarily provide additional parameters make the
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description of physical processes more universal and complete, giving a better understanding of their un-
derlying dynamics. The study of phase shifts as a function of these parameters is particularly relevant for
understanding soliton interactions in physical systems. Otherwise, phase shifts can play a crucial role in
influencing the collisions of solitons to merge like this or cross each other and are, therefore, essential for
the nonlinear study of interaction type. It is also checked by the obtained solution being exact and gener-
alizable concerning Hirota’s bilinear method, confirming its reliability for a new technique. This study also
compares the new solutions with well-known KdV and KP equations to show that the proposed method is
effective against known results and satisfactory compared to available approaches. Here, this comparison
illustrates the enhancements and deviations inserted via arbitrary parameters to give a new understanding
of soliton behavior. It is essential for applications where soliton behavior plays a key role, as in our case, one
elementary problem can lead to N-solitons. In addition, its generality for other nonlinear equations makes
it worthwhile in the large toolbox of techniques used by researchers who explore various phenomena within
nonlinear dynamics.

The physical significance lies in the enhanced realism and versatility of soliton solutions with arbitrary
parameters, improved understanding of soliton interactions through phase shift analysis, validation against
established approaches, and the potential for broad application in studying nonlinear systems. Selecting
several arbitrary parameters, we have generated N -soliton up to N = 3 with the given symbolic bilinear
technique and analyzed the structures for the obtained solutions dynamically. We explains the analysis as
follows:

- Figures 1 and 4 plot the one solitons in (a) to (c) for investigated KdV and KP equations, and analyses
the soliton behavior for different values of arbitrary parameters a0 and a1 with the constant µ1 = 0.3
for KdV equation and µ1 = 0.2, ν1 = −0.3, t = 0 for KP equation. The solitons change their position
with respect to the singularities depending on the parameters a0 and a1. Graphics (d) to (f) show the
contour plots for (a) to (c), respectively. The 2D graphics (g) to (h) in figure-1 depict that the solitons
are moving in right direction of x-axis.

- In figure 2 and 5, we illustrate the interactions of two solitons in (a) to (c) for investigated KdV and
KP equations, and analyses the solitons behavior for different values of arbitrary parameters a0,0, a0,1
and a1,0 with the constants µ1 = 0.7, µ2 = 1 for the KdV equation and µ1 = µ2 = 0.4, ν1 = 0.5, ν2 =
−0.3, t = 0 for the KP equation. The solitons change their interaction position with respect to the
singularities depending on these parameters. Graphics (d) to (f) show the contour plots for (a) to (c),
respectively. The 2D graphics (g) to (h) in figure-2 depict that the solitons interactions moving in
right direction of x-axis.

- Figure 3 and 6 show the interactions of three solitons in (a) to (c) for investigated KdV and KP equa-
tions, and analyze the solitons behavior for different values of arbitrary parameters a0,0,0, a0,0,1, a0,1,0
and a1,0,0 with the constants µ1 = 0.7, µ2 = 1, µ3 = 0.5 for the KdV equation and different values of
constants µ1, µ2, µ3, ν1, ν2, ν3, t = 0 for the KP equation. The soliton interactions change their posi-
tion with respect to the singularities depending on these parameters. Graphics (d) to (f) show the
contour plots for (a) to (c), respectively. The 2D graphics (g) to (h) in figure-3 depict that the solitons
interactions moving in right direction of x-axis.

6 Conclusions

This research study analyzed the newly constructed generalized soliton solution for the well-known KdV
and KP nonlinear evolution equations with a novel symbolic bilinear technique. This technique gave us an
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advantage in obtaining generalized soliton solutions depending on the arbitrary parameters and the con-
stant presented in the phase variable for the investigated equations. We showed that the proposed technique
establishes more generalized exact solutions than Hirota’s N -solitons, which is a case with the parameter
values. We investigated two well-known (1+1)-dimensional KdV and (2+1)-dimensional KP equations with
the said technique and compared the obtained solutions to Hirota’s soliton solutions. Generalized soliton
solutions up to the third order are obtained, providing a better analysis and understanding of the solutions
with arbitrary parameters. Dynamical analysis for the obtained generalized solitons has been shown through
wave profiles with distinct values of the real parameters. The graphics for the first-order solution represented
the single solitons. In contrast, the second and third-order solutions showed the solitons’ interactions in X-
type or Y-type interactions. These interactions change the positions depending on the choice of constant
parameter present in phase shift. The physical significance of our research lies in the soliton solutions with
more realistic and versatile arbitrary parameters. We have taken great care to ensure the validity of our
results, validating them against the existing Hirota method. This validation process, along with the phase
shift analysis, helps us better understand soliton interactions and provides a strong foundation for our find-
ings. We have also discussed the phase shift and dispersion coefficient relations among arbitrary parameters,
which verified the condition in Hirota’s solitons solutions by choosing the values of arbitrary parameters as
1. Our analysis of the dynamic behavior of the obtained solutions with distinct parameter values, using the
symbolic system Mathematica, further reinforces the reliability of our results.

As, the technique has been demonstrated on established equations like KdV and KP nonlinear models,
there is still room for research to solve a more general class of nonlinear partial differential equations. Fur-
ther research is needed to characterize how well this technique performs on computational problems that are
more complex systems. These limitations are not roadblocks but point toward potential research directions.
This technique offers the potential to provide generalized soliton solutions, it paves the way for significant
advancements in research. The creation of generalized soliton solutions with variable parameters can enable
a more adaptable and detailed explanation of physical systems, stimulating researchers and scientists intel-
lectually. They can use this method to investigate and analyze a variety of evolution equations, leveraging
the presence of arbitrary parameters to gain a deeper understanding in the fields of oceanography, plasma,
fluid mechanics, water engineering, optical fibers, and other nonlinear systems.
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