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Abstract: This paper proposes a new integrable generalized (3+1)-dimensional nonlinear partial differ-
ential equation. We apply the standard Painlevé test to check the integrability, which shows the complete
integrability of this equation. We employ symbolic computation directly to create the rogue waves using the
center-controlled parameters β and γ. We create first, second, and third-order rogue wave solutions via direct
computation for various values of center-controlled parameters and suitable choices of different constants in
the said equation. We obtain the bilinear equation in the auxiliary function f of the transformed variables
ξ and η by using the transformation for dependent variable u. Using Hirota’s direct method to create rogue
waves up to the third order, we apply the generalized formula for rogue waves formulated by N -soliton.
Using the symbolic system tool Mathematica, we illustrate the dynamics for the rogue wave solutions with
various center-controlled parameters. We demonstrate how massive rogue waves, present in many nonlinear
events, behave dominantly over tiny rogue waves. The equation investigates the development of long waves
with small amplitudes traveling in plasma physics and wave motion in fluids and other weakly dispersive
mediums. Scientific areas, including oceanography, fluid dynamics, dusty plasma, optical fibers, nonlinear
dynamics, and numerous other nonlinear fields, show the occurrence of rogue waves in one way or another.

Keywords: Logarithmic transformation, Bilinearization, Integrability analysis, Generalized nonlinear
equation, Multi-order rogue waves.

1 Introduction

Nonlinear partial differential equations (PDEs) are a broad branch of mathematics and physics that deal
with equations involving partial derivatives of nonlinear functions that reflect the models of several com-
plicated physical procedures in various research and engineering sectors. Mathematicians have utilized
nonlinear PDEs to answer issues like the Poincaré conjecture and the Calabi conjecture and describe various
physical systems, from fluid dynamics to gravity. Nonlinear PDEs are challenging to examine since few
universal methods apply to these equations. Usually, it is required to study each equation as a particular
problem. Nevertheless, in some circumstances, general approaches can be used. For instance, numerical
techniques can roughly solve nonlinear partial differential equations. These methods use finite differences
or other approaches to approximate the solution at each point by discretizing the problem’s domain into a
grid of points. Several methods for locating analytical and exact solutions have been proposed to deal with
nonlinear PDEs such as the simplified Hirota’s technique [1–3], Hirota’s bilinearization method [4–8], the

∗sachinambariya@gmail.com
†brijmohan6414@gmail.com (Corresponding author)

1



Bäcklund transformation [9,10], the Darboux transformation [11–13], the Pfaffian technique [14,15], the Lie
symmetry analysis [16–19], Inverse scattering method [20,21], Bilinear neural network method [22–24], and
other techniques [25,26].
Rogue waves [27–34], often called giant solitary waves that appear out of nowhere in the ocean, are localized
in space-time and have a sizable amplitude. They are unexpected and widespread and may do great harm to
individuals. Exploring the evolving process of rogue waves is essential, and many academics are interested.
Their excessively steep height distinguishes them, sometimes more significant than nearby waves. Nonlinear
wave dynamics study rogue waves because they contradict conventional linear wave models. Nonlinear sci-
ence research on rogue waves tries to comprehend their fundamental mechanics and forecast their occurrence.
The rogue waves appear out of nowhere when smaller waves concentrate their energy in a narrow region.
The improvement of marine safety is one important use. Scientists can give early detection and warning
systems to stop mishaps brought on by rogue waves by creating models and prediction algorithms. The
maritime sector, offshore oil and gas platforms, and coastal infrastructure may all benefit from this infor-
mation. Therefore, better operational safety and cost-effective solutions can be achieved by comprehending
their dynamics to build safer structures and create tactics to lessen their effects. Furthermore, studying
their causes and dynamics contributes to our growing understanding of complex systems, nonlinear wave
interactions, and the formation of extreme occurrences in various physical and mathematical situations.
Recently, in 2022, X. Yang, Z. Zhang, et al. [35] gave a direct method for constructing N -order rogue waves
of the (3+1)-D KdV-Benjamin-Bona-Mahony equation from N-soliton by Hirota method using long wave
limit technique. Utilizing the direct method by Hirota in soliton theory [4], they admitted the rogue wave
solutions as

fN =
∑
ζ=0,1

exp

 N∑
i=1

ζiηi +

N∑
1=i<j

Aijζiζj

 ,

where ζi = 0, 1 for 1 ≤ i ≤ N ,
∑

ζ=0,1 as the summation of all possible combinations ζ, ηi are the phase
variables and exp(Aij) are the constants. In their work, they generated first, second and third-order rogue
wave solutions for f2, f4 and f6 respectively. If we follow the pattern of the their solutions then we can
generalized the N -rogue wave solution as

fN =

N(N+1)
2∑

k=0

k∑
i=0

aN(N+1)−2k,2i(η)
2i(ξ)N(N+1)−2k,

with transformed variables ξ and η, which gives resemblance to the function used in symbolic computational
approach [36–41] given by Zhaqilao [42]. This approach offers a straightforward method for locating N -order
rogue waves of the nonlinear PDEs, which includes a phase in which the equation is first transformed into
a Hirota’s bilinear form, using a dependent variable transformation.
This article investigates a new (3+1)-dimensional generalized nonlinear evolution equation

uxxxy + µ1uxt + µ2uyt + µ3(uxuy)x + µ4uxx + µ5uzz = 0, (1)

where the coefficients µi; 1 ≤ i ≤ 5 are real parameters. The equation (1) generalizes the well known
equations as

• For µ1 = 0, µ2 = −1, µ3 = µ4 = 3, µ5 = −3, equation (1) gives (3+1)-D Hirota bilinear equation [36]
as

uxxxy − uyt + 3(uxuy)x + 3uxx − 3uzz = 0. (2)

• For µ1 = µ2 = 1, µ3 = 3, µ4 = 0, µ5 = −1, equation (1) becomes (3+1)-D KP equation [39] as

uxxxy + uxt + uyt + 3(uxuy)x − uzz = 0. (3)
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It is a known fact that all integrable nonlinear PDEs carry exponentially localized solutions in specific di-
rections, including solitons [43–47], lumps [48], optical solitons [49, 50], and other solutions. Finding exact
and analytical solutions can be achieved by looking at the integrability of nonlinear PDEs. The Painlevé
test can verify complete integrability for a nonlinear PDE [51, 52]. Determining whether a PDE passes the
Painlevé test becomes highly tedious, but symbolic tools including Mathematica, Matlab, and others soft-
ware makes it possible to carry out this analysis. We look for particular answers to accurately understand
the characteristics of various facts in various fields of natural sciences. Because nonlinear PDE resembles
real-world circumstances and can provide a wide variety of solutions, it has drawn the attention of several
researchers, as was already mentioned. Software from the Computer Algebra System (CAS)can assist in
finding such solutions. Using Mathematica, Baldwin and Hereman [53] proposed a symbolic computation in
2006 that can carry out the Painlevé test for PDEs, which is built using the WTC-Krushkal approach [54].
The dynamical study of rogue waves behavior produced for nonlinear PDEs has been an exciting field of
study to illustrate fundamental aspects of engineering sciences, dusty plasma, oceanography, complex phys-
ical systems, shallow water waves and several nonlinear fields.
Here is the paper’s structure: The following section examines integrability of the considered equation employ-
ing Painlevé test. Section 3 describes the direct symbolic computational used to study the said equation. In
section 4, Firstly, we apply the dimensionless transformation to the dependent variable u(x, y, z, t) to change
the equation in u(ξ, η), then find the dispersion relation with the phase variable and transform the changed
equation into a bilinear equation using logarithmic transformation. Section 5 obtains the center-controlled
first, second, and third-order rogue waves and depict the dynamics for the same with different center pa-
rameters. In section 6, we will go over the results of the obtained solutions and their related graphics. The
final section summarizes the findings and conclusions of the investigation.

2 Analysis of Painlevé test

To test the integrability of the Eq. (1), we apply the Painlevé test given by Weiss, Tabor and Carnevale
(WTC) [54], which is widely used among physicists and mathematicians to check the integrability by verifying
the integrable conditions for a given PDE. This test goes thorugh three steps, first it alalyzes the leading
order behavior, then find the points of resonance, and lastly verify the conditions for resonance points. In
this test, if all the movable singularities corrsponding to the solutions are simple poles, then the system is
said to be Painlevé integrable.The field u in the Eq. (1) is expanded by a Laurent’s series with g, an analytic
function of {x, y, z, t}, about the singularity manifold g(x, y, z, t) = 0 as

u =
∞∑
j=0

ujg
j+λ, (4)

where λ is an integer and uj = uj(x, y, z, t); j = 0, 1, 2, ...; are the arbitrary functions. On substituting the
Eq. (4) into Eq. (1), we calculate λ by resembling the dominance terms with leading order analysis as

λ = −1.

Also, we encounter the dominant behavior concerning the resonance j as

u0 =
6gx
µ3

,

and characteristic relation for the resonances is

(−6 + r)(−4 + r)(−1 + r)(1 + r)µ3gyg
3
x = 0. (5)
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Thus we get the resonances as
j = −1, 1, 4, 6.

The irrational choice for singularity manifold ρ(x, y, z, t) = 0 gives the resonance j = −1. The expressions
uj exist explicitly for j = 0, 2, 3, 5 and arbitrary choices for j = 1, 4, 6, are given as

u1 = u1(x, y, z, t),

u2 = −µ3g
2
x(u1)y + µ3gxgy(u1)x + µ1gtgx + µ2gtgy + µ4g

2
x + 3gxgxxy − 3gxxgxy + gxxxgy + µ5g

2
z

2µ3g2xgy
,

u3 =
µ3g

2
xg

3
y(u1)xx + µ3g

2
xgxxg

2
y(u1)y − 2µ3gxgxxg

3
y(u1)x + · · ·+ 9g2xxgxyg

2
y − 3µ5gxxg

2
yg

2
z

8µ3g4xg
3
y

,

u4 = u4(x, y, z, t),

u5 = −
gygyyµ

2
4g

7
x + gygyyµ

2
3(u1)

2
yg

7
x + 2gygyyµ3µ4(u1)yg

7
x + · · · − 120g3xxg

4
yg

2
zµ5

96g8xg
5
yµ3

,

u6 = u6(x, y, z, t).

The terms in u3 and u5 has been skipped due to very lengthy expressions. The resonances j satisfy the
condition for compatibility identically. Furthermore, it exhibits that the concerned Eq. (1) is completely
Painlevé integrable.

3 Description of direct symbolic computation

Let us consider a (3+1)-dimensional nonlinear PDE as

P (u, ut, uxt, uyt, uzt, ux, uxx, uxy, uxz, · · · ) = 0, (6)

where subscripts represent partial derivatives concerning the independent variables x, y, z, and t.
Consider a transformation as

u = u(ξ, η), ξ(x, t) = c1x+ c2t, η(y, z) = c3y + c4z, (7)

with constants ci; 1 ≤ i ≤ 4 to the nonlinear PDE (6).
On applying the transformation (7) into the Eq. (6), we get a PDE as

Q(u, uξ, uη, uξη, uξξ, uηη, · · · ) = 0, (8)

Next, we consider a dependent variable transformation as

u(ξ, η) = R(ln f)ξn , (9)

where R is a non-zero parameter to be determined later, f = f(ξ, η) is a auxiliary function of dependent
variables ξ and η, where n is the order of partial differentiation w.r.t. ξ depending upon the balance of the
term of higher-order and nonlinear term in Eq. (8).
We assume the auxiliary function f , a generalized form of rogue wave solutions [35] governed by N-solitons
Hirota bilinear approach as

f(ξ, η) = f̂n(ξ, η, β, γ) =

n(n+1)
2∑

k=0

k∑
i=0

an(n+1)−2k,2i(η − γ)2i(ξ − β)n(n+1)−2k, (10)

where al,m; l,m ∈ {0, 2, · · · , k(k + 1)} are constants to be determined later and β, γ are the real parameters
that control of the wave center.
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4 Logarithmic transformation and bilinear equation

By considering u = u(ξ, η) with ξ = x+ t and η = y + z in equation (1), we get

uξξξη + µ1uξξ + µ2uξη + µ3 (uηuξξ + uξuξη) + µ4uξξ + µ5uηη = 0. (11)

By taking the phase variable Φi in the equation (11) as

Φi = piξ − wiη, (12)

where pi are the real parameters, and wi for i = 1, 2, 3, ..., are the dispersion coefficients. By putting
u(ξ, η) = eΦi in terms with linearity of Eq. (11), we get

wi =
p3i + µ2pi +±pi

√
2µ2p2i + p4i + µ2

2 − 4(µ1 + µ4)µ5

2µ5
. (13)

Now, we assume the logarithmic transformation

u(ξ, η) = R(ln f)ξ, (14)

and substitute this transformation with equation (13) and f(ξ, η) = 1 + eΦ1 in equation (11). On solving
for R, we find

R =
6

µ3
.

Thus, the dependent variable transformation (14) becomes

u(ξ, η) =
6

µ3
(lnf)ξ. (15)

Substitution of transformation (15) into equation (11) converts to the bilinear equation in f(ξ, η) as

fξ (µ2fη + 3fξξη) + fη(µ5fη + fξξξ)− fξη (µ2f + 3fξξ)− (µ1 + µ4)(ffξξ − f2
ξ )− f(µ5fηη + fξξξη) = 0. (16)

5 Rogue wave solutions with center-controlled parameters

5.1 Rogue waves of first-order

For a first-order rogue wave, we choose dependent variable function f(ξ, η) for n = 1 in equation (10) as

f(ξ, η) = a0,0 + a0,2η
2 + a2,0ξ

2. (17)

On substituting Eq. (17) into the Eq. (16), and equating coefficients of distinct powers of ξrηs; r, s ∈ Z to
zero, we get a system as

µ1a0,0a2,0 + µ4a0,0a2,0 + µ5a0,0a0,2 = 0,

µ1a
2
2,0 + µ4a

2
2,0 − µ5a0,2a2,0 = 0,

µ1a2,0a0,2 + µ4a2,0a0,2 − µ5a
2
0,2 = 0. (18)

On solving this system , we obtain the constants as

a0,0 = 0, a0,2 =
(µ1 + µ4) a2,0

µ5
, a2,0 = a2,0. (19)
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Thus, the equation (17) with values in (19) becomes

f(ξ, η) = F̂1(ξ, η, β, γ) = a2,0

(
(ξ − β)2 +

(µ1 + µ4) (η − γ)2

µ5

)
, (20)

which is a solution of equation (16) with center controlled parameters β and γ. By substituting equation
(20) into (15), we get a rogue wave solution as

u(ξ, η) =
12µ5(ξ − β)

µ3 (µ5(ξ − β)2 + (µ1 + µ4)(γ − η)2)
, (21)

(a) (b) (c)
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Figure 1: Rogue waves of first-order for (21) with (20) having values: µ1 = µ3 = µ4 = µ5 = 1, and center-
controlled parameters as: (a) β = 0, γ = 0; (b) β = −3, γ = 1; and (c) β = 2, γ = −2. (d-f) are 2-D
contours for (a-c) w.r.t ξη-plane.

5.2 Rogue waves of second-order

To get the rogue wave of second-order, we choose dependent variable function f(ξ, η) for n = 2 in equation
(10) as

f(ξ, η) = a0,0 + a0,2η
2 + a0,4η

4 + a0,6η
6 + a2,0ξ

2 + a2,2ξ
2η2 + a2,4ξ

2η4 + a4,0ξ
4 + a4,2ξ

4η2 + a6,0ξ
6. (22)
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Substituting Eq. (22) into the bilinear Eq. (16), and equating coefficients of distinct powers of ξrηs; r, s ∈ Z
to zero, gives a system. On solving this system of equations, we compute the constants as

a0,0 =
29µ5a4,2

2µ3
2 (µ1 + µ4)

, a0,2 =
231a4,2
4µ2

2

, a0,4 =
5 (µ1 + µ4) a4,2

µ2µ5
,

a0,6 =
(µ1 + µ4)

2a4,2
3µ2

5

, a2,0 = − 9µ5a4,2
4µ2

2 (µ1 + µ4)
, a2,2 =

12a4,2
µ2

,

a2,4 =
(µ1 + µ4) a4,2

µ5
, a4,0 = − µ5a4,2

µ2 (µ1 + µ4)
,

a6,0 =
µ5a4,2

3 (µ1 + µ4)
, (23)

where a4,2 is an arbitrary constant. Thus, the equation (17) with values in (23) becomes

f(ξ, η) = F̂2(ξ, η, β, γ) =
a4,2
12

(
12(µ1 + µ4)(ξ − β)2(η − γ)4

µ5
+

144(ξ − β)2(η − γ)2

µ2
+ 12(ξ − β)4(η − γ)2

+
4µ5(ξ − β)6

µ1 + µ4
− 12µ5(ξ − β)4

µ2(µ1 + µ4)
− 27µ5(ξ − β)2

µ2
2(µ1 + µ4)

+
4(µ1 + µ4)

2(η − γ)6

µ2
5

+
60(µ1 + µ4)(η − γ)4

µ2µ5
+

693(η − γ)2

µ2
2

+
174µ5

µ3
2(µ1 + µ4)

), (24)

which is a solution of equation (16) with center controlled parameters β and γ. By substituting equation
(24) into (15), we get a second-order rogue wave solution as

u(ξ, η) =
6

µ3
(ln F̂2(ξ, η, β, γ))ξ. (25)

5.3 Rogue waves of third-order

For a rogue wave of third-order, we take dependent variable function f(ξ, η) for n = 3 in equation (10) as

f(ξ, η) = a0,0 + a0,2η
2 + a0,4η

4 + a0,6η
6 + a0,8η

8 + a0,10η
10 + a0,12η

12 + a2,0ξ
2 + a2,2η

2ξ2 + a2,4ξ
2η4

+ a2,6ξ
2η6 + a2,8ξ

2η8 + a2,10ξ
2η10 + a4,0ξ

4 + a4,2ξ
4η2 + a4,4η

4ξ4 + a4,6ξ
4η6 + a4,8ξ

4η8 + a6,0ξ
6

+ a6,2ξ
6η2 + a6,4ξ

6η4 + a6,6ξ
6η6 + a8,0ξ

8 + a8,2ξ
8η2 + a8,4ξ

8η4 + a10,0ξ
10 + a10,2ξ

10η2 + a12,0ξ
12. (26)

Substituting Eq. (26) into the bilinear Eq. (16), and equating coefficients of distinct powers of ξrηs; r, s ∈ Z
to zero, gives a system. By solving the system of equations, we compute the constants as

a0,0 =
7353680000µ5a10,2
1113µ6

2 (µ1 + µ4)
, a0,2 = −6077833600a10,2

371µ5
2

, a0,4 = −6359200 (µ1 + µ4) a10,2
7µ4

2µ5
,

a0,6 = −800 (µ1 + µ4)
2a10,2

3µ3
2µ

2
5

, a0,8 =
160 (µ1 + µ4)

3a10,2
µ2
2µ

3
5

, a0,10 = −10 (µ1 + µ4)
4a10,2

µ2µ4
5

,

a0,12 =
(µ1 + µ4)

5a10,2
6µ5

5

, a2,0 =
72534400µ5a10,2
371µ5

2 (µ1 + µ4)
, a2,2 =

1521600a10,2
7µ4

2

, a2,4 = −800 (µ1 + µ4) a10,2
µ3
2µ5

,
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Figure 2: Rogue waves of second-order for (25) with (24) having values: µ1 = 5, µ2 = 0.3, µ3 = −3, µ4 =
0, µ5 = 9, and center-controlled parameters as: (a) β = 0, γ = 0; (b) β = −1, γ = 7; and (c) β = 1, γ = −6.
(d-f) are 2-D contours for (a-c) w.r.t ξη-plane.

a2,6 =
560 (µ1 + µ4)

2a10,2
µ2
2µ

2
5

, a2,8 = −30 (µ1 + µ4)
3a10,2

µ2µ3
5

, a2,10 =
(µ1 + µ4)

4a10,2
µ4
5

,

a4,0 = − 55200µ5a10,2
7µ4

2 (µ1 + µ4)
, a4,2 =

800a10,2
µ3
2

, a4,4 =
800 (µ1 + µ4) a10,2

µ2
2µ5

a4,6 = −20 (µ1 + µ4)
2a10,2

µ2µ2
5

, a4,8 =
5 (µ1 + µ4)

3a10,2
2µ3

5

, a6,0 =
800µ5a10,2

3µ3
2 (µ1 + µ4)

,

a6,2 =
560a10,2

µ2
2

, a6,4 =
20 (µ1 + µ4) a10,2

µ2µ5
, a6,6 =

10 (µ1 + µ4)
2a10,2

3µ2
5

,

a8,0 =
160µ5a10,2
µ2
2 (µ1 + µ4)

, a8,2 =
30a10,2
µ2

, a8,4 =
5 (µ1 + µ4) a10,2

2µ5
, a10,0 =

10µ5a10,2
µ2 (µ1 + µ4)

a12,0 =
µ5a10,2

6 (µ1 + µ4)
, (27)
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where a10,2 is an arbitrary constant. Thus, the equation (17) with values in (27) becomes

f(ξ, η) = F̂3(ξ, η, β, γ) =
a10,2
2226

(
371A5C12

µ5
5

+
2226A4B2C10

µ4
5

− 22260A4C10

µ2µ4
5

+
5565A3B4C8

µ3
5

− 66780A3B2C8

µ2µ3
5

+
356160A3C8

µ2
2µ

3
5

+
7420A2B6C6

µ2
5

− 44520A2B4C6

µ2µ2
5

+
1246560A2B2C6

µ2
2µ

2
5

− 593600A2C6

µ3
2µ

2
5

+
371B12µ5

A
+

22260B10µ5

Aµ2
+

5565AB8C4

µ5
+

356160B8µ5

Aµ2
2

+
44520AB6C4

µ2µ5

+
593600B6µ5

Aµ3
2

+
1780800AB4C4

µ2
2µ5

− 17553600B4µ5

Aµ4
2

− 1780800AB2C4

µ3
2µ5

+
435206400B2µ5

Aµ5
2

− 2022225600AC4

µ4
2µ5

+
14707360000µ5

Aµ6
2

+ 2226B10C2 +
66780B8C2

µ2
+

1246560B6C2

µ2
2

+
1780800B4C2

µ3
2

+
483868800B2C2

µ4
2

− 36467001600C2

µ5
2

), (28)

where A = (µ1+µ4), B = (ξ−β) and C = (η−γ), which is a solution of equation (16) with center controlled
parameters β and γ. By substituting equation (28) into (15), we obtain a third-order rogue wave as

u(ξ, η) =
6

µ3
(ln F̂3(ξ, η, β, γ))ξ. (29)

6 Results and discussion

The novel nonlinear PDE equation (1) can have a variety of solutions, including solitons, rogue waves,
lumps, and others, due to its perfect integrability. With the proper parameter selections, we could find the
first, second, and third-order center-controlled rogue waves using the discussed symbolic computation and
demonstrate the dynamics of the solutions. In addition, the explanation of the findings is as follows:

• Figure 1 showcase the rogue waves of first-order with center-controlled parameters due to the singularity
around ξ = β with the parameters µ1 = µ3 = µ4 = µ5 = 1, and center parameters as β = 0, γ = 0;
β = −3, γ = 1; and β = 2, γ = −2, for (a), (b), and (c), respectively.

• In figure 2, we depict the rogue waves of second-order with center-controlled parameters (β, γ). Figure
shows two rogue waves are generated due to the singularity where the large rogue dominates the other
rogue wave, with the parameters µ1 = 5, µ2 = 0.3, µ3 = −3, µ4 = 0, µ5 = 9, and center parameters as
β = 0, γ = 0; β = −1, γ = 7; and β = 1, γ = −6, for (a), (b), and (c), respectively.

• Figure 3 illustrate the third-order rogue waves with center-controlled parameters (β, γ). It shows
that rogue waves parallel to ξ-axis dominates the rogue waves parallel to η-axis with the parameters
µ1 = 4.5, µ2 = −3.5, µ3 = 10, µ4 = −3, µ5 = 10 and center parameters β = 0, γ = 0; β = −5, γ = 3;
and β = 5, γ = −3 for (a), (b), and (c), respectively.

7 Conclusions

This paper has investigated a new integrable generalized (3+1)-dimensional nonlinear evolution equation.
To test the integrability of the concerned PDE, we performed the Painlevé test that gave the complete
integrability of this equation. We used symbolic computation directly to generate the rogue waves with
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Figure 3: Third-order rogue wave for solution (29) with the function (28) having values: µ1 = 4.5, µ2 =
−3.5, µ3 = 10, µ4 = −3, µ5 = 10, and center-controlled parameters as: (a) β = 0, γ = 0; (b) β = −5, γ = 3;
and (c) β = 5, γ = −3. (d-f) are 2-D contours for (a-c) w.r.t ξη-plane.

center-controlled parameters β and γ. Using direct computation, we constructed first, second, and third-
order rogue waves with distinct values of center-controlled parameters and appropriate choices of different
constants in the governed equation. Using the logarithmic transformation for the field u in the said equation,
we obtained the bilinear equation in the auxiliary function f of the transformed variables ξ and η; after
that, by applying the generalized formula for rogue waves formulated by the N -soliton using Hirota’s bilinear
approach, we got the rogue waves up to third order. We have depicted the dynamics for the rogue wave
solutions with different center parameter values using symbolic system software Mathematica. We have
shown that the singularities for the rogue waves occur concerning the center parameters β and γ. We
have shown the dominating behavior of large rogue waves to the tiny rogue waves, which occur in many
nonlinear phenomena. The equation studies wave motion in fluids and other weakly dispersive media and
the propagation of long waves with small amplitudes in plasma physics. Rogue waves are also crucial in
several nonlinear disciplines, including oceanography, fluid dynamics, dusty plasma, optical fibers, nonlinear
dynamics, and other scientific subjects.
The presented work proposed a new (3+1)-dimensional generalized nonlinear equation, which generalizes the
(3+1)-D Hirota bilinear equation and KP equation. Both are well-known equations that have applications
in plasma physics, oceanography, and many other areas, so this generalized equation has scope for studying
different wave solutions such as solitons, lumps, breathers, rogue waves, bright and dark solitons, and many
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others. Since we have applied the symbolic computational approach to obtain the rogue wave, there are
many possibilities to study this equation with other techniques and methods discussed in the introduction
section.
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