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Abstract: This work investigates a (2+1)-dimensional shallow water wave equation of ion-acoustic waves
in plasma physics. It comprehensively analyzes Cole-Hopf transformations concerning dimensions x, y, and
t, and obtains the dispersion for a phase variable of this equation. We show that the soliton solutions are
independent of the different logarithmic transformations for the investigated equation. We also explore the
linear equations in the auxiliary function f present in Cole-Hopf transformations. We study this equation’s
first- and second-order rogue waves using a generalized N -rogue wave expression from the N -soliton Hirota
technique. We generate the rogue waves by applying symbolic technique with β and γ as center parameters.
We create rogue wave solutions for first- and second-order using direct computation for appropriate choices
of several constants in the equation and center parameters. We obtain a trilinear equation by transforming
variables ξ and y via logarithmic transformation for u in the function F . We harness the computational
power of the symbolic tool Mathematica to demonstrate the graphics of the soliton and center-controlled
rogue wave solutions with suitable choices of parameters. The outcomes of this study transcend the confines
of plasma physics, shedding light on the interaction dynamics of ion-acoustic solitons in three-dimensional
space. The equation’s implications resonate across diverse scientific domains, encompassing classical shallow
water theory, fluid dynamics, optical fibers, nonlinear dynamics, and many other nonlinear fields.

Keywords: Dependent-variable transformation; Logarithmic transformation; Shallow water wave; Gen-
eralized formulation; N -order rogue waves.

1 Introduction

Shallow water waves (SWWs) are an exquisite phenomenon described by waves propagating at depths signifi-
cantly smaller than their wavelength [1–5]. These waves display distinguishing behaviors due to the influence
of the sea or lake floor. It makes them a subject of fascination for scientists, mathematicians, and physicists.
SWWs often find their origin in coastal regions with reasonably shallow water depths. Various character-
istics, including wind, tides, and seismic activity, can cause them. The interaction between the wind and
the water surface is a primary driver for creating interesting waves that gracefully transit the shallows.The
remarkable characteristics of shallow water waves make them relevant in various applications. Coastal engi-
neering leverages the acquaintance of SWW to design structures that can withstand wave action. Further,
they play a vital role in activities such as surfing, where enthusiasts harness the energy of these waves for
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recreational purposes. Their presence not only enchants coastal landscapes but also serves as a canvas for
scientific exploration and practical applications in engineering and recreation. From a scientific perspective,
studying SWWs provides valuable insights into fluid dynamics and the complex interactions between water
and its surroundings. Comprehending these waves is integral to forecasting coastal erosion, managing water
resources, and comprehending the broader implications of climate change on coastal ecosystems.
Solitons, or solitary and self-sustaining waves, [6–9] are unprecedented phenomena in wave dynamics. Un-
like conventional waves, solitons maintain their structure and energy, traveling undisturbed long distances
without dissipating or losing their form. The source of solitons can be diverse, emerging from nonlinear
interactions in diverse mediums such as ocean, optical fibers, and plasma. Notable for their ability to re-
sist dispersion and sustain stability, solitons often emerge due to a delicate balance between nonlinearity
and dispersion. Solitons find applications in a range of scientific and technological fields. They serve as
data carriers, ensuring signal integrity over vast distances in optical communication. Their presence in
fluid dynamics contributes to understanding rogue waves, and in plasma physics, they play a crucial role
in sustaining plasma stability. Solitons challenge traditional wave theories, offering insights into nonlinear
phenomena and the preservation of wave coherence. Their occurrence in various natural systems extends our
understanding of complex wave interactions. Therefore, from revolutionizing communication technologies to
unraveling mysteries in fluid dynamics, solitons stand as silent yet powerful contributors to the tapestry of
scientific exploration.
Rogue waves, often called giant solitary waves emerging unexpectedly in the ocean’s vastness, manifest as
localized phenomena in space and time, boasting a considerable amplitude. These enigmatic occurrences,
documented in sources such as [10–16], are unpredictable and ubiquitous, posing potential hazards to in-
dividuals. The exploration of the evolutionary processes behind rogue waves is imperative, capturing the
attention of numerous academics. Their excessively steep height sets rogue waves apart, sometimes sur-
passing the magnitude of neighboring waves. This unique characteristic challenges traditional linear wave
models, prompting a focus on nonlinear wave dynamics in understanding the mechanics and predicting the
occurrence of these formidable waves. Rogue waves materialize randomly as tiny waves converge the energy
in a confined territory. A crucial application of this research lies in enhancing marine safety. By developing
models and prediction algorithms, scientists aim to provide early detection and warning systems to pre-
vent accidents triggered by rogue waves. This knowledge significantly benefits industries such as maritime,
offshore petroleum platforms, and seaside infrastructure. Consequently, a comprehensive understanding of
the dynamics of rogue waves can lead to improved operational safety and cost-effective solutions, enabling
the construction of safer structures and formulating strategies to mitigate their impact. Moreover, delving
into the causes and dynamics of rogue waves contributes to our expanding comprehension of complicated
systems, the interactions of nonlinear waves, and the emergence of severe phenomena across various fields of
physics and mathematics. The study of rogue waves transcends maritime concerns, offering valuable insights
into broader scientific principles and the intricacies of nonlinear wave behavior.
Researchers and scientists have studied the nonlinear partial differential equations (PDEs) or nonlinear
evolution equations using several methods for obtaining the exact solutions, such as the inverse scattering
method [17, 18], the Darboux transformation [19–21], the simplified Hirota’s technique [22–24], Bilinear
neural network method [25, 26], Hirota’s bilinear method [27–30], the Lie symmetry analysis [31–33], the
Bäcklund transformation [34–36], and other techniques.

This research investigates the Cole-Hopf transformations with respect to different dimensions and rogue
waves for a (2+1)-dimensional SWW equation [37–39]

utt − uxx − uyy + uxuxt + uyuyt − uxxtt − uyytt = 0. (1)

In 1978, Yajima N, Oikawa M. and Satsuma J. [37] modeled this equation in three dimensional interactions of
ion-acoustic solitons in collisionless plasmas. They studied it using Hirota’s bilinear method and discussed the
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one- and two-soliton solutions for the same. In the continuation, Kako F and Yajima N. [38] 1980, studied this
model of ion-acoustic solitons in collisionless plasmas in two-dimensional space. They showed the dynamics
for the interaction of two soliton solutions for obtained solution with some appropriate parameters. Also,
they showed the interaction of two sinusoidal waves dynamically with chosen constants. In 1994, Clarkson
P.A. and Mansfield E.L. [39] quoted this equation (1) in their work on a SWW equation, in which they studied
a generalized SWW equation by non-Painlevé behaviour and dynamically showed the solitons’ interaction
solutions and breathers using Lie symmetry analysis for classical and non-classical symmetries. We found it
fascinating that no more work has been done in literature on this equation as per our knowledge, whereas,
this has an interesting pattern for partial derivatives in its linear terms. This gave us an idea to think for
several Cole-Hopf transformations in different dimensions.

In the structure of the manuscript, next Section 2 analyzes the Cole-Hopf transformations concerning di-
mensions x, y, and t, and obtains the dispersion for a phase variable of investigated equation with discussion
of soliton solutions for the different transformations. Section 3 studies the equation’s first- and second-order
solutions of rogue waves using a generalized N -rogue wave expression from the N -soliton Hirota technique
with center parameters. we computes a trilinear equation in auxiliary function using the logarithmic trans-
formation and creates rogue wave solutions up to second order for suitable values of center parameters and
several constants in the equation using direct computation technique. In Section 4, we discuss the obtained
solutions and the dynamical analysis. Section 5 in the end, concludes our findings and future scope.

2 Analysis of Cole-Hopf transformations

The Cole-Hopf transformation is a mathematical technique used in partial differential equations (PDEs),
particularly in studying certain nonlinear PDEs. Richard Cole and Eberhard Hopf [40, 41] created the
transformation in the 1950s to simplify and sometimes linearize certain types of nonlinear PDEs. It is most
commonly associated with the Korteweg-de Vries (KdV) equation, a nonlinear PDE that involves nonlinear
and dispersive terms and describes the propagation of long, weakly nonlinear waves, such as water waves
in shallow canals. The Cole-Hopf transformation has been a valuable tool in the study of soliton theory
and integrable systems, where it allows researchers to comprehend the manners of certain nonlinear wave
equations and uncover essential properties, such as the existence of localized solutions, solitary waves, and
several other solutions that can persist in specific nonlinear systems. The Cole-Hopf transformation, in
general, is given as

u = R(ln f)xp (2)

for a given nonlinear PDE, where p represents the order of partial derivative concerning x leaning on the
balance of the higher-order and nonlinear terms in the PDE.
In order to create the said transformation, we need to get the dispersion with the help of the phase variable.
We consider the phase variable as

αi = pix+ qiy − wit, (3)

where wi and pi, qi; i ∈ N represent dispersion and constants respectively. On substituting

u = eαi , (4)

into the linear terms of Eq. (1), we get the wi as

wi = ±

√
p2
i + q2

i√
1− (p2

i + q2
i )
, (5)
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with p2
i + q2

i < 1 for getting real valued dispersion.
Now, we assume the three Cole-Hopf transformations in different dimensions x, y and t known as spatial
and temporal coordinates as

u = u1 = R1(ln f)x, (6)

u = u2 = R2(ln f)y, (7)

u = u3 = R3(ln f)t, (8)

where Ri; i = 1, 2, 3 are non-zero constants and f = f(x, y, t) is an auxiliary function, which will be deter-
mined later. To determine the value of Ri; i = 1, 2, 3 in (6)-(8), we consider

f(x, y, t) = 1 + eαi = 1 + epix+qiy−wit. (9)

On substituting equations (6),(7) or (8) with (9) into (1), we get the solution for Ri as

R1 =
12
√
p2

1 + q2
1

p1

√
1− (p2

1 + q2
1)
,

R2 =
12
√
p2

1 + q2
1

q1

√
1− (p2

1 + q2
1)
,

R3 = −12, (10)

for (6),(7) and (8) receptively. Thus the transformations will be as

u1 =
12
√
p2

1 + q2
1

p1

√
1− (p2

1 + q2
1)

(ln f)x,

u2 =
12
√
p2

1 + q2
1

q1

√
1− (p2

1 + q2
1)

(ln f)y,

u3 = −12(ln f)t. (11)

On utilizing the above transformations (11) into equation (1), we obtain transformed equations for (1) in
auxiliary function f as

fxttf
4 − fxxxf

4 − fxxxttf
4 − fxyyf

4 − fxyyttf
4 − fttfxf

3 − 2ftfxtf
3 + 3fxfxxf

3 + 3fxttfxxf
3 + 6fxtfxxtf

3+

R1fxxfxxtf
3+3fxfxxttf

3+fttfxxxf
3+2ftfxxxtf

3+R1fxyfxytf
3+fttfxyyf

3+2ftfxyytf
3+2fxyfyf

3+2fxyttfyf
3+

4fxytfytf
3+2fxyfyttf

3+fxfyyf
3+fxttfyyf

3+2fxtfyytf
3+fxfyyttf

3−2f3
xf

2−12fxf
2
xtf

2−R1ftf
2
xxf

2−R1ftf
2
xyf

2−
2fxf

2
yf

2−2fxttf
2
yf

2−4fxf
2
ytf

2+2f2
t fxf

2−6f2
xfxttf

2−6fttfxfxxf
2−12ftfxtfxxf

2−2R1fxfxtfxxf
2−R1f

2
xfxxtf

2−
12ftfxfxxtf

2−2f2
t fxxxf

2−2f2
t fxyyf

2−4fttfxyfyf
2−R1fxtfxyfyf

2−8ftfxytfyf
2−R1fxfxytfyf

2−8ftfxyfytf
2−

R1fxfxyfytf
2− 8fxtfyfytf

2− 4fxfyfyttf
2− 2fttfxfyyf

2− 4ftfxtfyyf
2− 4ftfxfyytf

2 + 6fttf
3
xf + 6fttfxf

2
yf+

12ftfxtf
2
yf+R1fxfxtf

2
yf+2R1f

3
xfxtf+36ftf

2
xfxtf+3R1ftf

2
xfxxf+18f2

t fxfxxf+12f2
t fxyfyf+3R1ftfxfxyfyf+

R1f
2
xfyfytf + 24ftfxfyfytf + 6f2

t fxfyyf − 2R1ftf
4
x − 24f2

t f
3
x − 2R1ftf

2
xf

2
y − 24f2

t fxf
2
y = 0, (12)
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−fxxyttf
4+fyttf

4−fyyyf
4−fyyyttf

4+fttfxxyf
3+2ftfxxytf

3+2fxfxyf
3+2fxttfxyf

3+4fxtfxytf
3+R2fxyfxytf

3+

2fxfxyttf
3−fttfyf

3+fxxfyf
3+fxxttfyf

3−2ftfytf
3+2fxxtfytf

3+fxxfyttf
3+3fyfyyf

3+3fyttfyyf
3+6fytfyytf

3+

R2fyyfyytf
3 +3fyfyyttf

3 +fttfyyyf
3 +2ftfyyytf

3−2f3
yf

2−R2ftf
2
xyf

2−12fyf
2
ytf

2−R2ftf
2
yyf

2−2f2
t fxxyf

2−
4fttfxfxyf

2−8ftfxtfxyf
2−8ftfxfxytf

2+2f2
t fyf

2−2f2
xfyf

2−4f2
xtfyf

2−4fxfxttfyf
2−2fttfxxfyf

2−4ftfxxtfyf
2−

R2fxtfxyfyf
2−R2fxfxytfyf

2−8fxfxtfytf
2−4ftfxxfytf

2−R2fxfxyfytf
2−2f2

xfyttf
2−6f2

yfyttf
2−6fttfyfyyf

2−
12ftfytfyyf

2 − 2Rfyfytfyyf
2 −Rf2

yfyytf
2 − 12ftfyfyytf

2 − 2f2
t fyyyf

2 + 6fttf
3
yf +Rfxfxtf

2
yf+

12f2
t fxfxyf+6fttf

2
xfyf+24ftfxfxtfyf+6f2

t fxxfyf+3Rftfxfxyfyf+2R2f
3
yfytf+12ftf

2
xfytf+36ftf

2
yfytf+

R2f
2
xfyfytf + 3R2ftf

2
yfyyf + 18f2

t fyfyyf − 2R2ftf
4
y − 24f2

t f
3
y − 2R2ftf

2
xf

2
y − f4fxxy − 24f2

t f
2
xfy = 0, (13)

f2ftt − f2fxx − f2fxxtt − f2fyy − f2fyytt + 4ftfxfxt − 2f2
t fxx + 2fftfxxt + 4ftfyfyt − 2f2

t fyy+

2fftfyyt− ff2
t − 2fttf

2
x + ffttfxx− 2fttf

2
y + ffttfyy + 2ffxfxtt + ff2

x − 4ff2
xt + 2ffyfytt + ff2

y − 4ff2
yt = 0,

(14)

for (6),(7) and (8) receptively.
Considering the function f in any of the above equation as

f = 1 + eα1 = 1 + e
p1x+q1y−

√
p2
i
+q2

i√
1−(p2

i
+q2

i
)
t

. (15)

Thus, by putting up the expression for f from (15) into any transformation of u in (11), we get the same
solution as

u =
12
√
p2

1 + q2
1e
p1x+q1y

√
1− (p2

1 + q2
1)

e t
√

p21−q21√
1−(p21+q21) + ep1x+q1y


, (16)

which shows that the (2+1)-dimensional SWW equation (1) is independent of the Cole-Hopf transformations
and any transformation can be used to get the soliton solutions. Readers can follow the works [37, 38] to
dive into the soliton solutions and their interactions.

3 Center-controlled rogue waves

On transforming u = u(ξ, y) with ξ = x− h ∗ t the equation (1), we get

h2(uξξ − uξξξξ − uξξyy)− h(uξuξξ + uξyuy)− uξξ − uyy = 0. (17)

Considering the phase Φi in Eq. (17) as
Φi = piξ − wiy, (18)

where pi and wi; i ∈ N are parameters and dispersion, respectively. By putting u(ξ, y) = eΦi in Eq. (17) for
linear terms, we obtain

wi = ±

√
−h2p4

i + h2p2
i − p2

i√
h2p2

i + 1
. (19)

We take the dependent variable transformation as

u(ξ, y) = R(logF )ξ, (20)
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Figure 1: Solitons for the solution (16) with (15) having values (a) p1 = 0.8, q1 = 0.3; (b) p1 = 0.7, q1 = −0.7;
and (c) p1 = −0.8, q1 = 0.3. (d)-(f) are 2D outlines for (a)-(c) concerning contours in ξy-plane.

and put it in Eq. (17) with Eq. (19) and f = 1 + eΦ1 , then we get R as

R = 12h.

So, the equation (20) becomes
u(ξ, y) = u0 + 12h(lnF )ξ, (21)

where u0 is a constant parameter. On substituting Eq. (21) into (17), we get a trilinear equation in F (ξ, y)
as

F 2h2Fξξξξ − F 2h2Fξξ + F 2h2Fξξyy + F 2Fξξ + F 2Fyy − 4Fh2FξFξξξ − 2Fh2FξFξyy + Fh2F 2
ξ +

3Fh2F 2
ξξ + 4Fh2F 2

ξy− 4h2FξFξyFy + 2h2FξξF
2
y − 2Fh2FξξyFy + 2h2F 2

ξ Fyy−Fh2FξξFyy−FF 2
ξ −FF 2

y = 0.

(22)

In 2023, Kumar S. and Mohan B. [42] generalized a direct technique to construct N -order rogue waves
using N -soliton solution in Hirota’s technique which was firstly discussed by X. Yang, et al. [43] in 2022,
for a (3+1)-dimensional KdV-BBM equation with limit technique of long wave. It gives the generalized
representation of N -rogue waves as

FN (ξ, y) =

N2+N
2∑
j=0

j∑
k=0

sN2+N−2j,2k(y)2k(ξ)N
2+N−2j , (23)
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which has a resemblance to the functions used in symbolic computational approach [44,45] by Zhaqilao [46].
This can be expressed with center controlled parameter as

F (ξ, y) = F̂N (ξ, y, β, γ) =

N2+N
2∑
j=0

j∑
k=0

sN2+N−2j,2k(y − γ)2k(ξ − β)N
2+N−2j , (24)

where si,j ; i, j ∈ {0, 2, · · · , j(j + 1)} are constants and (β, γ) are center parameters.

3.1 First-order solution of rogue waves

Considering F (ξ, y) with N = 1 in Eq. (24) as

F (ξ, y) = s2,0ξ
2 + s0,2y

2 + s0,0, (25)

and substituting it into (22) gives a system by equating the coefficients for distinct powers of ξmyn;m,n ∈ Z
to zero as

2h2s3
2,0 − 2s3

2,0 + 2s0,2s
2
2,0 = 0,

12h2s3
2,0 + 12h2s0,2s

2
2,0 + 4s0,0s0,2s2,0 = 0,

12h2s0,2s
2
2,0 + 12h2s2

0,2s2,0 − 4h2s0,0s0,2s2,0 + 4s0,0s0,2s2,0 = 0. (26)

Solving above system gives constants as

s0,0 =
3h2

(
h2 − 2

)
s2,0

1− h2
, s0,2 =

(
1− h2

)
s2,0, s2,0 = s2,0. (27)

Thus, the equation (25) with (27) will be as

F (ξ, y) = f̂1(ξ, y, β, γ) = s2,0

(
(β − ξ)2 +

(
1− h2

)
(y − γ)2 +

3
(
h2 − 2

)
h2

1− h2

)
, (28)

which gives a solution of Eq. (22). We get a first-order solution of rogue waves on substituting Eq. (28)
into (21) as

u(ξ, y) = u0 +
24h(ξ − β)

(β − ξ)2 + (1− h2) (y − γ)2 + 3(h2−2)h2

1−h2
, (29)

3.2 Second-order solution of rogue waves

Taking auxiliary function F (ξ, y) with N = 2 in Eq. (24) as

F (ξ, y) = s6,0ξ
6 + s4,0ξ

4 + s2,0ξ
2 + s0,6y

6 + s2,4ξ
2y4 + s0,4y

4 + s4,2ξ
4y2 + s2,2ξ

2y2 + s0,2y
2 + s0,0, (30)

and put it in trilinear Eq. (22). On equating zero the coefficients for distinct powers of ξmyn;m,n ∈ Z, we
obtain a system, which gives the constant values as

s0,0 =
h6
(
286h6 − 1383h4 + 2548h2 − 2076

)
s4,2

(h2 − 1)4 , s0,2 =
h4
(
144h4 − 627h2 + 958

)
s4,2

3 (h2 − 1)2 ,

s0,4 =
1

3
h2
(
33h2 − 50

)
s4,2, s0,6 =

1

3

(
h2 − 1

)2
s4,2, s2,0 = −

h4
(
144h4 − 507h2 + 238

)
s4,2

3 (h2 − 1)3 ,
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Figure 2: Rogue waves for first-order solution (29) with (28) having values (a) u0 = 0, h = 0.1, β = γ = 0;
(b) u0 = 0, h = 0.1, β = 7, γ = −6; and (c) u0 = 0, h = 0.1, β = −5, γ = 7. (d)-(f) are 2D outlines for
(a)-(c) concerning contours in ξy-plane.

s2,2 = −
6h2

(
h2 − 6

)
s4,2

h2 − 1
, s2,4 = −

(
h2 − 1

)
s4,2, s4,0 =

h2
(
33h2 − 58

)
s4,2

3 (h2 − 1)2 , s4,2 = s4,2,

s6,0 =
s4,2

3(1− h2)
. (31)

So, the Eq. (25) with (31) becomes

F (ξ, y) = f̂2(ξ, y, β, γ) =
s4,2

3
(

(
33h2 − 58

)
h2(β − ξ)4

(h2 − 1)2 − (β − ξ)6

h2 − 1
−

18
(
h2 − 6

)
h2(β − ξ)2(y − γ)2

h2 − 1
−

3
(
h2 − 1

)
(β−ξ)2(y−γ)4 +

(
33h2 − 50

)
h2(y−γ)4 +

(
h2 − 1

)2
(y−γ)6−

(
144h4 − 507h2 + 238

)
h4(β − ξ)2

(h2 − 1)3 +(
144h4 − 627h2 + 958

)
h4(y − γ)2

(h2 − 1)2 +
3
(
286h6 − 1383h4 + 2548h2 − 2076

)
h6

(h2 − 1)4 + 3(β − ξ)4(y − γ)2), (32)

which gives a solution of Eq. (22). We get a second-order solution of rogue waves on substituting Eq. (32)
into (21) as

u(ξ, y) = u0 + 12h(ln f̂2(ξ, y, β, γ))ξ. (33)
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Figure 3: Rogue waves for second-order solution (33) with (32) having values (a) u0 = 0, h = 4, β = γ = 0;
(b) u0 = 0, h = 8, β = γ = 0; and (c) u0 = 0, h = 12, β = γ = 0. (d)-(f) are 2D outlines for (a)-(c)
concerning contours in ξy-plane.

4 Results and discussion

Our investigation shows that the (2+1)-dimensional SWW equation governing ion-acoustic waves in plasma
physics can have different Cole-Hopf transformations in different dimensions x, y, and t. The analysis of
these transformations showed that the soliton solutions for this SWW equation are independent of the Cole-
Hopf transformations and give the same solution as discussed in Section 2. By selecting the appropriate
parameters, we found the first- and second-order solutions of rogue waves with center parameters (β, γ) with
the said symbolic approach and dynamically showed the graphics of the obtained solutions. Therefore, we
explain the results and findings as follows:

• In Figure 1, we illustrate the solitons for the solution (16) with (15) with respect to the singularity
about the x axis. (a)-(c) show the dynamics of solitons with values (a) p1 = 0.8, q1 = 0.3; (b)
p1 = 0.7, q1 = −0.7; and (c) p1 = −0.8, q1 = 0.3.

• Figure 2 depicts the first-order solution of rogue waves with center parameters (β, γ). It shows single
rogue waves concerning singularity through center parameters (β, γ) with values (a) u0 = 0, h =
0.1, β = γ = 0; (b) u0 = 0, h = 0.1, β = 7, γ = −5; and (c) u0 = 0, h = 0.1, β = −5, γ = 7.

• In Figure 3, we show the second-order solution of rogue waves with center parameters (β, γ). Dynamics
shows that the direction and amplitude of rogue waves depend on the transforming parameter h in
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Figure 4: Rogue waves for second-order solution (33) with (32) having values (a) u0 = 2, h = 5, β = 4, γ =
−2; (b) u0 = 2, h = 10, β = 4, γ = −2; and (c) u0 = 5, h = 15, β = 4, γ = −2. (d)-(f) are 2D outlines for
(a)-(c) concerning contours in ξy-plane.

ξ = x− ht. Rogue waves are plotted with values (a) u0 = 0, h = 4, β = γ = 0; (b) u0 = 0, h = 8, β =
γ = 0; and (c) u0 = 0, h = 12, β = γ = 0.

• Figure 4 shows the second-order solution of rogue waves with center parameters (β, γ). It shows that the
direction and amplitude of rogue waves depend on the transforming parameter h in ξ = x−ht. Rogue
waves are plotted with values (a) u0 = 2, h = 5, β = 4, γ = −2; (b) u0 = 2, h = 10, β = 4, γ = −2;
and (c) u0 = 5, h = 15, β = 4, γ = −2.

5 Conclusions

In conclusion, our investigation of the (2+1)-dimensional SWW equation governing ion-acoustic waves in
plasma physics has revealed analytical insights and dynamic phenomena. Through a meticulous analysis of
Cole-Hopf transformations in dimensions x, y, and t, we have derived the dispersion relation for the phase
variable and illustrated soliton solutions that remain unaffected by these transformations. Our investigation
extends to rogue waves, delving into first- and second-order occurrences using a generalized N -rogue wave
expression derived by the N -soliton in Hirota technique. Application of symbolic computation, notably the
center parameters β and γ, has allowed us to formulate rogue wave solutions, offering a subtle understanding
between the parameters and the resulting dynamics. By employing direct computation for various parameter
values and reasonable choices of constants, we have manifested solutions of rogue waves up to second-order
with their dynamics. Moreover, our exploration incorporates a logarithmic transformation for the depen-
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dent variable u, leading to a trilinear equation in F (ξ, y). In practical terms, our findings resonate across
diverse scientific disciplines, ranging from classical shallow water theory and fluid dynamics to optical fibers
and nonlinear dynamics. The three-dimensional space investigated in the context of ion-acoustic solitons in
plasmas holds promise for real-world applications, offering insights that transcend the boundaries of plasma
physics.
This research contributes to the theoretical understanding of (2+1)-dimensional SWW equation with prac-
tical applications in diverse nonlinear fields. The dynamics, soliton solutions, and rogue wave occurrences
uncovered in this study provide a solid foundation for future investigations and underline the rich potential
of this area of research.

Conflict of interest

The authors have no conflicts to disclose.

Data availability statement

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

[1] Yin T., Xing Z., Pang J.: Modified Hirota bilinear method to (3+1)-D variable coefficients generalized
shallow water wave equation. Nonlinear Dyn 111, 9741–9752 (2023)

[2] Cheng CD., Tian B., Shen Y., Zhou TY.: Bilinear form, auto-Bäcklund transformations, Pfaffian, soliton,
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[4] Wazwaz A.M.: Painlevé analysis for three integrable shallow water waves equations with time-dependent
coefficients, International Journal of Numerical Methods for Heat Fluid Flow, 30(2), 996-1008 (2020)

[5] Deng, G.F., Gao, Y.T., Yu, X., Ding, C.C., Jia, T.T., Li, L.Q.; Hybrid waves for a (2 + 1)-dimensional
extended shallow water wave equation. Physics of Fluids, 33(11), 117120, (2021)

[6] Kumar, S., Mohan, B. , Kumar, R. : Lump, soliton, and interaction solutions to a generalized two-mode
higher-order nonlinear evolution equation in plasma physics, Nonlinear Dyn, 110, 693–704 (2022)

[7] Wazwaz A.M.: The Hirota’s direct method for multiple soliton solutions for three model equations of
shallow water waves. Appl. Math. Comput. 201, 489–503 (2008)

[8] Zhang, R., Bilige, S. , Chaolu, T.: Fractal Solitons, Arbitrary Function Solutions, Exact Periodic Wave
and Breathers for a Nonlinear Partial Differential Equation by Using Bilinear Neural Network Method, J
Syst Sci Complex,34, 122–139, (2021)

[9] Wazwaz, A.M., Hammad, M.A., El-Tantawy,S.A. : Bright and dark optical solitons for (3 + 1)-
dimensional hyperbolic nonlinear Schrödinger equation using a variety of distinct schemes, Optik, 270,
170043, (2022)

11



[10] Nikolkina I., Didenkulova I.: Rogue waves in 2006–2010. Nat Hazards Earth Syst. Sci, 11:2913–2924,
(2011)

[11] Du, Z., Xie, XY, Wu, XY, Zhao, XH: Mixed localized waves and their dynamics for a matrix Laksh-
manan–Porsezian–Daniel equation, Physics of Fluids; 34(12), 127112, (2022)

[12] Residori S., Onorato M., Bortolozzo U., Arecchi F.T.: Rogue waves: a unique approach to multidisci-
plinary physics, Contemporary Physics, 58(1):53-69, (2017)

[13] Jou, J.L., Lo, W.S., I, L.: Rogue waves associated with resonant slow sloshing waves spontaneously
excited in wind-driven water wave turbulence. Physics of Fluids, 32(12), 122120, (2020)

[14] Sun Y., Tian B., Liu L., Wu X.Y.: Rogue waves for a generalized nonlinear Schrödinger equation with
distributed coefficients in a monomode optical fiber. Chaos Solit Fract, 107:266-274, (2018)

[15] Zhang, R.F, Li, M.C., Al-Mosharea, E. et al.: Rogue waves, classical lump solutions and generalized
lump solutions for Sawada–Kotera-like equation, International Journal of Modern Physics B, 36(05),
2250044, (2022)

[16] Mohan, B., Kumar, S., Kumar, R.: Higher-order rogue waves and dispersive solitons of a novel
P-type (3+1)-D evolution equation in soliton theory and nonlinear waves. Nonlinear Dyn (2023).
https://doi.org/10.1007/s11071-023-08938-1

[17] Kravchenko V.V.: Inverse Scattering Transform Method in Direct and Inverse Sturm-Liouville Prob-
lems. Frontiers in Mathematics, Birkhäuser, Cham., (2020)
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