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Abstract: In this article, we investigate the generalized (3+1)-dimensional KdV-Benjamin-Bona-Mahony
equation governed with constant coefficients. It applies the Painlevé analysis to test the complete integra-
bility of the concerned KdV-BBM equation. The symbolic computational approach provides first-order,
second-order rogue wave and lump solutions with center-controlled parameters. The rogue waves localized
in space and time have a significant amplitude, and lumps are of rational form solution, localized decaying
solutions in all space directions rationally. Utilizing a symbolic computation approach, we get the bilin-
ear equation of the KdV-Benjamin-Bona-Mahony equation and show the center-controlled rogue waves and
lumps. We employ the symbolic system software Mathematica to do the symbolic computations, form the
first and second-order rogue waves, and lump solutions with appropriate values of constant coefficients. The
KdV-Benjamin-Bona-Mahony equation analyses the evolution of long waves with modest amplitudes propa-
gating in plasma physics and the motion of waves in fluids and other weakly dispersive mediums. Moreover,
rogue waves and lumps occur in several scientific areas, such as fluid dynamics, optical fibers, dusty plasma,
oceanography, water engineering, and other nonlinear sciences.

Keywords: Bilinearization; Cole-Hopf transformation; Painlevé analysis; Generalized KdV-BBM equa-
tion; Center-controlled solutions.

1 Introduction

A nonlinear partial differential equation (PDE) represents a wide variety of physical systems, including
fluid dynamics, plasma physics, shallow water waves, and oceanography. It is a mathematical and physical
term for an equation with partial derivatives and nonlinear components. PDEs have been used to solve
various conjectures, including the Poincaré conjecture and the Calabi conjecture. Nonlinear PDEs cannot
be solved using a generic method; hence each equation is examined separately. Pursuing novel, precise
solutions to nonlinear PDEs, prevalent in several nonlinear scientific fields, is always a fascinating subject.
Several approaches have been put forth to deal with nonlinear PDEs, including the Hirota’s bilineariza-
tion method [1–5], the Darboux transformation [6–8], simplified Hirota’s technique [9–11], the Bäcklund
transformation [12,13], the Lie symmetry analysis [14–19], the Pfaffian technique [20,21], Inverse scattering
method [22,23], and other techniques.
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Rogue waves [24–30], sometimes known as enormous solitary waves that “come from nowhere” in the wa-
ter, are localized in space-time with significant amplitude. They can severely harm people since they are
unexpected and extensive. As a result, exploring the developing mechanism of rogue waves is crucial,
which has garnered substantial interest from several scholars. In 2018, Zhaqilao [31] gave a direct Symbolic
Computational Approach (SCA) technique to generate higher-order rogue waves in nonlinear systems with
center-controlled parameters. Moreover, in 2021, Y. Cao, H. Tian, and B. Ghanbari [32] constructed higher-
order rogue wave solutions of (3+1)-D KdV-Benjamin-Bona-Mahony (KdV-BBM) equation utilizing SCA.
Furthermore, in 2022, X. Yang, Z. Zhang, et al. [33] gave a direct method for constructing higher-order
rogue waves of the (3+1)-D KdV-BBM equation from N-soliton of the Hirota method using long wave limit
technique. Several mathematicians and researchers have shown curiosity in lump waves [35–41] as the ap-
propriate prototypes to sport rogue waves in an optical medium, fluid dynamics, and plasmas. Lump wave
solutions are localized in nature, rationally decaying in all space directions. Manakov et al. [42] found a
lump wave and found that the lump wave interactions do not practice phase shifts. Subsequently, Satsuma
and Ablowitz [43] described the interactions of lumps from N-solitons of KP and the (2+1)-D Schrödinger
equation. After that, in literature, numerous high-dimensional nonlinear PDEs also admit lumps, such as
the three-wave resonant interaction equation [44], shallow water-like equation [45], two-mode generalized
evolution equation [46], extended KP equation [47], and many other equations.
A Symbolic Computational Approach [48–55] is a valuable tool for creating rogue wave solutions of an
integrable nonlinear PDE among the several approaches to studying nonlinear PDEs. SCA offers a straight-
forward method for locating higher-order rogue waves. To produce the rogue waves of the nonlinear PDEs,
Zhaqilao’s SCA [31] includes a phase in which the equation is first transformed into a bilinear form, as
described by Hirota, and then uses a dependent variable transformation. We may streamline this procedure
and compute the various nonlinear PDE solutions by skipping the bilinear form stage and immediately con-
verting the equation into an elucidated form.
Verifying a PDE’s integrability is crucial since the concerned approach is applied to integrable nonlinear
PDE. While integrable PDEs have exponentially localized solutions, studying their integrability to nonlinear
PDEs helps produce solitons, lumps, rogue waves, and other solutions. We assess the entire integrability of
a nonlinear PDE using the Painlev’e test. We analyze this using symbolic system software Mathematica.
Baldwin and Hereman [10] constructed an algorithm and provided a symbolic computation for Painlevé
analysis using the WTC-Krushkal method [56].

In this article, we investigate the generalized (3+1)-dimensional nonlinear KdV-BBM [32–34] equation

uxt + α1(uux)x + α2uxxxx − α3uxxxt + α4uyy − α5uzz = 0, (1)

where the coefficients αi; 1 ≤ i ≤ 5 are real parameters. The equation (1) generalizes the well-known
equations as

• When α3 = α4 = α5 = 0, equation (1) gives to the KdV equation as

ut + α1uux + α2uxxx = 0 (2)

• When α3 = α5 = 0, equation (1) becomes the (2+1)-D KP equation as

uxt + α1(uux)x + α2uxxxx + α4uyy = 0 (3)

• When α3 = 0, equation (1) gives (3+1)-D KP equation as

uxt + α1(uux)x + α2uxxxx + α4uyy − α5uzz = 0 (4)
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It is essential to address the issue of describing physically convincing answers to the equation (1). This
equation analyzes the transition of long waves with modest amplitudes propagating in plasma physics. It
determines whether the transverse dynamics should be considered and can be used to analyze the motion of
waves in fluids and other weakly dispersive mediums. By simplifying the symbolic computational approach,
we drive the first-order, second-order rogue wave and lump solutions. Due to the ignorance of nonlinearity
and dispersion, solitons are formed; thus, solitons, lumps, and rogue waves play a crucial role in studying
shallow water waves. By applying the Painlevé analysis, we get complete integrability of the KdV-BBM
equation, which confirms the existence of such solutions as rogue waves, lumps, solitons, and others. We
bilinearize of the said equation and compute the center-controlled rogue wave solutions with center param-
eters for first-order and second-order and the center-controlled lump solutions with two sets of coefficient
values. Furthermore, the dynamical study of the obtained solution shows the existence of rogue waves and
lumps in fluid dynamics, optical fibers, dusty plasma, oceanography, water engineering, and other nonlinear
sciences.
The article is organized as follows: Coming section investigates the integrability of the KdV-BBM equation
using Painlevé analysis. In Section 3, we simplify the symbolic computational approach and apply it to
the KdV-BBM equation to form an bilinear equation of the said equation. Section 4 computes the center-
controlled first-order and second-order rogue wave solutions and shows the obtained solution’s dynamics
with different center parameter values. In section 5, we obtain the center-controlled lump solutions with
two sets of coefficient values and depict the dynamics for the same with different center parameter values.
Section 6 discusses the results of obtained solutions and their graphics. The last section concludes the work
and investigation.

2 Painlevé test analysis

In Painlevé analysis, we consider the solution of the Eq. (1) as a Laurent’s series about the manifold
ρ(x, y, z, t) , to investigate the integrability as

u(x, y, z, t) =
∞∑
j=0

uj(x, y, z, t)ρ
j−λ, (5)

where λ is a positive number, and uj = uj(x, y, z, t); j = 0, 1, 2, ...;. On substituting the Eq. (5) into Eq.
(1), we compute λ by resembling the dominance terms as

λ = 2.

Also, we encounter the leading order behavior concerning the resonance j as

u0 =
12ρx(α3ρt − α2ρx)

α1
; j = −1, 4, 5, 6.

Due to the irrational choice, the resonance j = −1 for singular manifold ρ(x, y, z, t) = 0 occurs. The
expressions for uj ; j = 1, 2, ..., exist explicitly with random choices for u4, u5 and u6. Resonances j satisfy
the condition for compatibility identically. Furthermore, it exhibits that the concerned Eq. (1) is entirely
Painlevé integrable.

3 Simplification of Symbolic Computation Approach

Let us consider a (3+1)-D nonlinear PDE as

P (u, ut, uxt, uyt, uzt, ux, uxx, uxy, uxz, uz, uzx, · · · ) = 0, (6)
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where subscripts are the partial derivatives w.r.t. the variables x, y, z, and t.
Step 1: We use a Painlevé transformation

u = T (F (ξ, z)), (7)

where ξ = ξ(x, y, t) and F is a auxiliary function of dependent variables.
Step 2: By substituting the transformation (7) into the Eq. (6), we get an bilinear equation in F (ξ, z)

Q(F (ξ, z)) = 0 (8)

Step 3:
(i) For center-controlled rogue waves, we assume the auxiliary function F as

F (ξ, z) = f̂(ξ, z, β, γ) = fk+1 + 2βzpk + 2γξqk + (β2 + γ2)fk−1, (9)

with

fk(ξ, z) =

k(k+1)/2∑
n=0

n∑
j=0

a(k(k+1)−2n),2jz
2jξ(k(k+1)−2n),

pk(ξ, z) =

k(k+1)/2∑
n=0

n∑
j=0

b(k(k+1)−2n),2jz
2jξ(k(k+1)−2n),

qk(ξ, z) =

k(k+1)/2∑
n=0

n∑
j=0

c(k(k+1)−2n),2jz
2jξ(k(k+1)−2n),

f0 = 1, f−1 = p0 = q0 = 0, where al,m, bl,m, cl,m with l,m ∈ {0, 2, · · · , k(k + 1)} and β, γ are the real
parameters. The values for al,m, bl,m, cl,m can be determined, and the constants β, γ control the center of
the wave.
(ii) For generating the center-controlled lump solution, we consider the auxiliary function F as a rational
solution

F (ξ, z) = G2 +H2 + a7,

G(ξ, z) = a1(ξ − γ) + a2(z − β) + a3,

H(ξ, z) = a4(ξ − γ) + a5(z − β) + a6, (10)

where ai; 1 ≤ i ≤ 7 are the constants and β, γ are the center-controlled parameters.

3.1 Application of SCA to KdV-BBM equation

Considering ξ(x, y, t) = x+ gy − ht in equation (1), we get

α1(u
2
ξ + uuξξ) + α2uξξξξ + hα3uξξξξ + g2α4uξξ − huξξ − α5uzz = 0, (11)

where g and h are the constants. Now, considering the phase variable ϕi in the equation (11) as

ϕi = piξ − wiz, (12)

where pi and wi for i = 1, 2, 3, ..., are the real parameters and dispersion coefficients respectively. On
substituting u(ξ, z) = eϕi in the linear terms of Eq. (11), we compute the dispersion as

wi = ±
pi

√
α4g2 + α3hp2i + α2p2i − h

√
α5

. (13)
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Assuming the Cole-Hopf transformation

u(ξ, z) = R(logF )ξξ (14)

with R as a non-zero parameter and F = F (ξ, z) as a dependent variable function. We substitute the
transformation (14) and equation (13) with F (ξ, z) = 1 + ep1ξ−w1z in equation (11), and solve for R, we get

R =
12 (α2 + α3h)

α1

To compute the different solutions for the equation (11), we consider the dependent variable transformation
as

u(ξ, z) = u0 +
12(α2 + α3h)

α1
(logF )ξξ. (15)

Substitution of transformation (15) into equation (11) converts to the bilinear equation in F (ξ, z) as

hF 2
ξ − hFFξξ − α1u0F

2
ξ + α1u0FFξξ + 3α2F

2
ξξ − 4α2FξFξξξ + α2FFξξξξ − 4α3hFξFξξξ

+ 3α3hF
2
ξξ + α3hFFξξξξ − α4g

2F 2
ξ + α4g

2FFξξ + α5F
2
z − α5FFzz = 0. (16)

4 Center-controlled rogue wave solutions

4.1 First-order rogue wave solution

To construct a first-order rogue wave, we choose dependent variable function F (ξ, z) for k = 0 in equation
(9) as

F (ξ, z) = a2,0ξ
2 + a0,2z

2 + a0,0. (17)

On substituting Eq. (17) into the bilinear Eq. (16), and equating all the coefficients of different powers of
ξrzs; r, s ∈ Z to zero, we get a system of equations

−2α5a0,2a2,0 − 2α4g
2a22,0 + 2ha22,0 − 2α1u0a

2
2,0 = 0 (18)

2α5a
2
0,2 + 2α4g

2a0,2a2,0 − 2ha0,2a2,0 + 2α1u0a0,2a2,0 = 0 (19)

12α2a
2
2,0 − 2α5a0,0a0,2 + 2α4g

2a0,0a2,0 + 12α3ha
2
2,0 − 2ha0,0a2,0 + 2α1u0a0,0a2,0 = 0 (20)

On solving this system , we obtain the constants as

a0,0 =
3(α2 + α3h)a2,0

−α4g2 + h− α1u0
,

a0,2 =
(−α4g

2 + h− α1u0)a2,0
α5

,

a2,0 = a2,0. (21)

Thus, the equation (17) with values in (21) becomes

F (ξ, z) = f̂1(ξ, z, β, γ) =

(
(ξ − β)2 +

3 (α2 + α3h)

−α4g2 + h− α1u0
+

(z − γ)2
(
−α4g

2 + h− α1u0
)

α5

)
a2,0, (22)

which is a solution of equation (16) with center controlled parameters β and γ. By substituting equation
(22) into (15), we get a rogue wave solution as

u(ξ, z) = u0 +

24 (α2 + α3h)

(
−(β − ξ)2 − 3(α2+α3h)

α4g2−h+α1u0
+

(z−γ)2(−α4g2+h−α1u0)
α5

)
α1

(
(β − ξ)2 − 3(α2+α3h)

α4g2−h+α1u0
+ (z−γ)2(−α4g2+h−α1u0)

α5

)
2

(23)
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Figure 1: First-order rogue wave for solution (23) with the function (22) having values: u0 = −1, α1 = α2 =
α3 = α4 = α5 = 1, g = h = 1, and center-controlled parameters as: (a) β = 0, γ = 0; (b) β = −8, γ = −5;
and (c) β = 5, γ = 8. (d-f) are 2-D contours for (a-c) w.r.t ξz-plane.

4.2 Second-order rogue wave solution

For a second-order rogue wave, we consider dependent variable function F (ξ, z) for k = 1 in equation (9) as

F (ξ, z) = ξ6a6,0 + ξ4a4,0 + ξ2a2,0 + z6a0,6 + ξ2z4a2,4 + z4a0,4 + ξ4z2a4,2 + ξ2z2a2,2 + z2a0,2 + a0,0. (24)

Substituting Eq. (24) into the bilinear Eq. (16), and equating all the coefficients of different powers of
ξrzs; r, s ∈ Z to zero, gives a system of equations. Solving this system of equations results the constants as

a0,0 =
625α5 (α2 + α3h)

3a4,2
(α4g2 − h+ α1u0) 4

, a0,2 =
475 (α2 + α3h)

2a4,2
3 (α4g2 − h+ α1u0) 2

, a0,4 =
17 (α2 + α3h) a4,2

3α5

a0,6 =

(
α4g

2 − h+ α1u0
)
2a4,2

3α2
5

, a2,0 =
125α5 (α2 + α3h)

2a4,2
3 (α4g2 − h+ α1u0) 3

, a2,2 =
−30 (α2 + α3h) a4,2
(α4g2 − h+ α1u0)

a2,4 =
−
(
α4g

2 − h+ α1u0
)
a4,2

α5
, a4,0 =

25α5 (α2 + α3h) a4,2
3 (α4g2 − h+ α1u0) 2

a6,0 =
−α5a4,2

3(α4g2 − h+ α1u0)
(25)
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where a4,2 is an arbitrary constant. Thus, the equation (17) with values in (25) becomes

F (ξ, z) = f̂2(ξ, z, β, γ) =
a4,2
3

(
25α5(β − ξ)4A

B2
− α5(β − ξ)6

B
+

125α5(β − ξ)2A2

B3
+

1875α5A
3

B4
−

3(β − ξ)2(z − γ)4B

α5
− 90(β − ξ)2A(z − γ)2

B
+

(z − γ)6B2

α2
5

+
475A2(z − γ)2

B2

+
17A(z − γ)4

α5
+ 3(β − ξ)4(z − γ)2), (26)

where A = (α2+α3h) and B = (α4g
2−h+α1u0), which is a solution of equation (16) with center controlled

parameters β and γ. By substituting equation (26) into (15), we get a second-order rogue wave solution as

u(ξ, z) = u0 +
12(α2 + α3h)

α1
(logf̂2(ξ, z, β, γ))ξξ. (27)
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Figure 2: Second-order rogue wave for solution (27) with the function (22) having values: u0 = −1, α1 = α2 =
α3 = α4 = α5 = 1, g = h = 1, and center-controlled parameters as: (a) β = 0, γ = 0; (b) β = −7, γ = −5;
and (c) β = 7, γ = 5. (d-f) are 2-D contours for (a-c) w.r.t ξz-plane.
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5 Center-controlled lump solutions

To construct center-controlled lump, we consider the function F (ξ, z) as Eq. (10)

F (ξ, z) = G2 +H2 + a7,

G(ξ, z) = a1(ξ − γ) + a2(z − β) + a3,

H(ξ, z) = a4(ξ − γ) + a5(z − β) + a6, (28)

where the constants ai; 1 ≤ i ≤ 7 need to be determined. By substituting the Eq. (28) into the bilinear Eq.
(16), and equating all the coefficients of terms with powers of ξrzs; r, s ∈ Z to zero. Furthermore, we can get
different solutions by solving the obtained system of equations with appropriate choices. We are showing
two sets as

1. a3 = a6 = a7 = 0, a5 =
−a1a2
a4

, a4 = a4 ̸= 0, a1 = a1, a2 = a2,

2. a1 = a5 = a6 = 0, a4 = ± a2
√
α5√

h−u0α1−g2α4

, a2 = a2, a3 = a3, a7 = a7,

Therefore, we compute a center-controlled lump solution by putting Eq. (28) with a solution set into Eq.
(15) as

u(ξ, z) = u0 −
24a24 (α2 + α3h)

(
a24(γ − ξ)2 − a22(z − β)2

)
α1

(
a24(γ − ξ)2 + a22(z − β)2

)
2

(29)

u(ξ, z) = u0 +
24a22α5 (α2 + α3h)

(
α5a

2
2

(
−(γ − ξ)2

)
+ a7T + (a2(z − β) + a3)

2T
)

α1T 2
(
α5a22(γ−ξ)2

T + (a2(z − β) + a3) 2 + a7

)
2

(30)

where T =
(
−α4g

2 + h− α1u0
)
, for both solution sets as above, respectively.

6 Results and discussion

Due to the complete integrability of the KdV-Benjamin-Bona-Mahony equation, it can possess different
solutions, such as solitons, rogue waves, lumps, and others. We obtained the center-controlled first-order,
second-order rogue waves and center-controlled lumps for the KdV-BBM equation with appropriate choices
of parameters and displayed the dynamics for the computed solutions. Furthermore, the discussion of the
results is as

• Figure 1 depicts the center-controlled first-order rogue wave solution due to the singularity ξ = γ along
with the parameters u0 = −10, α3 = −1, α1 = α2 = α4 = α5 = 1, g = h = 1, and center parameters as
β = 0, γ = 0; β = −8, γ = 0; and β = 5, γ = 8, for (a), (b), and (c), respectively.

• In figure 2, we illustrate the center-controlled second-order rogue wave solution due to the singularity
around ξ that moves depending on the value of ξ = γ, along with the parameters u0 = −1, α1 =
α2 = α3 = α4 = α5 = 1, g = h = 1, and center parameters as β = 0, γ = 0; β = −7, γ = −5; and
β = 7, γ = 5, for (a), (b), and (c), respectively.

• Figure 3 shows the center-controlled lump solution due to the singularity ξ = γ along with the param-
eters u0 = 10, a2 = a4 = 0.5, α1 = α3 = 1, α2 = 2 and center parameters β = 0, γ = 0; β = −3, γ = −1;
and β = 3, γ = 2 for (a), (b), and (c), respectively.

• In figure 4, we depict the center-controlled lump solution due to the singularity ξ = γ along with the
parameters u0 = 5, a2 = 0.9, a3 = a7 = 0.5, α1 = α2 = 1, α3 = α4 = α5 = 1, g = h = 1, and center
parameters β = 0, γ = 0; β = −8, γ = −5; and β = 3, γ = 8 for (a), (b), and (c), respectively.

8



(a) (b) (c)

-4 -2 0 2 4

-4

-2

0

2

4

ξ

z

(d)

-4 -2 0 2 4

-4

-2

0

2

4

ξ

z

(e)

-4 -2 0 2 4

-4

-2

0

2

4

ξ

z

(f)

Figure 3: Lump for solution (29) with the function (28) having values: u0 = 10, a2 = a4 = 0.5, α1 = α3 =
1, α2 = 2, h = 1, and center-controlled parameters as: (a) β = 0, γ = 0; (b) β = −2, γ = −1; and (c)
β = 2, γ = 2. (d-f) are 2-D contours for (a-c) w.r.t ξz-plane.

7 Conclusions

This article investigated a generalized (3+1)-dimensional KdV-Benjamin-Bona-Mahony equation with con-
stant coefficients. We used the simplified symbolic computational approach to obtain center-controlled
first-order, second-order rogue wave, and center-controlled lump solutions. Painlevé analysis is used to
check the complete integrability of the investigated KdV-BBM equation. We examined the rogue waves
and lumps for different values of center-controlled parameters and appropriate choices of different present
parameters in the KdV-BBM equation. Using the symbolic computation approach, we obtained the bilinear
equation in the auxiliary function of the KdV-BBM equation, then obtained the first-order, second-order
rogue wave and lump solutions, and depicted the dynamics for the solutions with different center parameter
values using symbolic system software Mathematica. We have shown that the singularities for the rogue and
lump waves occur concerning the center parameters β and γ. The KdV-BBM equation analyses the develop-
ment of long waves with modest amplitudes propagating in plasma physics and the motion of waves in fluids
and other weakly dispersive mediums. Moreover, rogue wave and lump solutions are essential in several
nonlinear fields, such as fluid dynamics, optical fibers, dusty plasma, oceanography, water engineering, and
other scientific areas.
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Figure 4: Lump for solution (30) with the function (28) having values: u0 = −1, a2 = 0.9, a3 = 0.3, a7 =
0.5, α1 = α2 = α4 = α5 = 1, α3 = 2, g = h = 1, and center-controlled parameters as: (a) β = 0, γ = 0; (b)
β = −5, γ = −5; and (c) β = 3, γ = 8. (d-f) are 2-D contours for (a-c) w.r.t ξz-plane.
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