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Abstract: This research work studies the complete integrability, bright-dark solitons, and rogue waves
of a recently formed variable coefficient generalized (4+1)-dimensional Kadomtsev-Petviashvili equation. It
analyses the integrability of the investigated generalized equation by applying the Painlevé test with ar-
bitrary choices and fulfilling the condition for compatibility for the resonances. It generates the bilinear
equation with the Cole-Hopf transformation in the auxiliary function and, by using the bilinear differential
operator, construct Hirota’s bilinear form of this equation. Utilizing Hirota’s bilinear technique for N -soliton
solutions, we obtain soliton solutions and their X-type and Y -type interactions for 1-, 2-, and 3-soliton so-
lutions under the obtained restrictions and showcase their analytic dynamics. Also, it obtains the N -rogue
wave solutions up to second order with center-controlled parameters with appropriate parameters and the
variable coefficients and display the dynamical structures. We form the bright-dark solitons and rogue waves
with appropriate choices of parameters in the third and second order, respectively. By applying the com-
puter algebra system software Mathematica, it displays the dynamical structures for the generated solutions
with several chosen parameter values. Solitons appear in different fields of nonlinear sciences, such as fluid
mechanics, nonlinear optics, oceanography, plasma physics, water waves, and other sciences.

Keywords: Hirota bilinear method; Integrability; Cole-Hopf transformation; Symbolic computational
approach; Dispersion relation.

1 Introduction

Recently, in 2021, Fan and Bao proposed a (4+1)-dimensional equation in fluid mechanics named as variable-
coefficient generalized Kadomtsev–Petviashvili (vc-gKP) equation [1]:

uxt+A(t) (uux)x+B(t)uxxxx+C1(t)uxx+C2(t)uxy+C3(t)uxz+C4(t)uxs+C5(t)uyy+C6(t)uzz+C7(t)uss = 0,
(1)

where u(x, y, z, s, t) is a wave amplitude of x, y, z, s and t coordinates. The functions A(t) and B(t) are the
coefficients of the nonlinear and dispersive terms, respectively. Ci(t) : 1 ≤ i ≤ 4 are the time-dependent
coefficient functions for the perturbed terms; and Ci(t) : 5 ≤ i ≤ 7 are the coefficient functions for the dis-
turbed terms of wave velocities in y, z and s directions. Using variable coefficients in the (4+1)-dimensional
variable coefficient generalized Kadomtsev-Petviashvili (vc-gKP) equation offers significant advantages in
modeling complex real-world physical systems. Many systems, such as fluids, plasmas, and optical fibers,
exhibit non-uniform properties like nonlinearity and dispersion that vary over space and time. The equation
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can accurately capture these dynamic environments by incorporating variable coefficients, offering a more
realistic representation of wave behavior. This adaptability allows the equation to simulate intricate phe-
nomena such as solitons, rogue waves, and breathers. Moreover, adjusting coefficients provides flexibility
in tuning wave properties like amplitude and speed, enabling researchers to explore a broader range of be-
haviors. It also can uncover localized solutions, such as rogue waves, which can intrigue researchers. This
feature helps better understand soliton interactions and stability, which are critical in various applications
like oceanography, plasma physics, and optical communication.
Fan and Bao studied the lump, e-lump solutions and their interaction as lump-soliton, rogue-soliton, lump-
kink and e-lump-soliton solutions. Although, their work shows the novel solutions and conclude their findings,
still the equation (1) has potential opportunity to add some focus on the key points as

• The integrability of the proposed vc-gKP equation

• Illustration of dispersion using phase variable

• Construction of Cole-Hopf transformation and bilinear equation

• N -soliton solutions via Hirota bilinear approach

• N -rogue waves with center-parameters via symbolic computational approach

This research work focuses on the above said points to investigate the complete integrability with Painlevé
analysis [2, 3]; evaluation of dispersion as a function of temporal coordinate by considering the appropri-
ate phase variable; formulation of Cole-Hopf transformation or logarithmic transformation using obtained
dispersion and then get the bilinear equation and its Hirota’s D-operator bilinear form; construction of
N -solitons by applying the Hirota’s bilinear method for N = 1, 2, 3.
The equation (1) generalizes different well-known equations

• For u = u(x, y, z, t), C4(t) = C7(t) = 0, equation (1) becomes a (3+1)-dimensional vc-KP equation [4]
as

uxt +A(t) (uux)x +B(t)uxxxx + C1(t)uxx + C2(t)uxy + C3(t)uxz + C5(t)uyy + C6(t)uzz = 0. (2)

• For u = u(x, y, t), C3(t) = C4(t) = 0, C6(t) = C7(t) = 0, equation (1) gives a (2+1)-dimensional vc-KP
equation [5] as

uxt +A(t) (uux)x +B(t)uxxxx + C1(t)uxx + C2(t)uxy + C5(t)uyy = 0. (3)

• For u = u(x, y, t), Ci(t) = 0; 1 ≤ i ≤ 4, Cj(t) = 0; 6 ≤ j ≤ 7, equation (1) reduces to a (2+1)-
dimensional vc-KP equation [6] as

uxt +A(t) (uux)x +B(t)uxxxx + C5(t)uyy = 0. (4)

• For u = u(x, t), A(t) = 6, B(t) = 1, Ci(t) = 0; 1 ≤ i ≤ 7, equation (1) becomes the KdV equation [7] as

ut + 6uux + uxxx = 0. (5)

Soliton [8–15] as a water wave phenomenon presented in various physics areas occurs by having a balance
between nonlinearity and dispersion. They preserve their shape and maintain stability over extensive dis-
tances. Solitons, or solitary waves [16–22], are essential elements in numerous dynamical systems, such as
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fiber-optic communication, balancing optical-fiber dispersion, and nonlinearity. The science, technology, en-
gineering, and mathematics (STEM) fields have a practical presence, such as oceanography, the engineering
of coastlines, and wave energy conversion. Understanding the formation and behavior of the solitons can
provide steadfast support to address coastal erosion, optimize wave energy extraction, and improve wave
forecasting. Solitons in plasma physics are advantageous for studying the propagation of waves in magne-
tized environments, fusion studies, and several research areas.
Rogue waves [23–28] are unexpected and come suddenly into the ocean. They are localized with a large
amplitude in space-time. Nonlinear sciences study these types of waves for their contradicting traditional
linear models. Research in nonlinear waves studies the occurrence of rogue waves to reduce the harm to
individuals with forecasting. Marine safety is one of the keys to studying such large amplitude waves, which
can be reduced by providing early warning and detection to prevent mishappening by developing prediction
algorithms and techniques. Therefore, studying rogue waves plays a vital role in understanding complex
models of nonlinear waves in diverse mathematical and nonlinear sciences.
Nonlinear PDE models the complex physical systems in various scientific physics and applied mathematics
domains. Scientists have used PDEs to solve conjectures such as Poincare’s and Calabi’s by demonstrating
a variety of physical phenomena, from nonlinear dynamics to gravity. It is challenging to study nonlinear
PDEs because there are no general techniques for their investigation. Usually, each equation needs to be
examined independently as a problem. However, there are some circumstances in which broad approaches
are appropriate. Several techniques are being used to obtain the analytical and exact solutions: the Darboux
transformation [29,30]; simplified Hirota’s technique [31,32]; the Bäcklund transformation [33,34]; the bilin-
ear neural network method [35,36]; Hirota’s bilinear approach [37–39]; symmetry analysis [40,41]; and others.

The structure of the manuscript follows as: The following section analyses the Painlevé integrability
of the investigated vc-gKP equation by applying the Painlevé test. Section 3 constructs the Cole-Hopf
transformation by finding the dispersion by considering a phase variable. Further, it shows the bilinearity
in the auxiliary function and Hirota’s D-operator form for the studied equation. In Section 4, we obtain the
N -solitons using Hirota’s bilinearization technique up to third-order soliton solutions and their interactions
under the restrictions. It also displays the dynamical structures while considering appropriate parameter
values. Section 5 obtains the N -rogue waves with center parameters up to second order and displays the
obtained solution’s dynamic structures with appropriate parameter values. Section 6 analyzes the obtained
solutions, and the last section concludes this study.

2 Integrability test

The Painlevé test [42, 43] is a powerful technique to examine the integrability of a nonlinear PDE. This
analysis aims to determine whether an investigated PDE forms solutions without movable singularities. A
singularity is movable if it can be removed or changed by applying the proper coordinate transformation.
When a PDE clears the integrability test of Painlevé, it is said to be P-integrable or Painlevé integrable,
indicating that it has a complex structure and provides solutions with the help of specialized functions.
Painlevé analysis requires the Laurent series expansion around a singularity that is movable for the PDE
solutions. We insert this series into the PDE and equate the coefficients of several powers to obtain a set of
consistency conditions. If the test fails, it implies that there may be non-generic singularities in the PDE, or
its Painlevé integrability may be lacking. Since it highlights distinct solutions and uncovers previously hidden
integrable structures, it is a successful technique for analyzing nonlinear PDEs. By identifying integrable
PDEs, researchers can develop analytical strategies and techniques to solve these PDEs and gain a deeper
understanding of the complex physical phenomena of nonlinear models.
On verifying integrable conditions, Weiss-Tabor-Carnevale (WTC) [43] provided the Painlevé analysis to
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assess the integrability of the nonlinear PDEs. This analysis has three steps: examining leading-order
behavior, finding resonances, and assuring resonance conditions. With g = 0, the singular manifold , we
consider the Laurent series for the function u as

u(x, y, z, s, t) =
∞∑
ξ=0

uξg
ξ+Λ, (6)

where Λ and uξ are the negative integer and the arbitrary functions, respectively. Substituting the equation
(6) into the equation (1) gives the values as

Λ = −2,

and

u0 = −12B(t)g2x
A(t)

.

Using the above values, we find the equation for resonances

(ξ − 6)(ξ − 5)(ξ − 4)(ξ + 1)A(t)B(t)g4x = 0, (7)

that concludes the resonances
ξ = −1, 4, 5, 6.

Here, ξ = −1 occurs for the arbitrary manifold g = 0. We obtain uξ as explicit functions for 0, 1, 2, and 3
and arbitrary functions for ξ = 4, 5, and 6 as

u1 =
12B(t)gxx

A(t)
,

u2 = −B(t)(4gxgxxx − 3g2xx) + gtgx + P

A(t)g2x
,

u3 =
1

A(t)g4x
(−gxgxxQ+ gxxR+ g2xS),

u4 = u4, u5 = u5, u6 = u6,
where

P = C1(t)g
2
x + C2(t)gxgy + C3(t)gxgz + C4(t)gsgx + C5(t)g

2
y + C6(t)g

2
z + C7(t)g

2
s ,

Q = 4B(t)gxxx + C2(t)gy + C3(t)gz + C4(t)gs + gt,

R = 3B(t)g2xx − C5(t)g
2
y − C6(t)g

2
z − C7(t)g

2
s ,

S = B(t)gxxxx + C2(t)gxy + C3(t)gxz + C4(t)gxs + C5(t)gyy + C6(t)gzz + C7(t)gss + gxt.

We observe that the resonances ξ = 4, 5, and 6 identically satisfy the compatibility conditions. Thus, the
investigated equation (1) passes the test for complete integrability.

3 Cole-Hopf transformation and bilinear form

The Cole-Hopf transformation is a mathematical method for studying PDEs, especially nonlinear PDEs.
This transformation was developed in the 1950s by Richard Cole and Eberhard Hopf [44,45] to simplify and
occasionally linearize specific kinds of nonlinear PDEs. It is most frequently linked to the KdV equation, a
nonlinear PDE that describes the propagation of long, weakly nonlinear waves, like water waves in shallow
canals, and contains nonlinear and dispersive terms. In the study of soliton theory and integrable systems,
the Cole-Hopf transformation has proven invaluable. It enables researchers to understand the behavior of
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some nonlinear wave equations and reveal crucial properties, including the existence of localized solutions,
solitary waves, and considerably other solutions that may endure in particular nonlinear systems. In general,
the Cole-Hopf transformation is defined as

u = P (ln f)px, (8)

where u is the dependent variable, P is a constant and p represents the order of partial derivative concerning
x that leans on the balancing between nonlinear and higher-order terms in the PDE.
We take κi as the phase in the equation (1) as

κi = gix+ hiy + piz − qis− wi(t), (9)

with gi, hi, pi, andqi for i = 1, 2, ..., as constant parameters. wi(t) represent the dispersion coefficients. On
putting u = eκi in linear terms of equation (1), we get

wi =

∫ (
B(t)g4i + C1(t)g

2
i + C2(t)gihi + C3(t)gipi + C4(t)giqi + C5(t)h

2
i + C6(t)p

2
i + C7(t)q

2
i

gi

)
dt. (10)

Considering the transformation
u = P (ln f)xx, (11)

and inserting it with f(x, y, z, s, t) = 1 + eκ1 and dispersion relation (10) into equation (1), we get P as

P =
12B(t)

A(t)
.

The transformation (11) transforms the equation (1) into a bilinear equation in f as

kA(t)(4fxfxxx − 3f2
xx − ffxxxx) + C1(t)(f

2
x − ffxx) + C2(t)(fxfy − ffxy) + C3(t)(fxfz − ffxz)

+ C4(t)(fsfx − ffxs) + C5(t)(f
2
y − ffyy) + C6(t)(f

2
z − ffzz) + C7(t)(f

2
s − ffss) + (ftfx − ffxt) = 0, (12)

under the constraint
B(t)

A(t)
= k k ̸= 0. (13)

Thus the dependent variable transformation (11) with constraint (13) is

u = 12k(ln f)xx k ̸= 0. (14)

To construct the bilinear D-operator form of the equation (1), we use the bilinear differential operators
Di : i = x, y, z, s, t defined by Hirota [7] as

DR1
x DR2

y DR3
z DR4

s DR5
t U(x, y, z, s, t)V (x, y, z, s, t) =

(
∂

∂x
− ∂

∂x′

)R1
(

∂

∂y
− ∂

∂y′

)R2
(

∂

∂z
− ∂

∂z′

)R3

×
(

∂

∂s
− ∂

∂s′

)R4
(
∂

∂t
− ∂

∂t′

)R5

U(x, y, z, s, t)V (x′, y′, z′, s′, t′)|x=x′,y=y′,z=z′,s=s′,t=t′ ,

with x′, y′, z′, s′, and t′ as the formal variables and Rj : 1 ≤ j ≤ 5 as positive integers. With this D-operator
definition, we get the required operators as

DxDwf.f = 2(ffxw − fxfw); w : y, z, s, t

D2
wf.f = 2(ffww − f2

w); w : x, y, z, s, t

D4
xf.f = 2(3f2

xx − 4fxfxxx + ffxxxx). (15)
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Thus, the bilinear equation (12) can be written in the Hirota’s bilinear form with bilinear differentials D as

[kA(t)D4
x+C1(t)D

2
x+C2(t)DxDy+C3(t)DxDz+C4(t)DxDs+C5(t)D

2
y+C6(t)D

2
z+C7(t)D

2
s+DxDt]f.f = 0.

(16)

4 N-soliton solutions

For N -soliton solution, consider the expression for f given by Hirota, in bilinear equation (16) as

f =
∑
µ=0,1

exp

 N∑
i=1

µiκi +

N∑
i=1<j

Aijµiµj

, (17)

where
∑

µ=0,1 indicates the summation of all possible combinations for µi = 0, 1 for 1 ≤ i ≤ N .
For N = 1, we have µ1 = 0, 1 so f = 1 + eκ1 .
For N = 2, we have µ1, µ2 = 0, 1. So there will be four combinations of (µ1, µ2), then f will be as

f = 1 + eκ1 + eκ2 + eA12+κ1+κ2 = 1 + eκ1 + eκ2 + a12e
κ1+κ2 ,

where a12 = eA12 is a phase shift coefficient.
For N = 3, we have µ1, µ2, µ3 = 0, 1 so the total eight combinations are
(µ1, µ2, µ3), then f will be as

f = 1 + eκ1 + eκ2 + eκ3 + eA12+κ1+κ2 + eA13+κ1+κ3 + eA23+κ2+κ3 + eA12+A13+A23+κ1+κ2+κ3 ,

or
f = 1 + eκ1 + eκ2 + eκ3 + a12e

κ1+κ2 + a13e
κ1+κ3 + a23e

κ2+κ3 + b123e
κ1+κ2+κ3 ,

with aij = eAij ; 1 ≤ i < j ≤ 3 and b123 = eA12+A13+A23 = a12a13a23.

4.1 1-soliton solution

Taking the function f in equation (16) as

f1 = f(x, y, z, s, t) = 1 + eκ1 = 1 + eg1x+h1y+p1z+q1s−w1(t), (18)

which satisfy the equation (16) completely under the restriction (13). On putting the equations (18) into
the equation (14), a single soliton is obtained as

u1 =

12g21k exp

(∫
(g41kA(t)+g1(h1C2(t)+p1C3(t)+q1C4(t))+g21C1(t)+h2

1C5(t)+p21C6(t)+q21C7(t)) dt
g1

+ g1x+ h1y + p1z + q1s

)
(
exp

(∫
(g41kA(t)+g1(h1C2(t)+p1C3(t)+q1C4(t))+g21C1(t)+h2

1C5(t)+p21C6(t)+q21C7(t)) dt
g1

)
+ eg1x+h1y+p1z+q1s

)
2

.

(19)

4.2 2-soliton solution

We assume the function f as

f2 = f(x, y, z, s, t) = 1 + eκ1 + eκ2 + a12e
κ1+κ2 , (20)
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Figure 1: Single bright and dark solitons for (19) having values: Ci(t) = 1; 2 ≤ i ≤ 7, p1 = q1 = 1, t = z =
s = 0 with (a) A(t) = t2, k = 1, C1(t) = 1, g1 = 0.8, h1 = 0.4; (b) A(t) = sin(t), k = 1, C1(t) = 1, g1 =
−0.7, h1 = 0.2; (c) A(t) = exp(t), k = 1, C1(t) = 2, g1 = 1.3, h1 = 0.3; (g) A(t) = t2, k = −1, C1(t) =
1, g1 = 0.8, h1 = 0.4; (h) A(t) = sin(t), k = −1, C1(t) = 1, g1 = −0.7, h1 = 0.2; and (i) A(t) = exp(t), k =
−1, C1(t) = 2, g1 = 1.3, h1 = 0.3. (d)-(f) depicts the contour plots for (a)-(c) respectively.

where a12 is the phase shift coefficient which can be determined by substituting f and its derivatives from
equation (20) into the bilinear form (16). Symbolic computations resolve the values of a12, as showcased
below:

a12 =
3kA(t) (g1 − g2)

2g21g
2
2 − C5(t) (g2h1 − g1h2)

2 + C6(t) (g2p1 − g1p2)
2 + C7(t) (g2q1 − g1q2)

2

3kA(t) (g1 + g2) 2g21g
2
2 − C5(t) (g2h1 − g1h2) 2 + C6(t) (g2p1 − g1p2) 2 + C7(t) (g2q1 − g1q2) 2

. (21)

Thus, the equation (20) with phase shift (21) satifies the equation (16) under the restriction

A(t) = C5(t) (g2h1 − g1h2)
2 + C6(t) (g2p1 − g1p2)

2 + C7(t) (g2q1 − g1q2)
2, (22)
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which occurs due to the dependency of phase shift coefficient on the time variable, while on substituting
the equation (20) into the equation (16), it was treated as constant coefficient. The substitution of equation
(20) with equations (21) and (22) into the equation (14) gives a two-soliton solution for equation (1)

u2(x, y, z, s, t) = 12k(ln f2)xx. (23)
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Figure 2: Two bright and dark solitons and their interactions for (23) with (20) having values: Ci(t) =
1; 2 ≤ i ≤ 7, q1 = p2 = q2 = 1, t = z = s = 0 with (a) C1(t) = t2, k = 1, g1 = 0.5, h1 = 0.7, p1 =
1, g2 = −0.5, h2 = 0.3; (b) C1(t) = sin(t), k = 1, g1 = 0.7, h1 = 0.5, p1 = 1, g2 = −0.5, h2 = 0.3; (c)
C1(t) = exp(t), k = 1, g1 = 0.6, h1 = 0.6, p1 = 0.5, g2 = −0.4, h2 = 0.3; (g) C1(t) = t2, k = −1, g1 = 0.5, h1 =
0.7, p1 = 1, g2 = −0.5, h2 = 0.3; (h) C1(t) = sin(t), k = −1, g1 = 0.7, h1 = 0.5, p1 = 1, g2 = −0.5, h2 = 0.3,;
and (i) C1(t) = exp(t), k = −1, g1 = 0.6, h1 = 0.6, p1 = 0.5, g2 = −0.4, h2 = 0.3. (d)-(f) depicts the contour
plots for (a)-(c) respectively.
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4.3 3-soliton solution

For 3-soliton solution, we take function f as

f3 = f(x, y, z, s, t) = 1 + eκ1 + eκ2 + eκ3 + a12e
κ1+κ2 + a13e

κ1+κ3 + a23e
κ2+κ3 + b123e

κ1+κ2+κ3 , (24)

where aij with 1 ≤ i < j ≤ 3 are phase shift coefficients, which can be obtained by extrapolating the
equation (21) for the auxiliary function

f(x, y, z, s, t) = 1 + eκi + eκj + aije
κi+κj , (25)

as

aij =
3kA(t) (gi − gj)

2g2i g
2
j − C5(t) (gjhi − gihj)

2 − C6(t) (gjpi − gipj)
2 − C7(t) (gjqi − giqj)

2

3kA(t) (gi + gj) 2g2i g
2
j − C5(t) (gjhi − gihj) 2 − C6(t) (gjpi − gipj) 2 − C7(t) (gjqi − giqj) 2

, (26)

with 1 ≤ i < j ≤ N , where N is an integer. and the coefficient b123 can be computed as

b123 = a12a13a23. (27)

Therefore, by substituting the equation (24), with equations (26) and (27) into the equation (14), under the
adequate restriction with equation (22), we establish the 3-soliton solution as

u3(x, y, z, s, t) = 12k(ln f3)xx. (28)

5 Center-controlled N-rogue waves

5.1 Symbolic computational technique

Let Q be a nonlinear PDE of (4+1)-dimensional as

Q(u, ux, uy, uz, us, ut, uxx, uxt, uxy, uyt, uxz, uzt, · · · ) = 0, (29)

with partial derivatives in independent variables {x, y, z, s, t}.
We transform the equation (29) with

u = u(ξ, η), ξ = k1x+ k2t, η = k3y + k4z + k5s, (30)

where ki; 1 ≤ i ≤ 5 are constants. On putting the equation (30) into equation (29), we get a transformed
PDE as

T (u, uξ, uξη, uξξ, uη, uηη, · · · ) = 0, (31)

Now, consider a Cole-Hopf transformation as

u = P{ln f(ξ, η)}pξ, (32)

where P and f are constant and auxiliary function, respectively. Here, p represents the order of ξ, which
is a number that balance the highest-order and nonlinear term in the equation (31). On substituting the
transformation (32) into (31), we get a bilinear equation in auxiliary function f .
For determining N -rogue waves, we consider a generalized form for f given by Kumar-Mohan [46] with
center-parameters β and γ as

f = f̂N (ξ, η, β, γ) =

N
2
(N+1)∑
j=0

j∑
i=0

cN(N+1)−2j,2i(ξ − β)N(N+1)−2j(η − γ)2i, (33)

where cm,n;m,n ∈ {0, 2, · · · , j(j + 1)} are the constants.
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Figure 3: Three bright and dark solitons and their interactions for (28) with (24) having values: Ci(t) =
1; 2 ≤ i ≤ 7 with (a) C1(t) = t, k = 1, g1 = 0.3, h1 = 0.6, p1 = 0.5, q1 = 1, g2 = 0.4, h2 = 0.3, p2 =
q2 = 1, g3 = −0.5, h3 = 0.4, p3 = q3 = 1, t = z = s = 0; (b) C1(t) = t2, k = 1, g1 = −0.3, h1 =
0.6, p1 = 0.5, q1 = 1, g2 = 0.4, h2 = 0.3, p2 = q2 = 1, g3 = −0.6, h3 = 0.4, p3 = q3 = t = z = s = 1; (c)
C1(t) = sin(t), k = 1, g1 = 0.3, h1 = 0.4, p1 = 0.5, q1 = 1.5, g2 = 0.4, h2 = 0.3, p2 = q2 = 1, g3 = −0.5, h3 =
0, p3 = 0.5, q3 = −1, t = z = s = 0; (g) C1(t) = t, k = −1, g1 = 0.3, h1 = 0.6, p1 = 0.5, q1 = 1, g2 = 0.4, h2 =
0.3, p2 = q2 = 1, g3 = −0.5, h3 = 0.4, p3 = q3 = 1, t = z = s = 0; (h) C1(t) = t2, k = −1, g1 = −0.3, h1 =
0.6, p1 = 0.5, q1 = 1, g2 = 0.4, h2 = 0.3, p2 = q2 = 1, g3 = −0.6, h3 = 0.4, p3 = q3 = t = z = s = 1; and
(i) C1(t) = sin(t), k = −1, g1 = 0.3, h1 = 0.4, p1 = 0.5, q1 = 1.5, g2 = 0.4, h2 = 0.3, p2 = 1, q2 = 1, g3 =
−0.5, h3 = 0, p3 = 0.5, q3 = −1, t = z = s = 0. (d)-(f) depicts the contour plots for (a)-(c) respectively.

5.2 Cole-Hopf transformation and bilinear form

We can rewrite the equation (1) for Ci = Ci(t) as

uxt +A(t) (uux)x +B(t)uxxxx + C1uxx + C2uxy + C3uxz + C4uxs + C5uyy + C6uzz + C7uss = 0, (34)
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We transformed the equation (34) by taking u = u(ξ, η), with ξ = x+ t and η = y + z + s as

A(t)(u2ξ + uuξξ) +B(t)uξξξξ + (C1 + 1)uξξ + (C2 + C3 + C4)uξη + (C5 + C6 + C7)uηη = 0, (35)

Considering phase variable ϕi in equation (35) as

ϕi = kiξ − diη, (36)

where ki are the constants, and di are the coefficients of dispersion. On substituting u = eϕi in linear terms
of equation (35), we obtain di as

di =
(C2 + C3 + C4)pi ±

√
p2i

(
(C2 + C3 + C4) 2 − 4 (C5 + C6 + C7)

(
B(t)p2i + C1 + 1

))
2 (C5 + C6 + C7)

. (37)

Next, taking the Cole-Hopf transformation as

u = P (log f)ξξ, (38)

and substitute it with f = 1 + eϕ1 and equation (37) into (35). We get the value of K as

P =
12B(t)

A(t)
.

The transformation (38) transforms the equation (35) into a bilinear equation as

B(t)(3f2
ξξ − 4fξfξξξ + ffξξξξ) + (C1 + 1)(ffξξ − f2

ξ ) + (C2 + C3 + C4)(ffξη − fξfη)

+ (C5 + C6 + C7)(ffηη − f2
η ) = 0, (39)

and gives Hirota’s D-operator bilinear form as[
B(t)D4

ξ + (C1 + 1)D2
ξ + (C2 + C3 + C4)DξDη + (C5 + C6 + C7)D

2
η

]
f.f = 0. (40)

5.3 First-order rogue waves

For N = 1 in equation (33), we consider f as

f = c2,0ξ
2 + c0,2η

2 + c0,0. (41)

Substituting the equation (41) into the equation (39), and equating coefficients to zero for different powers
of ξmηn;m,n ∈ Z, gives a system of equations as

2c0,2 (c2,0 (C1 + 1)− c0,2 (C5 + C6 + C7)) = 0,

12c22,0B(t) + 2c0,0 (c2,0 (C1 + 1) + c0,2 (C5 + C6 + C7)) = 0, (42)

which gives the solution for constants as

c0,2 =
(C1 + 1) c2,0
C5 + C6 + C7

, c0,0 = −3B(t)c2,0
C1 + 1

, c2,0 = c2,0. (43)

So, with the values in equation (43), the equation (41) will be a solution of equation (39) as

f = f̂1(ξ, η, β, γ) =

(
− 3B(t)

C1 + 1
+ (β − ξ)2 +

(γ − η)2 (C1 + 1)

C5 + C6 + C7

)
c2,0. (44)

Thus, we get a first-order rogue wave solution by substituting equation (44) into the equation (38) as

u(ξ, η) =
24B(t)

(
− 3B(t)

C1+1 − (β − ξ)2 + (γ−η)2(C1+1)
C5+C6+C7

)
A(t)

(
− 3B(t)

C1+1 + (β − ξ)2 + (γ−η)2(C1+1)
C5+C6+C7

)
2
, (45)
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Figure 4: Single rogue waves for (45) with values: A(t) = −t2, B(t) = C1(t) = C5(t) = 1, C6(t) = C7(t) = 0,
and (β, γ) as (a) (0, 0); (b) (−5,−5); and (c) (6, 2). (d-f) shows contours for (a-c) in ξη-plane.

5.4 Rogue waves of second-order

For N = 2 in equation (33), we consider f as

f = c6,0ξ
6 + c4,2η

2ξ4 + c4,0ξ
4 + c2,4η

4ξ2 + c2,2η
2ξ2 + c2,0ξ

2 + c0,6η
6 + c0,4η

4 + c0,2η
2 + c0,0. (46)

Substituting the equation (46) into the equation (39), and equating coefficients to zero for different powers
of ξmηn;m,n ∈ Z, we get a system. This system gives constants as

c0,0 = −7625B(t)3 (C5 + C6 + C7) c4,2
64 (C1 + 1) 4

, c0,2 = −13175B(t)2c4,2
192 (C1 + 1) 2

, c0,4 = − 143B(t)c4,2
12 (C5 + C6 + C7)

,

c0,6 =
(C1 + 1) 2c4,2

3 (C5 + C6 + C7) 2
, c2,0 = −1175B(t)2 (C5 + C6 + C7) c4,2

192 (C1 + 1) 3
, c2,2 = −30B(t)c4,2

C1 + 1
,

c2,4 =
(C1 + 1) c4,2
C5 + C6 + C7

, c4,0 = −25B(t) (C5 + C6 + C7) c4,2
12 (C1 + 1) 2

, c4,2 = c4,2

c6,0 =
(C5 + C6 + C7) c4,2

3 (C1 + 1)
, (47)
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So, with the values in equation (47), the equation (46) will be a solution of equation (39) as

f = f̂2(ξ, η, β, γ) =
c4,2
192

(192(β − ξ)4(γ − η)2 − 5760(β − ξ)2B(t)(γ − η)2

C1 + 1

− 400(β − ξ)4B(t) (C5 + C6 + C7)

(C1 + 1) 2
− 1175(β − ξ)2B(t)2 (C5 + C6 + C7)

(C1 + 1) 3

− 2288B(t)(γ − η)4

C5 + C6 + C7
− 13175B(t)2(γ − η)2

(C1 + 1) 2
− 22875B(t)3 (C5 + C6 + C7)

(C1 + 1) 4

+
192(β − ξ)2(γ − η)4 (C1 + 1)

C5 + C6 + C7
+

64(β − ξ)6 (C5 + C6 + C7)

C1 + 1
+

64(γ − η)6 (C1 + 1) 2

(C5 + C6 + C7) 2
). (48)

Thus, a solution for second-order rogue wave is obtained by substituting equation (48) into the equation
(38) as

u(ξ, η) =
12B(t)

A(t)
(log f̂2)ξξ. (49)

(a) (b) (c)

-10 -5 0 5 10

-10

-5

0

5

10

ξ

η

(d)

-10 -5 0 5 10

-10

-5

0

5

10

ξ

η

(e)

-10 -5 0 5 10

-10

-5

0

5

10

ξ

η

(f)

Figure 5: Second-order rogue waves for (49) with values: A(t) = −t2, B(t) = C1(t) = C5(t) = 1, C6(t) =
C7(t) = 0, and and (β, γ) as (a) (0, 0); (b) (−4,−4); and (c) (3, 3). (d-f) shows contours for (a-c) in
ξη-plane.

6 Results and findings

The investigated generalized equation (1) shows complete integrability so that it can have several solutions,
such as lumps, breathers, kinks, and others. With the appropriate choice of parameters, it established the
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solutions for solitons up to third order using the Hirota bilinear technique (HBT). Due to the dependency
of the phase shift coefficient on time variable t in HBT, we found the restriction for these soliton solutions.
This work studied rogue wave solutions up to second order using symbolic computational techniques and
demonstrated the dynamic structures of these solutions. In this work, due to the integrablility of this KdV-
type equation, solitons follow the strict behavior of their property that they do not change their shapes with
respect to the time ’t,’ and only can be seen shifted at the time of phase shift as we have seen in the 3D
graphics. Since the change in time variable ’t,’ will only shift the dynamics to the moving direction, we have
not included the 2D plots for the same as this is not required in our case. We showed the dynamic analysis
of the solutions obtained with different constant and variable parameters for all graphics, and analyzed the
interaction of solitons concerning different parameters and with variable coefficients such as sin(t), t2, and
exp(t) for graphics at different stages. The impact of the variable coefficients on the solutions can be seen
in their steepness, amplitude, interaction points, and behaviors. Similarly, for the study of rogue waves,
the solution behaviors with respect to the center-controlled parameters having different constant parameters
and variable coefficients were shown. This study explains the findings as follows:

- Figure-1 shows the single bright solitons in (a)-(c) and the single dark solitons in (g)-(i) due to the
moving singularities around the x-axis. Graphics in (d)-(f) illustrate the contour plots and give the
observation of moving singularities as near to x = 10, −6, and 8 for (a)-(c), respectively.

- In figure-2, we depict the soliton interactions of two bright-solitons in (a)-(c) and of two dark-solitons
in (g)-(i) due to the moving singularities around the x-axis. Graphics in (d)-(f) illustrate the contour
plots and observe moving singularities—the interaction of the solitons, showing the X-type interactions
for all the graphics.

- Figure-3 illustrates the soliton interactions of three bright-solitons in (a)-(c) and of three dark-solitons
in (g)-(i) due to the moving singularities around the x-axis. Graphics in (d)-(f) illustrate the contour
plots and observe moving singularities. We observe that the interaction of the solitons in (d)-(f) occurs
at one point only, while the interaction of the solitons in (e) occurs at two points for (a)-(b) and (c),
respectively.

- In figure-4, we show the rogue waves of first-order, which shows the dynamics of single rogues in (a)-(c)
due to the singularity at center-parameters β and γ. Graphics in (d)-(f) illustrate the contour plots
and give the observation of rogue waves with moving singularities at center-controlled parameters.

- Figure-5 shows the rogue waves second-order in (a)-(c) and illustrates the interaction of two rogues
due to singularity corresponding to the center-parameters β and γ. Graphics in (d)-(f) illustrate the
contour plots and give the observation of rogue waves with moving singularities due to center-controlled
parameters.

7 Conclusions

This research investigated a (4 + 1)-dimensional variable coefficient generalized KP equation in fluid me-
chanics. It analyzed the complete integrability using the robust tool Painlevé analysis of this generalized
equation, with arbitrary choices and fulfillment of conditions for compatibility for the obtained resonances.
Using the Cole-Hopf transformation, it founds the bilinear equation and obtained its Hirota’s bilinear form in
the auxiliary function of the studied equation using the bilinear differential operator. It obtained the bright
and dark solitons up to third order and their one- or multiple-point interactions by choosing appropriate
values for the parameters for N -soliton solutions under the restrictions. These restrictions occur due to the
dependency of the phase shift coefficient on time t. After that, rogue wave solutions were studied up to the
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second order using the symbolic computational technique for N -rogue waves with appropriate values for the
parameters. It showed the dynamic structures of these solutions with several chosen parameters.
Due to the generalized nature of the investigated equation with variable coefficients, it has applications
in fluid dynamics, the theory of solitons, nonlinear waves, plasmas, and other nonlinear sciences. Thus,
this equation has a broad scope for investigating different water wave solutions such as lumps, kinks, and
breathers. We have employed the Hirota bilinear and symbolic computational techniques to obtain the soli-
tons and rogue waves. Researchers and scientists can investigate this equation using techniques and methods
such as Lie symmetry analysis, Darboux transformation, and other methodologies.
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