
> >

(2.1.2)(2.1.2)

> >

> >

> >

(2.1.1)(2.1.1)

Instructor:

BRIJ MOHAN
Hansraj College,
University of Delhi, Delhi.

GraphTheory Updates in Maple 2025
A new package to work in Graph Theory

with(GraphTheory):

New commands
AllSimplePaths
The new AllSimplePaths command returns an iterator with which one can step through all
paths from a given vertex to another vertex in a directed graph.

G1 := Graph({["A", "B"], ["A", "D"], ["B", "C"], ["C",
"E"], ["D", "E"]});

DrawGraph(G1);

iterator := AllSimplePaths(G1, "A", "E");

> >
(2.3.1)(2.3.1)

> >

(2.1.5)(2.1.5)

(2.2.1)(2.2.1)

(2.2.2)(2.2.2)

> >

(2.4.1)(2.4.1)

> >

> >

(2.1.2)(2.1.2)

> >

(2.1.3)(2.1.3)

> >

(2.1.4)(2.1.4)
> >

(2.3.2)(2.3.2)

(2.2.3)(2.2.3)

> >

> >

iterator:-getNext();

iterator:-getNext();

iterator:-hasNext();
false

Ancestors and Descendants
The new Ancestors command returns a list of ancestors of the given vertex in the given
directed graph. The related new command Descendants returns a list of descendants of the
given vertex.

Ancestors(G1, "A");

Ancestors(G1, "E");

Descendants(G1, "A");

FindCycle
The new FindCycle command finds a cycle, if one exists in the given graph.

FindCycle(G1);

FindCycle(Graph({["A", "B"], ["B", "C"], ["C", "A"]}))
;

IsCaterpillarTree and IsLobsterTree
The new IsCaterpillarTree command tests whether the graph is a caterpillar tree, a tree for
which there is some path such that every vertex is either on the path or the neighbor of a
vertex on the path.

CT := Graph({{1,4},{2,4},{3,4},{4,5},{5,6},{6,7},{7,8},{7,
9}});

DrawGraph(CT);

(2.4.2)(2.4.2)

(2.1.2)(2.1.2)

> >

(2.4.3)(2.4.3)

> >

> > IsCaterpillarTree(CT);
true

The new IsLobsterTree command tests whether the graph is lobster tree, a tree such that the
result of removing all leaf vertices is a caterpillar tree.

LT := Graph({{1,2},{2,3},{3,4},{4,5},{3,6},{6,7},{3,8},{8,
9}});

DrawGraph(LT);

(2.7.1)(2.7.1)
> >

(2.4.4)(2.4.4)
> >

(2.5.1)(2.5.1)
> >

(2.6.1)(2.6.1)

(2.1.2)(2.1.2)

> >
(2.4.5)(2.4.5)

> >

IsLobsterTree(LT);
true

IsCaterpillarTree(LT);
false

IsPlatonicGraph
The new IsPlatonicGraph command tests whether the graph is Platonic. The Platonic graphs
consist of those graphs whose skeletons are the Platonic solids (polyhedra whose faces are
identical).

IsPlatonicGraph(SpecialGraphs:-CubeGraph());
true

LongestPath
The new LongestPath command computes the longest path within a given (directed) graph.

LongestPath(G1);

LowestCommonAncestors
The new LowestCommonAncestors command computes the set of lowest common ancestors
in a given directed graph.

LowestCommonAncestors(G1, "C", "D");

ModularityMatrix
The new ModularityMatrix command computes the modularity matrix of the graph G.

(2.8.1)(2.8.1)

(2.1.2)(2.1.2)

> >

(2.9.1)(2.9.1)

> >

ModularityMatrix(G1);

ResistanceDistance
The new ResistanceDistance command computes the resistance distance of the graph G.

ResistanceDistance(SpecialGraphs:-CubeGraph());

(2.8.1)(2.8.1)

(2.9.1)(2.9.1)

> >

(2.1.2)(2.1.2)

(2.10.1)(2.10.1)

> >

 …

 …

 …

 …

 …

 …

 …

 …

ShortestAncestralPath and ShortestDescendantPath
The new ShortestAncestralPath constructs the shortest ancestral path between two nodes in
the given directed graph.

ShortestAncestralPath(G1, "C", "D") ;

You can similarly find the shortest descendent path.

New functionality for existing commands
IsReachable and Reachable

(2.8.1)(2.8.1)

> >

(3.2.2)(3.2.2)

(3.1.2)(3.1.2)

> >

(4.1)(4.1)

(2.9.1)(2.9.1)

> >

> >

(3.1.1)(3.1.1)

(2.1.2)(2.1.2)

> >

> >

(3.2.1)(3.2.1)

> >

The IsReachable and Reachable commands now have a new option distance to constrain the
distance within a given vertex.

IsReachable(G1, "A", "E", distance = 1);
false

Reachable(G1, "A", distance = 1);

ShortestPath
The ShortestPath command accepts an option avoidvertices to constrain the search space for a
shortest path to avoid some specified set of vertices.

ShortestPath(G1, "A", "E");

ShortestPath(G1, "A", "E", avoidvertices = {"D"});

Additions to SpecialGraphs
The SpecialGraphs subpackage now includes commands for the F26a graph and Hanoi graph.

The F26a graph may be understood visually
FG := SpecialGraphs:-F26AGraph();

DrawGraph(FG);

The Hanoi graph is a graph whose edges correspond to allowed moves of the tower of Hanoi

> >

(2.8.1)(2.8.1)

(2.1.2)(2.1.2)

(4.2)(4.2)

> >

(2.9.1)(2.9.1)

problem.
HG4 := SpecialGraphs:-HanoiGraph(4);

