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Abstract: This research studies rogue wave solutions with center parameters of a generalized (3+1)-
dimensional KdV-type equation in plasma physics. Using a direct generalized formula and symbolic tech-
nique, it creates rogue waves with adjustable dynamical characteristics controlled by the center parameters.
Our investigation produces rogue wave solutions up to the third order with Painlevé transformation through
direct computation, considering a range of center-controlled and other parameters within the investigated
equation. To facilitate our analysis, we derive an equation for the function f in bilinear form, utilize the
Cole-Hopf transformation for the wave function u, and introduce the transformed variable ζ. It obtains the
rogue wave solutions using a generalized form for N -rogue waves generated from Hirota’s N -soliton approach.
Through the powerful symbolic computation tool Mathematica, we provide visualizations of the dynamic
behavior of rogue waves across diverse center parameters. This research highlights the prevalence of massive
rogue waves within nonlinear phenomena, showcasing their dominance over their smaller counterparts. The
investigated equation offers insights into the evolution of longer waves characterized by smaller amplitudes,
which is particularly relevant in plasma physics, fluid dynamics, and dispersive media. Rogue waves have
applications in diverse scientific fields, including oceanography, nonlinear dynamics, fluid dynamics, fiber
optics, dusty plasma, and complex nonlinear systems.
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1 Introduction

A large area of physics and applied mathematics deals with nonlinear partial differential equations (PDEs)
[1–8], which involve unknown functions and its partial derivatives. PDEs model the complex physical
processes in several engineering and nonlinear sciences. Nonlinear PDEs have been used by mathematicians
to explain a variety of physical phenomena, from fluid dynamics to gravitational studies, and to provide
solutions to problems such as the Poincaré and Calabi conjectures. Since there are no general techniques for
solving nonlinear PDEs, analyzing them and finding solutions can be difficult. PDEs [9–17] are widely used in
diverse nonlinear sciences to model and understand physical phenomena that involve multiple variables and
their rates of change. The different examples of PDEs include the heat equation [18], the wave equation [19],
and the famous Schrödinger equation [20] from quantum mechanics. Numerous techniques have been used
to address nonlinear PDEs to find exact and analytical solutions such as the Bäcklund transformation [1,2],
Hirota’s bilinearization method [3,4], inverse scattering method [5,6], the simplified Hirota’s approach [7,8],
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the Darboux transformation [9, 10], the Lie symmetry analysis [11, 12], bilinear neural network method
[13–15], the Pfaffian technique [16,17], and other techniques.
Rogue waves [21–24] are space-time localized waves with a large amplitude, sometimes called giant waves
that arise from nowhere in the ocean. They could seriously hurt people since they are unpredictable and
dangerous. It is essential to investigate how rogue waves evolve, which interests many academics. Rogue
waves are characterized by their height, sometimes even more than nearby waves. Because rogue waves defy
accepted linear wave models, they are studied in nonlinear wave dynamics. Scientific research on extreme
or giant waves aims to forecast their occurrence and understand their underlying mechanics. Rogue waves
suddenly emerge when shorter waves focus on a small area with their energy. One noteworthy application is
the enhancement of marine safety. The developing models and prediction algorithms provide early detection
and warnings to prevent harm caused by these waves. This information may be helpful in offshore gas and oil
fields, the maritime industry, and the coastal area. Thus, understanding rogue waves’ dynamics helps design
secure structures and develop strategies to lower their impacts. So, achieving excellent operational safety
and more affordable solutions is possible. Additionally, investigating their origins and dynamics extends our
knowledge of complex procedures and the emergence of severe events in diverse mathematical and physical
contexts.
This work examines newly constructed center-controlled rogue waves with Painlevé tranformation to an
integrable (3+1)-D generalized KdV-type equation [25] in plasma physics as

uxxxy + λ1uxt + λ2uyt + λ3(uxuy)x + λ4uxx + λ5uzz = 0, (1)

where u(x, y, z, t) is a wave function of spatial coordinates x, y, z and temporal coordinate t, and λk; 1 ≤ k ≤ 5
are real parameters. The equation consists of mainly dispersive, nonlinear, and disturbed terms which
generalizes the well-known equations for different parameter values as

• (3+1)-D Hirota bilinear equation [26] for λ1 = 0, λ2 = −1, λ3 = λ4 = 3, λ5 = −3 as

uxxxy + 3(uxuy)x + 3uxx − 3uzz − uyt = 0. (2)

• (3+1)-D KP equation [27] for λ1 = λ2 = 1, λ3 = 3, λ4 = 0, λ5 = −1 as

uxxxy + 3(uxuy)x − uzz + uxt + uyt = 0. (3)

The Korteweg-de Vries (KdV) type equations refer to a class of nonlinear PDEs such as modified KdV equa-
tion [28], generalized KdV equation [29], Boussinesq equation [30] and others that share similar mathematical
structures with the KdV equation. These equations often describe wave phenomena and can be derived from
various physical systems. They may include additional terms or modifications to the original KdV equation
to represent different physical phenomena or to incorporate additional effects. The KdV-type equations and
their variants play a significant role in plasma physics, particularly in describing the behavior of nonlinear
waves and structures in plasmas. In plasma physics, the KdV-type equations study solitary waves, non-
linear wave interactions, plasma turbulence, collisionless shocks, and plasma transport. Recently, in 2023,
Kumar-Mohan [25] proposed this equation (1) and studied the Painlevé integrability, and discussed the
rogue waves with center-parameter by proposing a direct symbolic approach. The present work constructs
the bilinear form for the studied equation. It analyzes the new center-controlled rogue waves by transform-
ing the equation with Painlevé transformation and symbolically utilizes the proposed direct approach. The
Painlevé transformation transformed the examined equation to a new (1+1)-dimensional evolution equation
in new transformed variables, which can be converted to Hirota’s bilinear form in auxiliary function with
Cole-Hopf transformation. Due to the Painlevé transformation to this studied equation, we observe the new
rogue waves and study their dynamic behavior. Since this equation is newly proposed, no more work on this
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equation is found in the literature. However, due to the applicability of this KdV-type integrable equation,
several types of solutions, such as bright and dark solitons, lumps, kinks, and breathers, can be studied.
An integrable nonlinear PDE (NLPDE) has solutions that are localized in nature within particular direc-
tions, such as lumps [31], optical solitons [32, 33], solitons [34, 35], and other solutions. Examining the
integrability of NLPDEs can help to find exact and closed-form solutions. For a NLPDE, the Painlevé
test can confirm integrability completely [36, 37]. It is very laborious to determine the integrability of a
NLPDE with the Painlevé analysis, but computer algebra systems such as Mathematica, Maple, and other
tools allow one to perform this analysis. In order to precisely understand the properties of different facts
in different natural science fields, we search for specific answers. As earlier mentioned, nonlinear PDE has
attracted the interest of numerous researchers due to its resemblance to real-world problems and its capacity
to yield several solutions. The system software can help locate different kinds of answers about integrability,
lax pairs, and the existence of several solutions, such as solitons, lumps, breathers, rogues, and dynamical
behavior. An exciting area of research to demonstrate basic concepts in shallow water waves, engineering
sciences, oceanography, dusty plasma, and other nonlinear systems has been the dynamic behavior of rogue
waves developed for NLPDEs.

The following section describes the direct symbolic approach for finding the rogue wave solutions of
the studying equation. Section 3 transforms the said equation using Painlevé transformation and finds the
dispersion and bilinear form for the transformed equation by applying the Cole-Hopf transformation. In
Section 4, we obtain 1st-, 2nd-, and 3rd-order rogue waves and showcase the dynamical behavior for these
solutions with reasonable values of center parameters. Section 5 discusses the results with the findings, and
the last section concludes the research study.

2 Direct symbolic approach for rogue wave solutions

Let us assume a nonlinear evolution equation of (3+1)-dimensions as

S(u, ux, uy, uz, ut, uxx, uxt, uxy, uxxx, · · · ) = 0, (4)

which contains partial derivatives with independent variables {x, y, z, t} to unknown function u.
Using Painlevé transformation

u = u(ζ, z), ζ(x, y, t) = c1x+ c2y − c3t (5)

where ci; 1 ≤ i ≤ 3 are non-zero constants, the equation (4) is transformed to an (1+1)-dimensional PDE as

T (u, uζ , uz, uζz, uζζ , uzz, · · · ) = 0. (6)

Now, constructing the Cole-Hopf transformation

u(ζ, z) = K(ln f)ζs , (7)

where K is a nonzero real constant and f(ζ, z) is an auxiliary function in ζ and z, where s is the order of
ζ obtained by balancing the nonlinear and higher-order terms in PDE (6). This transformation transforms
the equation (6) to a bilinear equation in auxiliary function f , which can be written in bilinear form with
D-operators.
We find the rogue wave solutions by considering the auxiliary function f(ζ, z) as a generalized form [25,38]

f(ζ, z) = F̂n(ζ, z, α, β) =

n(n+1)
2∑

s=0

s∑
i=0

qn(n+1)−2s,2i(ζ − α)n(n+1)−2s(z − β)2i, (8)

where ql,m; l,m ∈ {0, 2, · · · , s(s+ 1)} and {α, β} are constants and center parameters, respectively.
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3 Logarithmic transformation and bilinear form

The Painlevé transformation u = u(ζ, z) with ζ = x+y−t in equation (1), generates a transformed equation
as

uζζζζ − (λ1 + λ2 − λ4)uζζ + 2λ3uζuζζ − λ5uzz = 0. (9)

Considering phase θi for the equation (9)
θi = piζ − wiz, (10)

with pi and wi for i ∈ N as the constants and dispersions, respectively. By collecting linear terms in Eq.
(9) and putting u(ζ, z) = eθi , we find

wi =
±pi

√
p2i − (λ1 + λ2 − λ4)

√
λ5

. (11)

Now, considering Cole-Hopf transformation

u(ζ, z) = R(ln f)ζ , (12)

and find the constant R by substituting the equation (12) with auxiliary function as one soliton solution
f(ζ, z) = 1 + eθ1 in equation (9) as

R =
6

λ3
.

Therefore, the equation (12) becomes

u(ζ, z) =
6

λ3
(lnf)ζ . (13)

On substituting the transformation (13) into transformed equation (9), gives a bilinear equation in f =
f(ζ, z) as (

3f2
ζζ − 4fζfζζζ + ffζζζζ

)
− (λ1 + λ2 − λ4)

(
ffζζ − f2

ζ

)
− λ5

(
ffzz − f2

z

)
= 0, (14)

which can be constructed in bilinear D-operator form. Hirota [3] defined differential operators Di : i =
x, y, z, s, t as

Dr1
x Dr2

y U(x, y)V (x, y) =

(
∂

∂x
− ∂

∂x′

)r1 ( ∂

∂y
− ∂

∂y′

)r2

U(x, y)V (x′, y′)|x=x′,y=y′ ,

where x′, y′ and and ri : i = 1, 2 are the formal variables and positive integers, respectively. We get the
required definitions of D-operators as

D2
ξf.f = 2(ffξξ − f2

ξ ); ξ : ζ, z

D4
ζf.f = 2(3f2

ζζ − 4fζfζζζ + ffζζζζ). (15)

Thus, the equation (14) can be written in the Hirota’s bilinear form as[
D4

ζ − (λ1 + λ2 − λ4)D
2
ζ − λ5D

2
z

]
f.f = 0. (16)
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4 Solutions for rogue waves with center parameters

4.1 1st-order rogue waves

For n = 1 in equation (8), we consider the function f as

f(ζ, z) = q0,0 + q0,2z
2 + q2,0ζ

2. (17)

By putting the equation (17) into (14), and equating all coefficients of different powers of ζ and z, we get
the system of equations as

2q2,0 ((λ1 + λ2 − λ4) q2,0 − λ5q0,2) = 0,

2q0,2 (λ5q0,2 − (λ1 + λ2 − λ4) q2,0) = 0,

(λ1 + λ2 − λ4) q0,0q2,0 + λ5q0,0q0,2 − 6q22,0 = 0, (18)

which give values for the constants by solving these equations as

q0,0 =
3q2,0

λ1 + λ2 − λ4
, q0,2 =

(λ1 + λ2 − λ4) q2,0
λ5

, q2,0 = q2,0. (19)

So, the equation (17) becomes

f(ζ, z) = F̂1(ζ, z, α, β) =

[
(ζ − α)2 +

3

λ1 + λ2 − λ4
+

(λ1 + λ2 − λ4) (z − β)2

λ5

]
q2,0, (20)

and gives a solution of Eq. (16), having α and β as center parameters. The solution is obtained by putting
the equation (20) into (13) as

u(ζ, z) = û1(ζ, z, α, β) =
12(ζ − α)

λ3

(
(α− ζ)2 + 3

λ1+λ2−λ4
+ (λ1+λ2−λ4)(z−β)2

λ5

) , (21)

4.2 2nd-order rogue waves

For n = 2 in equation (8), we take the function f as

f(ζ, z) = q0,0 + q0,2z
2 + q0,4z

4 + q0,6z
6 + q2,0ζ

2 + q2,2ζ
2z2 + q2,4ζ

2z4 + q4,0ζ
4 + q4,2ζ

4z2 + q6,0ζ
6. (22)

On substituting the equation (22) into (16), we get a system by equating the coefficients for powers of ζ and
z to zero. Form this system, we determine the values as

q0,0 =
625λ5q4,2

λ4
, q0,2 =

475q4,2
3λ2

, q0,4 =
17q4,2
3λ5

,

q0,6 =
λ2q4,2
3λ2

5

, q2,0 = −125λ5q4,2
3λ3

, q2,2 =
30q4,2
λ

,

q2,4 =
λq4,2
λ5

, q4,0 =
25λ5q4,2
3λ2

, q4,2 = q4,2

q6,0 =
λ5q4,2
3λ

, (23)
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Figure 1: 1st-order rogue waves for (21) with values: λ1 = 0.5, λ2 = 1, λ3 = −1, λ4 = λ5 = 1, and parameters
as: (a) α = 5, β = 7; (b) α = −9, β = −7; and (c) α = 1, β = 1. (d)-(f) are contour plots of (a)-(c) in
ζz-plane.

where λ = (λ1 + λ2 − λ4). Thus, the equation (17) becomes

f(ζ, z) = F̂2(ζ, z, α, β) =
q4,2
3

(
λ5(α− ζ)6

λ1 + λ2 − λ4
+

25λ5(α− ζ)4

(λ1 + λ2 − λ4) 2
− 125λ5(α− ζ)2

(λ1 + λ2 − λ4) 3
+

1875λ5

(λ1 + λ2 − λ4) 4

+
3 (λ1 + λ2 − λ4) (α− ζ)2(z − β)4

λ5
+

90(α− ζ)2(z − β)2

λ1 + λ2 − λ4
+ 3(α− ζ)4(z − β)2

+
(λ1 + λ2 − λ4)

2(z − β)6

λ2
5

+
17(z − β)4

λ5
+

475(z − β)2

(λ1 + λ2 − λ4) 2
), (24)

and gives a solution of Eq. (14) having α and β as center parameters. We get the solution by putting the
equation (24) into (13) as

u(ζ, z) =
6

λ3
(ln F̂2(ζ, z, α, β))ζ . (25)
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Figure 2: 2nd-order rogue waves for (25) with values: λ1 = 1, λ2 = 0.5, λ3 = −2, λ4 = λ5 = 1, and parameters
as: (a) α = 7, β = 10; (b) α = 0, β = 0; and (c) α = −9, β = −15. (d)-(f) are contours of (a)-(c) in
ζz-plane.

4.3 3rd-order rogue waves

For n = 3 in equation (8), we get rogue waves of third-order for the function f as

f(ζ, z) = q0,0 + q0,2z
2 + q0,4z

4 + q0,6z
6 + q0,8z

8 + q0,10z
10 + q0,12z

12 + q2,0ζ
2 + q2,2z

2ζ2 + q2,4ζ
2z4

+ q2,6ζ
2z6 + q2,8ζ

2z8 + q2,10ζ
2z10 + q4,0ζ

4 + q4,2ζ
4z2 + q4,4z

4ζ4 + q4,6ζ
4z6 + q4,8ζ

4z8 + q6,0ζ
6

+ q6,2ζ
6z2 + q6,4ζ

6z4 + q6,6ζ
6z6 + q8,0ζ

8 + a8,2ζ
8z2 + q8,4ζ

8z4 + q10,0ζ
10 + q10,2ζ

10z2 + q12,0ζ
12. (26)

On having Eq. (22) into Eq. (16), we obtain a system by equating all the coefficients for powers of ζ and z
to zero. By solving it, we determine the values as

q0,0 =
878826025λ5q10,2

54λ7
, q0,2 =

150448375q10,2
9λ5

, q0,4 =
16391725q10,2

18λ3λ5
,

q0,6 =
399490q10,2

9λλ2
5

, q0,8 =
1445λq10,2

2λ3
5

, q0,10 =
29λ3q10,2

3λ4
5

,

q0,12 =
λ5q10,2
6λ5

5

, q2,0 =
79893275λ5q10,2

9λ6
, q2,2 =

94325q10,2
λ4

, q2,4 = −2450q10,2
λ2λ5

,
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q2,6 =
17710q10,2

3λ2
5

, q2,8 =
95λ2q10,2

λ3
5

, q2,10 =
λ4q10,2
λ4
5

,

q4,0 = −5187875λ5q10,2
18λ5

, q4,2 =
36750q10,2

λ3
, q4,4 =

18725q10,2
3λλ5

,

q4,6 =
730λq10,2

3λ2
5

, q4,8 =
5λ3q10,2
2λ3

5

, q6,0 =
37730λ5q10,2

9λ4
,

q6,2 =
9310q10,2

3λ2
, q6,4 =

770q10,2
3λ5

, q6,6 =
10λ2q10,2

3λ2
5

,

q8,0 =
245λ5q10,2

2λ3
, q8,2 =

115q10,2
λ

, q8,4 =
5λq10,2
2λ5

, q10,0 =
49λ5q10,2

3λ2

q10,2 = q10,2, q12,0 =
λ5q10,2
6λ

, (27)

where λ = (λ1 + λ2 − λ4). So, the equation (17) becomes

f(ζ, z) = F̂3(ζ, z, α, β) =
q10,2
54

(
180A6B6C2

λ2
5

+
135A4B8C3

λ3
5

− 132300A2B4

C2λ5
+

5130A2B8C2

λ3
5

+
54A2B10C4

λ4
5

+
167580A6B2

C2
+

1984500A4B2

C3
+

5093550A2B2

C4
+

135A8B4C

λ5
+

337050A4B4

Cλ5
+

13140A4B6C

λ2
5

+
6210A8B2

C
+

13860A6B4

λ5
+

318780A2B6

λ2
5

+ 54A10B2 +
882A10λ5

C2
+

6615A8λ5

C3
+

226380A6λ5

C4

− 15563625A4λ5

C5
+

479359650A2λ5

C6
+

9A12λ5

C
+

49175175B4

C3λ5
+

522B10C3

λ4
5

+
9B12C5

λ5
5

+
902690250B2

C5

+
2396940B6

Cλ2
5

+
39015B8C

λ3
5

+
878826025λ5

C7
), (28)

where A = (α− ζ), B = (z − β) and C = (λ1 + λ2 − λ4). We get the solution by putting the equation (28)
into (13) as

u(ζ, z) =
6

λ3
(ln F̂3(ζ, z, α, β))ζ . (29)

5 Results and findings

The studied equation (1) is completely integrable, so this can show a wide range of solutions, such as solitary
waves, kinks, rogues, breathers, and lumps. Using the discussed symbolic computation approach, we found
the 1st-, 2nd-, and 3rd-order center-controlled rogue waves. Two and three rogue wave solutions illustrate the
interaction solutions with center-controlled parameters, showing the dominant behavior of the large rogue
wave over the smaller rogue waves. Interactions of the rogue waves occur below the surface levels concerning
the singularities for all the graphics. The dynamic behavior of the solutions with the appropriate parameter
selections can explain the following results:

• Figure 1 illustrates the 1st-order rogue waves with singularity around center parameter ζ = α, the
constants λ1 = 0.5, λ2 = 1, λ3 = −1, λ4 = λ5 = 1, and {α, β} as α = 5, β = 7; α = −9, β = −7; and
α = 1, β = 1, for (a)-(c). A single rouge wave in all the graphics shows quasi-bright-dark solitary wave
behavior with respect to the singularity. When the center-controlled parameter changes, the rogue
waves change their positions to the considered center values.
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Figure 3: 3rd-order rogue wave solutions for (29) with values: λ1 = 1, λ2 = 0.5, λ3 = −2, λ4 = 1, λ5 = 2, and
parameters as: (a) α = 7, β = 10; (b) α = 0, β = 0; and (c) α = −7, β = −15. (d)-(f) are contours for
(a)-(c) in ζz-plane.

• In figure 2, we show the 2nd-order rogues along with center parameters (α, β). It displays the formation
of two rogue waves that are formed with respect to the singularities and the large rogue wave have
the dominating nature to other rogue, with the constants λ1 = 1, λ2 = 0.5, λ3 = −2, λ4 = λ5 = 1, and
the parameters as α = 7, β = 10; α = 0, β = 0; and α = −9, β = −15, for (a)-(c). All the graphics
show the interaction of two rogue waves, which are shown in contour plots with small circle-like shapes
at the intersection line. Rogue waves change their positions relative to the chosen center-controlled
parameters.

• Figure 3 showcaes the dynamics for 3rd-order rogues along with parameters (α, β). It shows the
formation of three rogue waves that are formed with respect to the singularities and the large rogue
waves have the dominating nature to smaller rogue waves, with the constants λ1 = 1, λ2 = 0.5, λ3 =
−2, λ4 = 1, λ5 = 2 and the parameters as α = 7, β = 10; α = 0, β = 0; and α = −7, β = −15 for (a)-(c).
The graphics in this figure display the interaction behavior of three rogue waves. In contour plots, the
two interactions of these three rogue waves are shown as two elliptic shapes near the interaction line.
These interactions show the dominant behavior of more giant rogue waves over smaller rogue waves,
which change positions along with center-controlled parameters.
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6 Conclusions

In this work, an integrable (3+1)-dimensional generalized KdV-type equation with Painlevé transformation
was studied. With center-controlled parameters α and β, we generated the rogue waves using a symbolic
computation approach. The interaction behaviors of the rogue waves were shown for the two and three rogue
waves; these interactions showed the dominant behavior of more giant rogue waves over smaller rogue waves,
which change positions along with center-controlled parameters. We obtained 1st-, 2nd-, and 3rd-order rogue
wave solutions with appropriate selections of different constants in the governed equation and distinct values
of center-controlled parameters. The bilinear form and the Cole-Holf transformation of the transformed
equation were constructed. We used a generalized N -rogue wave expression by Hirota’s N -soliton solution
approach to establish the rogue waves. With the computer algebra system Mathematica, we illustrated the
dynamic behavior of the obtained solutions with appropriate values for the center parameter. Our findings
showed that the singularities in rogue waves occur along with the parameters α and β that control the
center. The studied equation examines the propagation of longer waves with smaller amplitudes in plasmas,
the motion of waves in fluid dynamics, and weakly dispersive waves in other mediums.
The studied (3+1)-D generalized NLPDE generalizes the KP and Hirota bilinear equations. Researchers
can study wave solutions for this generalized equation, including bright and dark solitons, lumps, kinks,
and breathers. Both known equations generalized by the examined equation have occurrences in plasmas,
oceanography, and several other fields. Since we obtained the rogue wave solutions by applying the symbolic
computational approach, there are considerable opportunities to investigate this generalized equation by
employing other approaches and techniques.
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