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Abstract

Bilinearization of nonlinear partial differential equations (PDEs) is essential in the Hirota method, which
is a widely used and robust mathematical tool for finding soliton solutions of nonlinear PDEs in a variety
of fields, including nonlinear dynamics, mathematical physics, and engineering sciences. We present
a novel systematic computational approach for determining the bilinear form of a class of nonlinear
PDEs in this article. It can be easily implemented in symbolic system software like Mathematica,
Matlab, and Maple because of its simplicity. The proven results are obtained by using a developed
method in Mathematica and applying a logarithmic transformation to the dependant variable. Finally,
the findings validate the implemented technique’s competence, productivity, and dependability. The
approach is a useful, authentic, and simple mathematical tool for calculating multiple soliton solutions
to nonlinear evolution equations encountered in nonlinear sciences, plasma physics, ocean engineering,
applied mathematics, and fluid dynamics.
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1. Introduction

The Hirota method, which is a widely used and robust mathematical tool for finding soliton solu-
tions of nonlinear partial differential equations(PDEs) in a range of domains such as nonlinear dynamics,
mathematical physics, oceanography, engineering sciences, and others requires bilinearization of nonlin-
ear PDEs. By taking the advantage of Hirota’s bilinear method1–8, one can obtain the exact N-soliton
or multi-soliton solutions for integrable nonlinear PDEs, but the important step in this method is the
transformation of a nonlinear PDE into the bilinear form as deduced by Hirota9. The conversion of
a nonlinear PDE into the bilinear form becomes tedious even if the corresponding dependent variable
transformation is known. Therefore, the development of an algorithm to get the bilinear form for a
nonlinear PDE plays an important role, and the utilization of computer algebra system software such
as Mathematica, Matlab and Maple can be productive in carrying out such computations.

The nonlinearity of partial differential equations10–27 have captured the attention of numerous re-
searchers, where they have made use of several methodical approaches to achieve multiple solitons,
breather, and lump solutions. Many approaches other than the Hirota method have been brought into
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practice to determine the exact solutions for the nonlinear PDEs, such as Darboux transformation,
simplified Hirota method, Bcklund transformation, Lie symmetry analysis, Pfaffian technique, Inverse
scattering method, and several other methods.

To establish the exact N-soliton solutions of the Kortewegde Vries (KdV), sineGordon (SG), modified
KdV, and nonlinear Schrdinger equations, a direct method was developed by Hirota28–30 and Hietar-
inta31–34 by making use of Hirota’s 3-soliton condition for nonlinear PDEs and carried out a search
for the bilinear equations for KdV-type, SG-type, modified KdV-type, and nonlinear Schrdinger-type
equations. In 1995, Hereman and Zhuang35 summarized the types of bilinear equations based on the
work done by Hietarinta.

Zhou, Fu, and Li36,37 gave an algorithm to construct the bilinear forms of KdV type nonlinear
PDEs by making use of the recursive form of D-operator using logarithmic transformation. Although
their algorithm established a generalized bilinear form up to (2+1)-dimension, it fails to generalized the
(n+1)-dimensional bilinear form. Our algorithm does not utilize the recursive form of the D-operator,
but instead, it employs the expression for the D-operator as derived by Hereman35. Therefore, the
established algorithm becomes more efficient when compared with the algorithm of Zhou, Fu, and Li.
Also, the prime objective of this article is to generalize the bilinear form for (n+1)-dimensional nonlinear
PDEs by applying a logarithmic transformation to the dependent variable. The established results of
the demonstrated examples in section-4 have been exhibited through implementation and execution of
the algorithm in the computational software Mathematica.

This research work is arranged as follows: In the forthcoming section, the Hirota’s bilinear form for
Sawada-Kotera nonlinear PDE as an example is reviewed. In Section 3, a new and efficient algorithm for
constructing the bilinear forms of nonlinear PDEs is established. Section-4 illustrates different examples
of well-known nonlinear PDEs such as KdV equation, KP equation, SK equation, shallow water wave
equation, BLMP equation, HSI system, generalized BKP equation, Fokas equation, and others from the
fields of nonlinear dynamics, mathematical physics, oceanography, plasma physics, and other sciences
using the system software Mathematica. Section-6 concludes our research work.

2. Hirota’s Bilinear form

Hirota gave an algebraic method to find exact soliton solutions to nonlinear PDEs, provided the
NLPDE can be transformed into bilinear form. The foremost step of the method was changing the
nonlinear PDE to a quadratic or quartic equation for an auxiliary function using dependent variable
transformation. We can understand it with an example of the Sawada-Kotera equation42

ut + 5(uu2x)x + 5u2ux + u5x = 0, (2.1)

where u is a function of x and t. Considering dependent variable transformation

u = 6(lnΦ)2x, (2.2)

where Φ = Φ(x, t). Substituting (2.2) into (2.1) and integrating once w.r.t. x by choosing constant of
integration as zero, we get the following

ΦΦxt − ΦxΦt + 15Φ2xΦ4x − 10Φ2
3x + ΦΦ6x − 6ΦxΦ5x = 0, (2.3)

which is a quadratic equation in Φ. Hirota defined the D-operators in9 as

Dn
xΦ.Ψ =

(

∂

∂x1

−
∂

∂x2

)n

Φ(x1)Ψ(x2)|x1=x2=x, (2.4)
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Dn
xD

m
t Φ.Ψ =

(

∂

∂x1

−
∂

∂x2

)n (
∂

∂t1
−

∂

∂t2

)m

Φ(x1, t1)Ψ(x2, t2)|x1=x2=x,t1=t2=t. (2.5)

Using the D-operators from equations (2.4) and (2.5), we can rewrite the equation (2.3) in bilinear form
as

(DxDt +D6
x)Φ.Φ = 0. (2.6)

3. Algorithm

We start by considering the (n+1)-dimensional nonlinear PDE

P (u, ux1, ux2, · · · ) = 0, (3.1)

which contains u = u(x1, x2, ..., xn, t) and its partial derivatives with respect to the independent variables
x1, x2, ..., xn and t.
Step 1: Finding the dispersion
We consider the phase variable Θi as

Θi = k1ix1 + k2ix2 + k3ix3 + · · ·+ kni
xn + wit, (3.2)

where kNi
; 1 ≤ N ≤ n are constants and wi is the dispersion. We have chosen the standard phase

variable relation to show the applicability of the algorithm for different examples, discussed in Section
4, but consideration of it may vary depending upon the structure of a nonlinear PDE. By substituting
u = eΘi, in the linear terms of (3.1) and solving it for wi, we get the dispersion.
Step 2: Finding the constant R in dependent variable transformation
We consider the logarithmic transformation as

u = R
∂η

∂xη

(lnΦ), (3.3)

where η can be calculated by balancing nonlinear terms, and the highest order derivative in equation
(3.1). Considering the function Φ = 1+ eΘ1 , and substituting in (3.3), we get a set of values for R, from
which we can choose appropriate value for it.
Step 3: Finding quadratic or quartic equation in Φ
Substituting the equation (3.3) into the equation (3.1), and integrating w.r.t. x one or more times by
choosing integrating constant as zero upto minimum possible order of the equation, we get quadratic or
quartic equation in Φ

Q(Φ,Φx1 ,Φx2 , · · · ) = 0, (3.4)

which contains Φ and its partial derivatives with respect to the independent variables x1, x2, ..., xn, and
t.
Step 4: Constructing D-operator and generalized bilinear form of a nonlinear PDE
We define Hirota D-operator (HDO) designed by Hereman35 as

HDO[m,n](p, q) =
m
∑

i=0

n
∑

j=0

(−1)m+n−j−i

(

m

i

)(

n

j

)

∂i+j

∂qi∂pj
Φ

∂m+n−i−j

∂qn−i∂pm−j
Ψ, (3.5)
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(1+1)-dim (2+1)-dim (3+1)-dim (n+1)-dim
independent
variables

x, t x1, x2, t x1, x2, x3, t x1, x2, ..., xn, t

number of
pairs

(

2
2

)

= 1
(

3
2

)

= 3
(

4
2

)

= 6
(

n

2

)

= n(n−1)
2

pairs (x, t) (x1, t), (x1, x2),
(x2, t)

(x1, t), (x1, x2), (x1, x3),
(x2, t), (x2, x3), (x3, t)

(x1, t), (x1, x2), ...
(x1, xn), (x2, t), (x2, x3),
..., (xn−1, xn), (xn, t)

generalized
bilinear
form

Ta[M,N ](x, t) Ta[M,N ](x1, t) +
Tb[M,O](x1, x2)+
Tc[N,O](x2, t)

∑6
i=1 TCi

[Ui, Vi](pairi)
∑

n(n−1)
2

i=1 TCi
[Ui, Vi](pairi)

Table 1: Formulation of generalized bilinear form for (n+1)-dimensional nonlinear PDEs.

where p and q are the independent variables and m and n are constants.
Defining a term T as

TC [M,N ](p, q) =
M
∑

m=0

N
∑

n=0

CmnHDO[m,n](p, q), (3.6)

where C : Cmn are constants, M and N are the highest order in the equation (3.4) for the independent
variables p and q respectively. Then we construct generalized biliear form as
(1+1)-dimensional : Ta[M,N ](x, t),
(2+1)-dimensional : Ta[M,N ](x1, t) + Tb[M,O](x1, x2) + Tc[N,O](x2, t),
(3+1)-dimensional :
Ta[M,N ](x1, t)+Tb[M,O](x1, x2)+Tc[M,P ](x1, x3)+Td[N,O](x2, t)+Te[N,P ](x2, x3)+Tf [O,P ](x3, t),
(4+1)-dimensional :
Ta[M,N ](x1, t)+Tb[M,O](x1, x2)+Tc[M,P ](x1, x3)+Td[M,Q](x1, x4)+Te[N,O](x2, t)+Tf [N,P ](x2, x3)+
Tg[N,Q](x2, x4) + Th[O,P ](x3, t) + Tp[O,Q](x3, x4) + Tq[P,Q](x4, t),

...

(n+1)-dimensional :
n(n−1)

2
∑

i=1

TCi
[Ui, Vi](pairi), (3.7)

where Ci are constants, pairi is the i
th pair of independent variables described in Table 1, Ui and Vi are

the highest order in the equation (3.4) for independent variables in the pairi.
Step 5: Finding constants in generalized bilinear form
On equating generalized bilinear form (3.7) to the left-hand side of equation (3.4), we get a system of
equation in coefficients Cimn

; 1 ≤ m ≤ M, 1 ≤ n ≤ N (if we find the equation (3.4) as quartic then first,
we make the equation (3.7) as quartic by multiplication of Φ2, and then equate). After solving this
system and utilizing the constants and relations in the equation (3.7), we get the desired bilinear form
for the nonlinear PDE (3.1).
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4. Examples

4.1. (1+1)-dimensional equations

4.1.1. Korteweg-de Varies (KdV) equation

Considering the KdV equation9 as

ut + 6uux + u3x = 0. (4.1)

Step 1: Finds dispersion wi = −α3
i with u = eαix+wit.

Step 2: Finds R = 2 for the logarithmic transformation u = R(lnΦ)xx.
Step 3: Finds quadratic equation in Φ as

−ΦtΦx + ΦΦxt + 3Φ2
2x − 4ΦxΦ3x + ΦΦ4x = 0. (4.2)

Step 4: Constructs D-operator and generalized bilinear form as (3.5) and (3.7) respectively.(This step
will be skipped in further examples as this construction will be formulated as same as this).
Step 5: Finds nonzero coefficients a40 =

1
2
and a11 =

1
2
. Hence, we constructs bilinear form for equation

(4.1) as
(DtDx +D4

x)Φ.Φ = 0. (4.3)

4.1.2. Caudrey-Dodd-Gibbon (CDG) equation

Taking the CDG equation39 as

ut + u5x + 30uu3x + 30uxu2x + 180u2ux = 0. (4.4)

Step 1: Finds dispersion wi = −α5
i with u = eαix+wit.

Step 2: Finds R = 1 for the transformation u = R(lnΦ)xx.
Step 3: Finds quadratic equation in Φ as

−ΦtΦx + ΦΦxt − 10Φ2
3x + 15Φ2xΦ4x − 6ΦxΦ5x + ΦΦ6x = 0. (4.5)

Step 4: Finds nonzero coefficients a60 =
1
2
and a11 =

1
2
. Hence, we constructs bilinear form for equation

(4.4) as
(DtDx +D6

x)Φ.Φ = 0. (4.6)

4.1.3. Shallow water wave (SWW) equation

We consider the SWW equation40 as

ut − u(2x)t − 3uut + 3ux

∫

∞

x

utdx
′ + ux = 0. (4.7)

Step 1: Finds dispersion wi =
αi

−1+α2
i

with u = eαix+wit.

Step 2: Finds R = 2 for 0 < αi < 1 or αi > 1 in u = R(lnΦ)xx.
Step 3: Finds quadratic equation in Φ (not showing due to lengthy expression).
Step 4: Finds nonzero coefficients a11 = 1, a20 = 1 and a31 = −1. Hence, we constructs bilinear form
for equation (4.7) as

(DxDt −D3
xDt +D2

x)Φ.Φ = 0. (4.8)

5



4.1.4. Boussinesq equation

Considering the Boussinesq equation41 as

u2t − u2x − 6u2
x − 6uu2x − u4x = 0. (4.9)

Step 1: Finds dispersion wi = αi

√

1 + α2
i with u = eαix+wit.

Step 2: Finds R = 2 for the transformation u = R(lnΦ)xx.
Step 3: Finds quadratic equation in Φ as

−Φ2
t + ΦΦ2t + Φ2

x − ΦΦ2x − 3Φ2
2x + 4ΦxΦ3x − ΦΦ4x = 0. (4.10)

Step 4: Finds nonzero coefficients a02 =
1
2
, a20 = −1

2
and a40 = −1

2
. Hence, we constructs bilinear form

for equation (4.9) as
(D2

t −D2
x −D4

x)Φ.Φ = 0. (4.11)

4.1.5. Sawada-Kotera (SK) equation

Taking the SK equation42 as

ut + 5(uu2x)x + 5u2ux + u5x = 0. (4.12)

Step 1: Finds dispersion wi = −α5
i with u = eαix+wit.

Step 2: Finds R = 6 for the transformation u = R(lnΦ)xx.
Step 3: Finds quadratic equation in Φ as

−ΦtΦx + ΦΦxt − 10Φ2
3x + 15Φ2xΦ4x − 6ΦxΦ5x + ΦΦ6x = 0. (4.13)

Step 4: Finds nonzero coefficients a11 =
1
2
and a60 =

1
2
. Hence, we constructs bilinear form for equation

(4.12) as
(DxDt +D6

x)Φ.Φ = 0. (4.14)

4.2. (2+1)-dimensional equations

4.2.1. KadomtsevPetviashvili (KP) equation

Considering the KP equation43 as

(ut −
1

4
u3x − 3uux)x −

3

4
u2y = 0. (4.15)

Step 1: Finds dispersion wi =
α4
i+3β2

i

4αi
with u = eαix+βiy+wit.

Step 2: Finds R = 1 for the transformation u = R(lnΦ)xx.
Step 3: Finds quadratic equation in Φ as

3Φ2
y − 3ΦΦ2y − 4ΦtΦx + 4ΦΦxt − 3Φ2

2x + 4ΦxΦ3x − ΦΦ4x = 0. (4.16)

Step 4: Finds nonzero coefficients and relations a11 = 2, a40 + b40 = −1
2
and b02 + c20 = −3

2
. Hence, we

constructs bilinear form for equation (4.15) as

(−D4
x − 3D2

y + 4DxDt)Φ.Φ = 0. (4.17)
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4.2.2. Hirota-Satsuma-Ito (HSI) system

Taking the HSI equation44 as

vt + u(2x)t + 3(uw)x + ux = 0, uy = vx, ut = wx, (4.18)

which can be converted into nonlinear PDE as

uyt + u(3x)t + 6uxut + 3uxx

∫

utdx
′ + 3uux + uxx = 0. (4.19)

Step 1: Finds dispersion wi(t) = −
α2
i

α3
i
+βi

with u = eαix+βiy−wi(t).

Step 2: Finds R = 2 for the transformation u = R(lnΦ)xx.
Step 3: Finds quartic equation in Φ as

−Φ2ΦtΦy + Φ3Φyt − Φ2Φ2
x − 12ΦΦtΦ

2
x − 6ΦtΦ

3
x + 6Φ2ΦxΦxt + 6ΦΦ2

xΦxt + Φ3Φ2x + 6Φ2ΦtΦ2x+

6ΦΦtΦxΦ2x − 3Φ2ΦxtΦ2x − 3Φ2ΦxΦ(2x)t − Φ2ΦtΦ3x + Φ3Φ(3x)t = 0. (4.20)

Step 4: Finds nonzero coefficients and relations a31 =
1
2
, a20+b20 =

1
2
and c11 =

1
2
. Hence, we constructs

bilinear form for equation (4.19) as

(DyDt +D2
x +D3

xDt)Φ.Φ = 0. (4.21)

4.2.3. KP equation with variable coefficient

Considering the KP equation with time-variable coefficient45 as

(ut + uux + u3x)x + 3u2y + F (t)uxy = 0. (4.22)

Step 1: Finds dispersion wi(t) =
∫ α4

i+F (t)αiβi+3β2
i

αi
dt with u = eαix+βiy−wi(t).

Step 2: Finds R = 12 for the transformation u = R(lnΦ)xx.
Step 3: Finds quadratic equation in Φ as

−3Φ2
y + 3ΦΦ2y − ΦtΦx − F (t)ΦyΦx + ΦΦxt + F (t)ΦΦxy + 3Φ2

2x − 4ΦxΦ3x + ΦΦ4x = 0. (4.23)

Step 4: Finds nonzero coefficients and relations a11 = 1
2
, b11 = F (t)

2
, a40 + b40 = 1

2
and b02 + c20 = 3

2
.

Hence, we constructs bilinear form for equation (4.22) as

(DxDt + F (t)DxDy + 3D2
y +D4

x)Φ.Φ = 0. (4.24)

4.3. (3+1)-dimensional equations

4.3.1. Generalized BKP equation

We consider the BKP equation46 as

uyt + 3uxz − 3uxuxy − 3u2xuy − u(3x)y = 0. (4.25)

Step 1: Finds dispersion wi =
−3αiγi+α3

i βi

βi
with u = eαix+βiy+γiz+wit.

Step 2: Finds R = 2 for the transformation u = R(lnΦ)x.
Step 3: Finds quadratic equation in Φ as

−ΦtΦy + ΦΦyt − 3ΦxΦz + 3ΦΦxz − 3ΦxyΦ2x + 3ΦxΦ(2x)y + ΦyΦ3x − ΦΦ(3x)y = 0. (4.26)

Step 4: Finds nonzero coefficients b31 = −1
2
, c11 = 3

2
and d11 = 1

2
. Hence, we constructs bilinear form

for equation (4.25) as
(DyDt + 3DxDz −D3

xDy)Φ.Φ = 0. (4.27)
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4.3.2. Boiti-Leon-Manna-Pempinelli (BLMP) equation

Taking the BLMP equation47 as

uyt + uzt + u(3x)y + u3xz − 3uxuxy − 3uxuxz − 3u2xuy − 3u2xuz = 0. (4.28)

Step 1: Finds dispersion wi = −α3
i with u = eαix+βiy+γiz+wit.

Step 2: Finds R = −2 for the transformation u = R(lnΦ)x.
Step 3: Finds quadratic equation in Φ as

−ΦtΦy−ΦΦzt+ΦtΦy−ΦΦyt−3ΦxzΦ2x−3ΦxyΦ2x+3ΦxΦ(2x)z+3ΦxΦ(2x)y+ΦzΦ3x+ΦyΦ3x−ΦΦ(3x)z−ΦΦ(3x)y = 0.
(4.29)

Step 4: Finds nonzero coefficients b31 = −1
2
, c31 = −1

2
, d11 = −1

2
and h11 = −1

2
. Hence, we constructs

bilinear form for equation (4.28) as

(Dt +D3
x)(Dy +Dz)Φ.Φ = 0. (4.30)

4.4. (4+1)-dimensional equation

4.4.1. (4+1)-dimensional Fokas equation

Considering the Fokas equation48 as

4uxt − u4x + ux3y + 6(u2)xy − 6uzs = 0. (4.31)

Step 1: Finds dispersion wi =
α4
i+6γiδi−αiβ

3
i

4αi
with u = eαix+βiy+γiz+δis+wit.

Step 2: Finds R =
−α3

1+β3
1

α2
1β1

for logarithmic transformation u = R(lnΦ)xx.

Step 3: Finds quartic equation in Φ (not showing due to lengthy expression).
Step 4: Finds nonzero coefficients and relations a40 + b40 + c40 + d40 = −A, a11 = 4A, b13 = A and

p11 = −6A, where A =
α2
1β

4
1−α5

1β1

2
. Hence, we constructs bilinear form for equation (4.31) as

A(4DxDt −D4
x +DxD

3
y − 6DzDs)Φ.Φ = 0, (4.32)

for A 6= 0
(4DxDt −D4

x +DxD
3
y − 6DzDs)Φ.Φ = 0. (4.33)

5. Conclusions

In conclusion, we have constructed a new and efficient algorithm to establish Hirota’s bilinear form
for a class of (n+1)-dimensional nonlinear PDEs. Furthermore, several examples of well-known nonlinear
evolution equations, for example, the KdV equation, KP equation, SK equation, shallow water wave,
BLMP equation, HSI system, generalized BKP equation, Fokas equation, and others, are calculated
with the help of a proposed new algorithm using system software Mathematica. Our established results
also revealed that the derived algorithm is a successful and robust tool for obtaining bilinear forms
for a class of nonlinear PDEs that come from different areas of nonlinear dynamics, oceanography,
mathematical physics, fluid dynamics, soliton theory, and other nonlinear sciences. Such results are
extremely recommended in advanced research and innovation.
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