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Abstract This research study proposes a novel (3+1)-
dimensional Painlevé integrable KdV-type equation
that generalizes well-known equations in soliton the-
ory and nonlinear sciences. It illustrates the Painlevé
analysis to establish the complete integrability of the
proposed equation. We employ the Cole-Hopf trans-
formations to get the bilinear equation in an auxiliary
function and further construct it into Hirota’s bilinear
form. Utilizing the Hirota bilinear technique, we obtain
the soliton solutions of kink types and their interactions
up to the third order. It examines the rogue waves of
the higher order using a direct symbolic approach up
to the third order. For constructing the rogue waves,
we transform the investigated equation from (3+1)-
dimensional to a (1+1)-dimensional partial differential
equation and form its Hirota bilinear form in trans-
formed variables. It demonstrates the dynamics for the
obtained kink-soliton and rogue wave solutions with
appropriate parameter values using the symbolic sys-

B. Mohan
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e-mail: brijmohan6414@gmail.com

S. Kumar (B)
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tem Mathematica. The interaction solutions of rogue
waves show the dominating nature of more giant waves
over smaller waves. We analyze the rogue dynamics in
both the transformed and original variables. Solitons as
solitary waves and rogue waves as extreme or monster
waves are alluring concepts in various fields of non-
linear sciences, including oceanography, optical fibers,
plasma physics, dynamical systems, and engineering.

Keywords Bilinear form · Painlevé analysis ·
Interaction solutions · Hirota bilinear technique ·
Direct symbolic approach

1 Introduction

In soliton theory and nonlinear sciences, solitons [1–
7] have attracted researchers and scientists as a fas-
cinating wave phenomenon. Having an equilibrium
between dispersion and nonlinearity, they are distin-
guished by their ability to preserve their form and sta-
bility across vast distances. Solitons are essential for
high-speed fiber optic communication systems called
optical solitons or soliton pulses. By adjusting for the
material’s nonlinearity and the medium’s dispersion,
soliton transmission over extended distances can occur
without significant distortion. This feature is necessary
for reliable and efficient data transport in optical com-
munication networks.Dispersive solitarywaves or soli-
tons are helpful in wave energy conversion, oceanogra-
phy, and coastal engineering. Understanding and con-

123
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trolling these solitons can help to prevent coastal ero-
sion, enhance wave prediction, and maximize wave
energy extraction. The combination of the plasma’s dis-
persive properties and the nonlinearity caused by parti-
cle interactions results in these solitons. They are help-
ful in many areas of plasma physics study, including
fusion investigations, plasma heating, and wave prop-
agation in magnetized plasma. Solitons are essential to
understand and use in various domains, from optical
communication and high-speed data transfer to coastal
management and quantum technology development.

Localized substantial solitary waves in space-time,
often known as rogue waves [8–14], possess a sig-
nificant amplitude. These unpredictable waves have
the potential to harm humans seriously. The evolu-
tion of rogue waves is a topic of great interest to
many experts from different fields of nonlinear sci-
ences. Rogues are more significant than the surround-
ing waves, making them noticeable due to their unusu-
ally high height. Nonlinear science studies roguewaves
due to its contradiction of models for linear waves.
The research on rogue waves predicts their occurrence
and understands their underlying physics. The singu-
larity in rogue wave solutions is a critical feature of
their dynamics. Singularities occur when wave ampli-
tudes theoretically approach infinity within finite time,
corresponding to extreme and sudden amplification.
This behavior is often linked to constructive interfer-
ence among wave components and the inherent non-
linearity of the system, leading to “wave focusing.”
Techniques such as Painlevé analysis are applied to
the governing equations to analyze these singularities.
Such tools help to identify the locations and conditions
under which singularities arise, offering insights into
the mechanisms behind rogue wave formation. Phase
shifts and arbitrary parameters in the solutions of non-
linear PDEs shape the structure and behavior of rogue
waves; such solutions are called singular-like solutions.
Adjusting these parameters allows us to simulate how
energy concentrates into singular points, influencing
rogue waves’ peak height and transiency. Researchers
observe similar phenomena by understanding these
dynamics, essential for practical applications ranging
from oceanography and meteorology to optics and
quantum mechanics.

The improvement of maritime safety is one signif-
icant usage. One can use prediction models or algo-
rithms to provide earlier observation and awareness
systems to prevent harm caused by rogue waves. The

maritime sector, gas or oil outlets, and infrastructure
near the coast could all benefit from knowing this
information. Therefore, we may attain greater func-
tional security and affordable solutions by compre-
hending the dynamical analysis of building safe struc-
tures and designing strategies to reduce the impact of
rogues. The study of solitons and rogue waves has
garnered significant attention in recent decades due
to their fascinating properties and broad applications
in oceanography, optical fibers, plasma physics, and
engineering fields. Various soliton equations, such as
the (1+1)-dimensional Korteweg-de Vries (KdV) and
the (2+1)-dimensional Kadomtsev-Petviashvili (KP)
equations, have been widely explored for their ability
to model nonlinear wave phenomena. However, these
lower-dimensional systems often need to capture the
complexities of higher-dimensional dynamics in real-
world applications. Moreover, while many methods
exist to verify the integrability and solvability of soliton
equations, higher-order soliton and rogue wave inter-
actions remain under explored, particularly in high-
dimensional settings, and still need to be explored. Fur-
thermore, studies on rogue wave dynamics contribute
to our understanding of problematic situations, interac-
tions of waves, and the emergence of more significant
occurrences in several nonlinear phenomena.

In this research, we propose and investigate an
(3+1)-D KdV-type generalized nonlinear equation
as

uxxxy +σ1uyt +σ2(uxuy)x +σ3uxx +σ4uzz = 0, (1)

where σi=1,2,3,4 are as real parameters, and generalizes
well-known equations:

– (3+1)-D Hirota bilinear equation [15] with σ1 =
−1, σ2 = 3, σ3 = 0, σ4 = −3

uxxxy − uyt + 3(uxuy)x − 3uzz = 0, (2)

– (3+1)-D Jimbo-Miwa equation [16] with σ1 =
2, σ2 = 3, σ3 = 0, σ4 = −3

uxxxy + 2uyt + 3(uxuy)x − 3uzz = 0, (3)

– (2+1)-D BLMP equation [17] with σ1 = 1, σ2 =
−3, σ3 = σ4 = 0

uxxxy + uyt − 3(uxuy)x = 0, (4)
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– (2+1)-D KP equation [18] under the transforma-
tion y → x, z → y, ux → u with σ1 = 1, σ2 =
6, σ3 = 0, σ4 = ±3

(ut + 6uux + uxxx )x ± 3uyy = 0, (5)

– (1+1)-D KdV equation [19] under the transforma-
tion y → x, z → x, ux → u with σ1 = 1, σ2 =
6, σ3 = σ4 = 0

ut + 6uux + uxxx = 0, (6)

Localized solutions, including soliton, lump, breather,
and others, are carried by the integrable evolution equa-
tion in specific directions. Analyzing the integrability
of the nonlinear PDEs might result in exact and analyt-
ical solutions. The Painlevé test [20–22] can be used to
verify the complete integrability of a nonlinear PDE.
Finding out if a PDE can pass the test of Painlevé analy-
sis gets somewhat tedious. However, symbolic systems
make this investigation possible, like the system soft-
wareMathematica andMatlab. We look for particular
explanations to understand the peculiarities of several
facts accurately in various disciplines of nonlinear sci-
ence. As mentioned previously, NLPDE has drawn the
attention of several scholars to its ability to provide
a wide range of solutions and closely simulate real-
world scenarios. The dynamic analysis of rogue wave
behavior resulting from nonlinear PDEs has made it an
attractive research field for highlighting basic princi-
ples in water engineering, plasma, nonlinear sciences,
and shallow water waves. Compared to existing litera-
ture, thiswork stands out by extending the dimension of
the equation and offering a new approach to analyzing
rogue wave interactions. While previous studies have
mainly focused on lower-dimensional soliton solu-
tions and first-order rogue waves, this research pushes
the boundaries by considering higher-dimensional sys-
tems and providing third-order solutions. The symbolic
computations carried out using Mathematica further
enhance the precision and applicability of the solu-
tions, making this method both efficient and effective
for studying complex nonlinear wave phenomena. This
efficiency and effectiveness make the method practical
for current research and suggest its potential for further
exploration and application in other nonlinear systems.

Nonlinear PDEs [23–31] deals with nonlinear func-
tions used as models for complicated physical systems
in various scientific domains. They are challenging to

examine since no general analysis technique exists.
Usually, each equation needs to be examined inde-
pendently as a problem. Nonetheless, there are some
circumstances in which broad approaches are appro-
priate. These techniques discretize the problem into a
smaller grid afterwhich they estimate the solutionusing
mathematical procedures. Several methods are being
used to obtain the analytic and exact solutions, such
as the Darboux transformation [32–34]; the simpli-
fied Hirota’s technique [35,36]; the Bäcklund transfor-
mation [37,38]; the Bilinear Neural Network Method
[39,40]; Lie symmetry analysis [41–43]; the Hirota’s
bilinearization technique [44–47]; and others.

The manuscript is structured as follows: The fol-
lowing section investigates the Painlevé integrability
of the proposed KdV-type nonlinear equation. In Sect.
3, we construct Hirota’s bilinear form using the Cole-
Hopf transformation and obtain the soliton solutions
up to third order and depict the dynamics of the these
solutions. Section 4 constructs the rogue wave solu-
tions utilizing adirect symbolic approachwith the bilin-
ear form of the equation in transformed variables. It
finds the rogue waves up to the third order and plots
the dynamical structures for the obtained rogue solu-
tions. In Sect. 5, we discuss the findings concerning the
dynamic behaviors of the shown graphics, and the last
Section concludes the remarks of our work and high-
light its future scope.

2 Integrability: Painlevé analysis

A reliable method for analyzing the integrability of
nonlinear PDEs is the Painlevé test. The primary goal
of this analysis is to find movable singularity-free solu-
tions for a nonlinear PDE. If a PDE passes the Painlevé
test, it is considered P-integrable, indicating that com-
plex structures can be solved using specialized func-
tions. By verifying integrable conditions, Weiss et al.
[48] provided the Painlev’e test to assess the integra-
bility of the nonlinear PDEs. Three steps make up this
analysis: first, it looks at the leading-order analysis;
second, it finds the resonances; and third, it verifies the
resonance conditions completely. If the simple poles
of the solutions correspond to all moveable singulari-
ties, then the test is considered P-integrable. The field
u is expanded by Laurent’s series about the singular
manifold g = 0 of an analytical function g as
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u =
∞∑

λ=0

uλgλ+#, (7)

where # and uλ; are integer and arbitrary functions,
respectively.On substitution of Eq. (7) in (1), with lead-
ing order analysis, we get

# = −1,

with

u0 =
6gx
α2

.

It gets the resonances as

λ = −1, 1, 4, 6.

The resonance λ = −1 shows the arbitrary choice for
singular manifold g = 0. The analysis finds the func-
tions uλ explicitly for λ = 0, 2, 3, 5 and as arbitrary
for positive resonances. The positive resonances satis-
fied the compatibility conditions. Thus, the investigated
KdV-type equation is Painlevé integrable.

3 Bilinear form and N-soliton solutions

We take %i as the phase in the Eq. (1) as

%i = pi x + qi y + ri z − wi t, (8)

with wi as dispersions and pi , qi , ri real parameters.
Putting u = e%i into Eq. (1) for linear terms, we get
the dispersion as

wi =
α3 p2i + p3i qi + α4r2i

α1qi
. (9)

Considering the Cole-Hopf transformation of auxiliary
function f as

u = P(log f )x , (10)

and puting with f (U, V ) = 1 + e%1 and Eq. (9) into
Eq. (1). On solving for P , we get

P = 6
α2

.

Now, we can transform the Eq. (1) with Eq. (10) in f
as

f fxxxy − 3 fx fxxy + 3 fxx fxy − fxxx fy
+α1( f fyt − ft fy)+ α3( f fxx − f 2x )

+α4( f fzz − f 2z ) = 0 (11)

that is a bilinear equation and can be shown in Hirota’s
bilinear form. Hirota [19] designed the differential
operators Dk : k = x, y, z, t as

Dr1
x Dr2

y Dr3
z Dr4

t U (x, y, z, t)V (x, y, z, t)

=
(

∂

∂x
− ∂

∂x ′

)r1 (
∂

∂y
− ∂

∂y′

)r2

(
∂

∂z
− ∂

∂z′

)r3 (
∂

∂t
− ∂

∂t ′

)r4

U (x, y, z, t)V (x ′, y′, z′, t ′)|x=x ′,y=y′,z=z′,t=t ′ ,

with x ′, y′, z′, t ′ as formal variables and and ri : 1 ≤
i ≤ 4 as the positive integers.

Thus, the Eq. (11) has its Hirota’s bilinear form as

[
D3
x Dy + α1DyDt + α3D2

x + α4D2
z

]
f. f = 0. (12)

We obtain the N -soliton solution by considering an
expression for the function f in closed-form given by
Hirota as

f =
∑

η=0,1

exp




N∑

i=1

ηi%i +
N∑

1=i< j

Ai jηiη j



 , (13)

where
∑

η=0,1 indicates the summation of all possible
combinations for ηi = 0, 1 for 1 ≤ i ≤ N .

3.1 Single kink-soliton

For N = 1 in Eq. (13), we have η1 = 0 and 1 so we
take f as

f = f1 = 1+ e%1 = 1+ ep1x+q1y+r1z−w1t , (14)

which satisfied the Eq. (12). Thus, on substituting (14)
with its derivative in the Eq. (10), we get 1-soliton solu-
tion

u = u1

= 6p1ep1x+q1y+r1z

α2

(
exp

(
t
(
α3 p21+p31q1+α4r21

)

α1q1

)
+ ep1x+q1y+r1z

) ,

(15)
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3.2 Two kink-solitons

Having N = 2 in the Eq. (13), we have η1 = η2 =
0, 1. So there will be four combinations of {η1, η2} as
(0, 0), (0, 1), (1, 0) and (1, 1), therefore, the function
f is

f = f2 = 1+ e%1 + e%2 + eA12+%1+%2

= 1+ e%1 + e%2 + a12e%1+%2 , (16)

where a12 = eA12 .
On substituting the Eq. (16) into Eq. (12), we get

a12 =
p21q2 (α3q2 − 3p2q1 (q1 − q2))+ p2 p1q1q2 (3p2 (q1 − q2) − 2α3)+ α3 p22q

2
1 + α4 (q2r1 − q1r2) 2

p21q2 (α3q2 − 3p2q1 (q1 + q2)) − p2 p1q1q2 (3p2 (q1 + q2)+ 2α3)+ α3 p22q
2
1 + α4 (q2r1 − q1r2) 2

(17)

Thus, by putting Eq. (16) with (17) into (10), gives a
2-soliton solution for Eq. (1) as

u = u2 =
6
α2

(log f2)x (18)

3.3 Three kink-solitons

For N = 3 in Eq. (13), we have η1, η2, η3 = 0, 1 so
the total combinations for {η1, η2, η3} will be eight as
{(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0,
1), (1, 1, 0), (1, 1, 1)}, therefore, the function f is as

f = f3 = 1+ e%1 + e%2 + e%3 + a12e%1+%2

+a13e%1+%3

+a23e%2+%3 + b123e%1+%2+%3 , (19)

where ai j = eAi j and b123 = eA12+A13+A23 = a12 +
a13 + a23.

The Eq. (17) can be generalized as

ai j =
p2i q j

(
α3q j − 3qi p j

(
qi − q j

))
+ piqi p jq j

(
3p j

(
qi − q j

)
− 2α3

)
+ α3q2i p

2
j + α4

(
riq j − qir j

) 2

p2i q j
(
α3q j − 3qi p j

(
qi + q j

))
− piqi p jq j

(
3p j

(
qi + q j

)
+ 2α3

)
+ α3q2i p

2
j + α4

(
riq j − qir j

)
2
, (20)

for the auxiliary function f = 1 + e%1 + e%2 +
ai je%1+%2; 1 = i < j = 3. By substituting the Eq.
(19) with (20) into the Eq. (10), we obtain the 3-soliton
solution as

u = u3 =
6
α2

(log f3)x (21)

4 Bilinear form and rogue waves

We consider the transformations u = u((, η) with ( =
x+t and η = y+z in Eq. (1). Thus, we get transformed
equation as

α2uηu(( + α4uηη + α2u(u(η + α1u(η

+ α3u(( + u(((η = 0. (22)

Taking the phase %i in Eq. (22)

%i = pi( − wiη, (23)

having wi as dispersions and pi as real-parameter.
Putting u((, η) = e%i into the Eq. (22), with linear
terms, get

wi =
α1 pi + p3i ± pi

√
α2
1 − 4α3α4 + 2α1 p2i + p4i
2α4

.

(24)

Considering the logarithmic transformation

u((, η) = P(log f )( , (25)

with P as constant and f as auxiliary function. Putting
the transformation (25) with f ((, η) = 1 + e%1 into
Eq. (22) gives

P = 6
α2

.

So, the transformation (25) gives a biilinear equation
in f of the Eq. (22) as

f f(((η − 3 f( f((η + 3 f(η f(( − fη f(((

+α1( f f(η − fη f( )

+α3( f f(( − f 2( )+ α4
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( f fηη − f 2η ) = 0. (26)

Using Hirota’s differential operators Di : i = (, η

Dn1
( Dn2

η f ((, η)g((, η)

=
(

∂

∂(
− ∂

∂( ′

)n1 (
∂

∂η
− ∂

∂η′

)n2

f ((, η)g(( ′, η′)|(=( ′,η=η′ ,

with ( ′, η′ as formal variables and and ni : i = 1, 2
as positive integers, the Eq. (26) has its Hirota’s bilinear
form as

[
D3

( Dη + α1D( Dη + α3D2
( + α4D2

η

]
f. f = 0, (27)

which shows the similar pattern for D-operators to the
bilinear Eq. (12) in original variables x, y, z, t .

We obtain the rogue waves solutions by considering
the function f [49,50] as

f ((, η) =
n(n+1)

2∑

k=0

k∑

j=0

cn(n+1)−2k,2 j(
n(n+1)−2kη2 j ,

(28)

where n and cr,s; r, s ∈ {0, 2, · · · , k(k + 1)} are posi-
tive integer and the constants, respectively.

4.1 First-order rogue waves

For n = 1 in Eq. (28), we take auxiliary function
f ((, η) as

f = f1 = c2,0(2 + c0,2η2 + c0,0. (29)

On having Eq. (29) into the Eq. (27), and equating zero
the coefficients of distinct powers of ( rηs; r, s ∈ Z , we
obtain a system of equations

2α4c0,0c0,2 + 2α3c0,0c2,0 = 0,

2α4c0,2c2,0 − 2α3c22,0 = 0,

2α3c0,2c2,0 − 2α4c20,2 = 0. (30)

On solving above system, we get parameter values as

c0,0 = 0, c0,2 =
α4c0,2

α3
, c2,0 = c2,0. (31)

Thus, the function f in (29) becomes

f = f1 = c0,2

(
α4(

2

α3
+ η2

)
. (32)

On substituting the Eq. (32) into (25), we get a solution
of 1st -order rogue waves as

u((, η) = u1 =
12α4(

α2
(
α3η2 + α4(2

) . (33)

4.2 Second-order rogue waves

For 2nd -order rogue waves, we take f for n = 2 in Eq.
(28) as

f = f2 = c6,0(6 + c4,2(4η2 + c4,0(4

+c2,4(2η4 + c2,2(2η2 + c2,0(2

+c0,6η6 + c0,4η4 + c0,2η2 + c0,0. (34)

Substituting Eq. (34) into the Eq. (27), and equating
zero the coefficients of distinct powers of ( rηs; r, s ∈
Z , gives a system. On solving the system, we get values

c0,0 = 29α4c4,2
2α3

1α3
, c0,2 =

231c4,2
4α2

1
,

c0,4 = 5α3c4,2
α1α4

, c0,6 =
α2
3c4,2
3α2

4
,

c2,0 = −9α4c4,2
4α2

1α3
, c2,2 =

12c4,2
α1

,

c2,4 = α3c4,2
α4

, c4,0 = −α4c4,2
α1α3

, c4,2 = c4,2

c6,0 = α4c4,2
3α3

. (35)

Thus, the function f in (34) becomes

f = f2 =
c4,2
12

(
12α3η

4(2

α4
+ 144η2(2

α1

+4α2
3η

6

α2
4

+ 60α3η
4

α1α4
+ 693η2

α2
1

+4α4(
6

α3
− 12α4(

4

α1α3
− 27α4(

2

α2
1α3

+174α4

α3
1α3

+ 12η2(4
)

. (36)

On putting Eq. (36) into (25), we get a solution for
2nd -order rogue waves as
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u((, η) = u2

=
36(

(
4α3η4

α4
+ 48η2

α1
− 8α4(2

α1α3
+ 4α4(4

α3
− 9α4

α2
1α3

+ 8η2(2
)

α2

(
12α3η4(2

α4
+ 144η2(2

α1
+ 4α2

3η
6

α2
4

+ 60α3η4
α1α4

+ 693η2

α2
1

+ 4α4(6
α3

− 12α4(4
α1α3

− 27α4(2

α2
1α3

+ 174α4
α3
1α3

+ 12η2(4
) .(37)

4.3 Third-order rogue waves

Take n = 3 in Eq. (28), we get auxiliary function f as

f = f3 = c12,0(12 + c10,2(10η2 + c10,0(10

+c8,4(8η4 + c8,2(8η2

+c8,0(8 + c6,6(6η6 + c6,4(6η4 + c6,2(6η2

+c6,0(6 + c4,8(4η8 + c4,6(4η6

+c4,4(4η4 + c4,2(4η2 + c4,0(4

+c2,10(2η10 + c2,8(2η8 + c2,6(2η6

+c2,4(2η4 + c2,2(2η2

+c2,0(2 + c0,12η12 + c0,10η10 + c0,8η8

+c0,6η6 + c0,4η4 + c0,2η2 + c0,0. (38)

Substituting Eq. (38) into the Eq. (27), and equating
zero the coefficients of distinct powers of ( rηs; r, s ∈
Z , gives a system.On solving this system,we get values
as

c0,0 = 7353680000α4c10,2
1113α6

1α3
,

c0,2 = −6077833600c10,2
371α5

1
,

c0,4 = −6359200α3c10,2
7α4

1α4
, c0,6 = −800α2

3c10,2
3α3

1α
2
4

,

c0,8 = 160α3
3c10,2

α2
1α

3
4

, c0,10 = −10α4
3c10,2

α1α
4
4

,

c0,12 = α5
3c10,2
6α5

4
, c2,0 =

72534400α4c10,2
371α5

1α3
,

c2,2 = 1521600c10,2
7α4

1
,

c2,4 = −800α3c10,2
α3
1α4

,

c2,6 = 560α2
3c10,2

α2
1α

2
4

, c2,8 = −30α3
3c10,2

α1α
3
4

c2,10 = α4
3c10,2
α4
4

, c4,0 = −55200α4c10,2
7α4

1α3
,

c4,2 = 800c10,2
α3
1

, c4,4 =
800α3c10,2

α2
1α4

,

c4,6 = −20α2
3c10,2

α1α
2
4

,

c4,8 = 5α3
3c10,2
2α3

4
, c6,0 =

800α4c10,2
3α3

1α3
,

c6,2 = 560c10,2
α2
1

, c6,4 =
20α3c10,2

α1α4
,

c6,6 = 10α2
3c10,2
3α2

4
,

c8,0 = 160α4c10,2
α2
1α3

,

c8,2 = 30c10,2
α1

, c8,4 =
5α3c10,2
2α4

, c10,2 = c10,2,

c10,0 = 10α4c10,2
α1α3

,

c12,0 = α4c10,2
6α3

, (39)

with a10,2 as an arbitrary parameter. Thus, the Eq. (29)
becomes

f = f3 =
c10,2
2226

(
2226α4

3η
10(2

α4
4

+ 5565α3
3η

8(4

α3
4

−66780α3
3η

8(2

α1α
3
4

+7420α2
3η

6(6

α2
4

− 44520α2
3η

6(4

α1α
2
4

+ 1246560α2
3η

6(2

α2
1α

2
4

+ 5565α3η
4(8

α4

+44520α3η
4(6

α1α4

+1780800α3η
4(4

α2
1α4

− 1780800α3η
4(2

α3
1α4
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Fig. 1 Dynamics of single kink-soliton for (15) with z = 0. d, e and g–i depict the contour plots in xy-plane and 2D plots at different
time t , respectively

+66780η2(8

α1

+ 1246560η2(6

α2
1

+ 1780800η2(4

α3
1

+483868800η2(2

α4
1

+ 371α5
3η

12

α5
4

−22260α4
3η

10

α1α
4
4

+ 356160α3
3η

8

α2
1α

3
4

− 593600α2
3η

6

α3
1α

2
4

− 2022225600α3η
4

α4
1α4

−36467001600η2

α5
1

+ 371α4(
12

α3

+22260α4(
10

α1α3
+ 356160α4(

8

α2
1α3

+ 593600α4(
6

α3
1α3

+ 435206400α4(
2

α5
1α3

−17553600α4(
4

α4
1α3

+14707360000α4

α6
1α3

+ 2226η2(10
)

. (40)
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Fig. 2 Dynamics of two kink-solitons for (18) with z = 0. d, e depicts the contour plots for a–c in xy-plane

On having Eq. (40) into (25), we get a solution of 3rd -
order rogue waves as

u = u3 =
6
α2

(log f3)( . (41)

5 Results and findings

The proposed KdV-type evolution equation showed the
completely integrable using Painlevé analysis. Thus, it
has soliton solutions for kink typewith the Hirota bilin-
ear technique. Thefirst-order soliton solution generated
the single kink-soliton, and the second and third-order
soliton solutions showed the interaction solutions for
two and three kink-solitons with an appropriate selec-
tion of parameters. After that, the rogue wave solutions
for the investigated equation utilize a direct symbolic
approach. The first-order rogue solution generated a
single rogue wave solution, and second and third-order
rogue solutions gave the interactions of rogue waves.
Thedynamics of roguewave solutions havebeen shown
in transformed variables (, η, and in the starting vari-

ables x, y, z, t in (η, xt , and xy planes. In this context,
the dynamical findings are as follows:

– Figure 1 show the one solitons of kink-type, and
the solitons (a) and (c) are propagating to the right,
while (b) is propagating to the left of x-axis. The
illustrated kink-solitons have the parameter values
as (a) p1 = q1 = r1 = 1,αi = 1, 1 ≤ i ≤ 4; (b)
p1 = 1, q1 = −0.3, r1 = α1 = 1,α2 = −1,α3 =
α4 = 1; and (c) p1 = 1, q1 = 0.4, r1 = 0,α1 =
1,α2 = −1,α3 = α4 = 1.

– In Fig. 2, we show the two-soliton solutions of
kink-types. The dynamics depicts the interactions
of the two kink-type soliton solutions with chosen
parameter values. The showed kink-solitons have
the parameter values as (a) p1 = 1, p2 = −1, q1 =
0.5 = q2, r1 = 0.5 = r2,α1 = 1,α2 = −1,α3 =
α4 = 1; (b) p1 = 1, p2 = −1, q1 = 0.7, q2 =
0.5, r1 = 0.5 = r2,α1 = 1,α2 = −1,α3 =
α4 = 1; and (c) p1 = 1, p2 = −1, q1 = 0.7, q2 =
0.5, r1 = 0.5 = r2,α1 = 1,α2 = −1,α3 = α4 =
1.

– Figure 3 depict the three-soliton solutions of kink-
types. The dynamics depicts the interactions of
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Fig. 3 Dynamics of three kink-solitons for (21) with z = 0. d, e depicts the contour plots for a–c in xy-plane

the three kink-type soliton solutions with chosen
parameters. The showed kink-solitons have the
parameter values as (a) p1 = 1, p2 = −1 =
p3, q1 = 0.7, q2 = 0.5, q3 = 0.6, r1 = 0.5 =
r2 = r3,α1 = 1,α2 = −1,α3 = α4 = 1; (b)
p1 = 1, p2 = −1 = p3, q1 = 1.5, q2 = 0.5 =
q3, r1 = 0.5 = r2, r3 = 0.6,α1 = 1,α2 =
−1,α3 = α4 = 1; and (c) p1 = −1, p2 = 1, p3 =
−1, q1 = 0.7, q2 = 0.5, q3 = 0.6, r1 = 0.5 =
r2 = r3,α1 = 1,α2 = −1,α3 = α4 = 1.

– In Fig. 4 and 5, we illustrate the rogue waves of
first order which depict the single rogues with sin-
gularities at ( = η = 0. For all three plots in Fig. 4,
positive and negative direction of ( shows the bright
and the dark part of the rogue wave dynamics. Fig-
ure 5 depicts the single rogue wave structures in the
original variables x, y, z, t . (a)-(c) shows the peri-
odic behavior w.r.t. time variable in xt-plane with
y = z = 0 and (d)-(f) shows the single roguewaves
in xy-plane with z = t = 0. The showed single
roguewaves for bothfigures have theparameter val-

ues as (a) α2 = 5,α3 = α4 = 1; (b) α2 = 10,α3 =
5,α4 = 1; and (c) α2 = 1,α3 = 3,α4 = 5.

– Figure 6 and 7 depict the rogue waves of second
order which show the two rogues having dominat-
ing nature of extreme rogue waves to the smaller
rogues. For all three graphs in Fig. 6, the two
rogues intersect at ( = η = 0 with having their
bight and dark parts. Figure 7 shows the two rogue
wave structures in the original variables x, y, z, t .
(a)-(c) shows the periodic nature w.r.t. time vari-
able, in xt-plane with y = z = 0 and (d)-
(f) shows the two rogue waves in xy-plane with
z = t = 0. The showed second-order rogue
waves for both figures have the parameter values
as (a) α1 = 0.2,α2 = −0.8,α3 = α4 = 1; (b)
α1 = 0.3,α2 = 0.2,α3 = 1,α4 = 2; and (c)
α1 = 0.1,α2 = −0.5,α3 = −3,α4 = −2.

– In Fig. 8 and 9, we illustrate the third-order rogue
waves that depict the four rogue waves having
dominating nature of extreme rogue waves to the
smaller rogues. For all three plots in Fig. 8, the
four rogues depict the intersections having their
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Fig. 4 Dynamics of first-order rogue waves for solution (33) in transformed variables ( and η. a, b depicts the 3D profiles in (η-plane,
and d–f shows the contour plots for the a–c

bight and dark parts. Fig. 9 shows the four rogue
wave structures in the original variables x, y, z, t .
(a)-(c) shows the periodicity w.r.t. time variable
in xt-plane with y = z = 0 and (d)-(f) shows
the four rogue waves in xy-plane with z = t =
0. The showed third-order rogue waves for both
figures have the parameter values as (a) α1 =
−0.3,α2 = 0.1,α3 = −0.7,α4 = −0.5; (b)
α1 = −0.6,α2 = −0.1,α3 = 0.1,α4 = 0.2; and
(c) α1 = −0.5,α2 = −0.05,α3 = 0.4,α4 = 0.1.

6 Conclusions

This research article proposed a new Painlevé inte-
grable (3+1)-dimensional generalized nonlinear KdV-
type equation. The Painlevé analysis confirmed the
complete integrability. We constructed the bilinear
form inHirota’s D-operators with the Cole-Hopf trans-
formation of the auxiliary function. Using the Hirota
bilinear technique, the soliton solutions for the investi-

gated equation were formed in the third order, showing
their type as kinks, and the second and third orders
have the interactions of kink-solitons. After that, we
constructed the rogue wave solutions for the proposed
equation utilizing the direct symbolic approach with
a logarithmic transformation to construct the bilinear
form. We obtained the rogue wave solutions, and in
second and third-order solutions, the waves showed
the dominating nature of large rogues over the smaller
rogues. Using the symbolic softwareMathematica, we
have shown the dynamics for the higher-order soli-
tons and rogue waves with appropriate parameter val-
ues. Dynamics for the rogue waves were studied in
both transformed and starting variables, which helps
to understand the nature of rogues in starting variables
concerning the transformed variables.

The proposed equation generalizes the well-known
equations having applications in nonlinear sciences and
soliton theory. Thus, this equation can explore water
wave solutions such as lumps, breathers, and other peri-
odic waves. We studied this equation using two meth-
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Fig. 5 Dynamical profiles of (33) in the starting variables x, y, z, and t under transformed variables ( = x + t and η = y+ z. a–c and
d–f depict 3D profiles in xt and xy-planes, respectively

Fig. 6 Dynamics of second-order rogue waves for solution (37) in transformed variables ( and η. a, b depicts the 3D profiles in
(η-plane, and d–f shows the contour plots for the a–c
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Fig. 7 Dynamical profiles of second-order rogue waves for (37) in the starting variables x, y, z, and t under transformed variables
( = x + t and η = y + z. a–c and d–f depict 3D profiles in xt and xy-planes, respectively

Fig. 8 Dynamics of third-order rogue waves for solution (37) in transformed variables ( and η. a, b depicts the 3D profiles in (η-plane,
and d–f shows the contour plots for the a–c
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Fig. 9 Dynamical profiles of third-order rogue waves for (41) in the starting variables x, y, z, and t under transformed variables
( = x + t and η = y + z. a–c and d–f depict 3D profiles in xt and xy-planes, respectively

ods for soliton and rogue wave solutions, so differ-
ent techniques can be used to construct several other
solutions in nonlinear fields. Future work will focus
on extending the analysis to other high-dimensional
nonlinear systems and exploring potential applications
in real-world scenarios such as fluid dynamics, fiber
optics, and atmospheric science. This research could
provide valuable insights intowavebehavior in extreme
environments, paving theway for new advances in non-
linear sciences and mathematical physics.
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A B S T R A C T

In this work, we analyze the new generalized soliton solutions for the nonlinear partial differ-
ential equations with a novel symbolic bilinear technique. The proposed approach constructs
the soliton solutions depending on the arbitrary parameters, which generalizes the soliton
solutions with these additional parameters. Examining phase shifts and their dependence on the
parameters influences how solitons collide, merge, or pass through each other, which is essential
for the nonlinear analysis of solitons. Using the proposed technique, we examine the well-known
(1+1)-dimensional Korteweg–de Vries (KdV) and (2+1)-dimensional Kadomtsev–Petviashvili
(KP) equations with a comparative analysis of soliton solutions in the Hirota technique. We
construct the generalized solitons solutions for both examined equations up to the third order,
providing a better understanding of formed solitons with arbitrary parameter choices. The Cole-
Hopf transformations are used to construct the bilinear form in the auxiliary function using
Hirota’s 𝜔-operators for both investigated KdV and KP equations It discusses the phase shift
depending on parameters and compares it to the phase shift in Hirota’s soliton solutions. We
utilize Mathematica, a computer algebra system, to obtain the generalized solitons and analyze
the dynamic behavior of the obtained solutions by finding the values for the parameters and
the relationships among them. Solitons are localized waves that appear in different fields of
nonlinear sciences, such as oceanography, plasmas, fluid mechanics, water engineering, optical
fibers, and other sciences.

1. Introduction

Investigating solitons in nonlinear fields is a fascinating and pivotal area of research, offering deep insights into the behavior
of solitary waves in diverse physical systems. Solitons, as well as stable and localized wave solutions, are essential to study in
nonlinear sciences. The nonlinear Korteweg–de Vries (KdV) equation [1], Schrödinger equation [2], and Kadomtsev–Petviashvili
(KP) equation [3] are renowned models that apprehend soliton dynamics in various contexts, such as optics, plasma, and fluid
dynamics. Understanding solitons’ formation, propagation, and interactions provides a deeper understanding of the relation among
non-linearity, dispersion, and other relevant factors in nonlinear systems. The study of solitons enhances our theoretical and practical
understanding of nonlinear phenomena. It holds practical implications, influencing technological advancements and developing
novel applications in ocean engineering, plasma physics, telecommunication, and many nonlinear sciences.
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For decades, Hirota’s bilinear method [4,5] and simplified Hirota method [6,7] have been used to obtain the soliton solutions
of nonlinear partial differential equations (PDEs) in exact form, which uses the perturbation for the auxiliary function in dependent
variable transformation. Now, we have numerous computer algebra systems or symbolic software available, such as Maple, Matlab,
Mathematica, Octave, Maxima, Scilab, and some are freeware. Using such software, we can quickly investigate the highly computa-
tional work, such as finding exact solutions for nonlinear evolution equations. Researchers use several symbolic or computational
methods to study the nonlinear PDE, such as the Hirota’s bilinear approach for soliton solutions, symbolic computational approach
for rogue wave solutions, simplified Hirota technique for soliton solutions, bilinear Bäcklund transformation for analytic solutions,
Painelevé analysis for investigating integrability, and others. Hirota’s bilinear method is popular among scientists and researchers
for finding the exact soliton solutions, which provides a systematic approach to finding 𝜀-soliton solutions where 𝜀 denotes the
number of solitons. We can find several works in the literature to obtain the soliton solution using the Hirota bilinear approach.
However, the solutions in Hirota’s method do not provide the generalized solutions to study them with several arbitrary parameters.

This work introduces a novel symbolic bilinear technique for constructing generalized soliton solutions for nonlinear partial
differential equations. The primary advantage of this method is its ability to incorporate arbitrary parameters into the solution,
providing a more flexible and comprehensive framework than traditional methods such as the Hirota bilinear technique. We
demonstrate that the proposed approach’s solutions are exact and generalized to those obtained through Hirota’s bilinear method.
The investigation reveals the effectiveness and advantages of the presented approach by comparing the new soliton solutions with
those of well-known KdV and KP equations. This flexibility allows for a detailed analysis of the behavior of soliton solutions under
varying conditions, which can lead to new insights into the dynamics of these solutions. Moreover, our technique extends Hirota’s
soliton solutions by adding additional scaling parameters, thus offering a generalized approach that can be applied to a broader
range of problems. It is particularly beneficial for examining complex systems where parameter variations can significantly impact
the solution’s properties. To ensure the robustness and validity of our proposed method, we performed a comparative analysis with
soliton solutions obtained using Hirota’s technique.

By applying our symbolic bilinear technique to the well-known (1+1)-dimensional Korteweg–de Vries (KdV) [1] and (2+1)-
dimensional Kadomtsev–Petviashvili (KP) [3] equations, we verified that the generalized soliton solutions produced are consistent
with established solutions, demonstrating the method’s accuracy. Moreover, we analyzed the dynamical behavior of these solutions
under various parameter values to confirm their stability and physical relevance. Using Mathematica allowed us to systematically
explore the parameter space, ensuring that the solutions are mathematically valid and physically meaningful. Additionally, the ability
to construct soliton solutions up to the third order highlighted the method’s effectiveness, showcasing its potential for handling
higher-order and more complex equations. These validations underscore the reliability and efficiency of our novel symbolic bilinear
technique. Future studies will strengthen this validation by applying the method to additional nonlinear PDEs and comparing the
results with experimental or observational data in relevant physical contexts.

Nonlinear partial differential equations (NLPDEs) represent a vast interdisciplinary domain within physics and applied mathemat-
ics. They serve as mathematical models for complex physical systems across diverse scientific fields. Investigating Nonlinear PDEs
poses a formidable challenge due to the absence of universal techniques for their analysis. Therefore, each equation necessitates
independent examination as a unique problem. However, certain situations may deserve broader approaches. Various techniques are
employed to derive analytic and exact solutions, encompassing methodologies such as the Darboux transformation [8–11], simplified
Hirota’s technique [12,13], Bäcklund transformation [14,15], Bilinear Neural Network Method [16–19], Symbolic computation
[20–27], Hirota’s bilinear approach [28–31], Symmetry analysis [32,33], Pfaffian technique [34,35], and other methodologies.

The following section proposes the symbolic bilinear technique (SBT) and shows its different steps. In Section 3, we study the
(1+1)-D KdV equation utilizing the proposed technique and construct the generalized 1-, 2-, and 3-soliton solutions with their
dynamics for distinct parameter values. Section 4 studies the (2+1)-D KP equation using SBT, obtains the generalized 1-, 2-, and
3-soliton solutions for distinct parameters, and shows the dynamics for the constructed solutions. In Section 5, we discuss the findings
for the soliton solutions with the proposed technique, and at the end, we conclude the results and the work.

2. Symbolic bilinear technique (SBT)

Symbolic techniques [22–27] for solving nonlinear PDEs offer considerable advantages in mathematical physics and nonlinear
sciences. One significant benefit is the ability to derive exact solutions, which provide deep insights into the underlying concepts
and serve as benchmarks for validating complex phenomena. These techniques facilitate a deeper analytical understanding of system
behavior, revealing relationships between variables and uncovering fundamental properties in soliton theory, plasma physics, and
others. Symbolic methods often simplify complex nonlinear PDEs, transforming them into more tractable forms. Techniques like
the Cole-Hopf transformation [28,29] and Hirota’s bilinear method [30,31] can convert nonlinear equations into linear or bilinear
forms, making them easier to solve. Additionally, symbolic techniques offer a systematic approach to finding higher-order solutions,
such as solitons and rogue waves, which are crucial for understanding the dynamics of nonlinear systems. Symbolic techniques are
versatile and applicable across various scientific disciplines, including fluid dynamics, plasma physics, and optical fibers, making
them powerful tools for researchers.

Let us assume a nonlinear partial differential equation of (n+1)-dimensions with 𝜗 spatial coordinates {𝜛1, 𝜛2, 𝜛3,… , 𝜛
𝜗
}, and one

temporal coordinate 𝜚 as

𝜍(𝜑, 𝜑
𝜚
, 𝜑

𝜛1 , 𝜑𝜛2 , 𝜑𝜛3 , 𝜑𝜛1𝜛1 , 𝜑𝜛1𝜚, 𝜑𝜛1𝜛2 , 𝜑𝜛1𝜛1𝜛1 ,…) = 0, (1)

which contains partial derivatives with independent variables {𝜛1, 𝜛2, 𝜛3,… , 𝜛
𝜗
, 𝜚} to dependent variable function 𝜑.
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First we transform Eq. (1) by constructing a Cole-Hopf transformation [28–31]

𝜑(𝜛1, 𝜛2, 𝜛3,… , 𝜛
𝜗
, 𝜚) = 𝛻(ln 𝜕 )

𝜛
ℵ

ℶ

, (2)

where 𝛻 is a nonzero real constant and 𝜕 (𝜛1, 𝜛2, 𝜛3,… , 𝜛
𝜗
, 𝜚) is an auxiliary function, ℵ is the order of ℶth independent variable 𝜛

ℶ
,

obtained by balancing between nonlinear and higher-order terms in PDE for 𝜛
ℶ
. The Eq. (1) is changed by Cole-Hopf transformation

to a bilinear equation in auxiliary function 𝜕 as

ℷ (𝜕 , 𝜕
𝜚
, 𝜕

𝜛1 , 𝜕𝜛2 , 𝜕𝜛3 , 𝜕𝜛1𝜛1 , 𝜕𝜛1𝜚, 𝜕𝜛1𝜛2 , 𝜕𝜛1𝜛1𝜛1 ,…) = 0, (3)

which can be represented in the Hirota’s bilinear form with 𝜔-operators as

ℸ(𝜔
𝜚
,𝜔

𝜛1 ,𝜔𝜛2 ,𝜔𝜛3 ,𝜔
2
𝜛1
,𝜔

𝜛1𝜔𝜛2 ,𝜔
2
𝜛2
,𝜔

𝜛2𝜔𝜛3 ,…)𝜕 .𝜕 = 0. (4)

For obtaining the 𝜀-soliton solution for Eq. (4), we express the auxiliary function 𝜕 symbolically as

𝜕 =
{2𝜀 }⌋

⊳{ℶ=1,2,…,𝜀}=0,1
⊲
⊳1 ,⊳2 ,⊳3 ,…,⊳𝜀

e⊳101+⊳202+⊳303+⋛+⊳𝜀0𝜀 , (5)

where ⊳
ℶ
= 0, 1 are the binary choices for 1 ∱ ℶ ∱ 𝜀 , 2𝜀 represents the number of terms, ⊲

⊳1 ,⊳2 ,⊳3 ,…,⊳𝜀
are the real non-zero parameters

to be determined, and 0
ℶ
are the phases for Eq. (4)

For 𝜀 = 1, we get ⊳1 = 0, 1, therefore

𝜕 =
{2}⌋

⊳1=0,1
⊲
⊳1 e

⊳101 = ⊲0 + ⊲1e01 .

For 𝜀 = 2, we have ⊳1, ⊳2 = 0, 1, therefore

𝜕 =
{4}⌋

⊳1 ,⊳2=0,1
⊲
⊳1 ,⊳2 e

⊳101+⊳202 = ⊲0,0 + ⊲1,0e01 + ⊲0,1e02 + ⊲1,1e01+02 .

For 𝜀 = 3, we get ⊳1, ⊳2, ⊳3 = 0, 1 therefore

𝜕 =
{8}⌋

⊳1 ,⊳2 ,⊳3=0,1
⊲
⊳1 ,⊳2 ,⊳3 e

⊳101+⊳202+⊳303

= ⊲0,0,0 + ⊲1,0,0e01 + ⊲0,1,0e02 + ⊲0,0,1e03 + ⊲1,1,0e01+02 + ⊲1,0,1e01+03 + ⊲0,1,1e02+03 + ⊲1,1,1e01+02+03 .

Thus, the auxiliary functions 𝜕 provide the 𝜀-soliton solutions of the bilinear Eq. (4) for different values of 𝜀 = 1, 2, 3, that are
solutions to Eq. (1). The symbolic bilinear technique obtains the generalized 𝜀-soliton solutions depending on arbitrary parameters
and observes that the Hirota’s 𝜀-soliton solutions [1] using bilinear method [29–31] are as one case for the obtained solution by
this symbolic approach.

For ⊲0 = ⊲1 = 1, ⊲0,0 = ⊲1,0 = ⊲0,1 = 1, and ⊲0,0,0 = ⊲1,0,0 = ⊲0,1,0 = ⊲0,0,1 = 1, the above auxiliary functions generate Hirota’s [1]
1-soliton, 2-soliton, and 3-soliton solutions, respectively. Thus, the solutions by this approach have the opportunities to observe
and study the behavior of solitons with different values of these additional real parameters ⊲

⊳1 ,⊳2 ,⊳3 ,…,⊳𝜀
along with the constants

presents in the phase variables for the studied equations as discussed in the following section.

3. (1+1)-dimensional KdV equation

The nonlinear KdV equation [1] is an evolution equation that describes the evolution of one-dimensional, weakly nonlinear, and
long waves. It was first introduced in the field of hydrodynamics to model the behavior of shallow water waves. The KdV equation
is

𝜑
𝜚
+ 6𝜑𝜑

𝜛
+ 𝜑

𝜛𝜛𝜛
= 0, (6)

where 𝜑 is the dependent variable that represents the wave amplitude, 𝜛 and 𝜚 are the spatial coordinate and time, respectively.
The Eq. (6) is particularly notable for its soliton solutions, which are solitary wave solutions that maintain their shape and speed
during propagation. These solitons arise due to a balance among nonlinear and dispersive terms in the equation. The nonlinear
KdV equation has applications in several domains, including plasma physics, fluid dynamics, and nonlinear optics, making it a
fundamental model for studying wave phenomena.

Let us consider the phase variable 0
ℶ
in the KdV Eq. (6) as

0
ℶ
= 1

ℶ
𝜛 ε 2

ℶ
𝜚, (7)

with 1
ℶ
ϑ ℶ = 1, 2,…, as constant parameters and 2

ℶ
as the dispersion coefficients. On putting 𝜑 = e0ℶ in linear terms of Eq. (6), we

get the dispersion 2
ℶ
= 1

3
ℶ
.

Considering the transformation

𝜑(𝜛, 𝜚) = 𝛻(ln 𝜕 )
𝜛𝜛
, (8)
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and putting it with 𝜕 (𝜛, 𝜚) = 1 + e01 in Eq. (6). On solving, we get 𝛻 as 2. Thus, Eq. (8) transforms Eq. (6) into a bilinear equation
in 𝜕 as

𝜕𝜕
𝜛𝜚
ε 𝜕

𝜛
𝜕
𝜚
+ 3𝜕 2

𝜛𝜛
ε 4𝜕

𝜛
𝜕
𝜛𝜛𝜛

+ 𝜕𝜕
𝜛𝜛𝜛𝜛

= 0. (9)

Using the bilinear differential operators 𝜔
ℶ
ϑ ℶ = 3, ℷ defined by Hirota [1] as

𝜔
𝛻1
3

𝜔
𝛻2
ℷ

45 =
⌈

6

6
3

ε 6

6
3ϖ

⌉𝛻1 ⌈
6

6
ℷ

ε 6

6
ℷ ϖ

⌉𝛻2
4 (3, ℷ )5 (3ϖ

, ℷ
ϖ){

3=3ϖ ,ℷ=ℷ ϖ ,

with 3
ϖ and ℷ

ϖ as the formal variables and 𝛻
7
ϑ 7 = 1, 2 as positive integers. Thus, the bilinear Eq. (9) can be written in the Hirota’s

bilinear form with bilinear differentials 𝜔 as

[𝜔
𝜛
𝜔

𝜚
+𝜔

4
𝜛
]𝜕 .𝜕 = 0. (10)

For one soliton solution, we take the function 𝜕 in Eq. (10) by having 𝜀 = 1 in Eq. (5) as

𝜕1 = 𝜕 (𝜛, 𝜚) =
{2}⌋

⊳1=0,1
⊲
⊳1 e

⊳101 = ⊲0 + ⊲1e01 = ⊲0 + ⊲1e11𝜛ε21𝜚, (11)

which satisfies the bilinear Eq. (10) identically with arbitrary choices of ⊲0 and ⊲1. By substituting the Eqs. (11) into (8), we get a
generalized solution for one-soliton as

𝜑1(𝜛, 𝜚) = 𝜑 =
2⊲0⊲112

18
1
3
1 𝜚+11𝜛

}
⊲08

1
3
1 𝜚 + ⊲18

11𝜛
⦃2 , (12)

that dependents on the arbitrary parameters ⊲0 and ⊲1. Therefore, we analyze the behavior and dynamics of this 1-soliton solution
for distinct values of these parameters. As, we have discussed that for ⊲0 = ⊲1 = 1 the solution will give the Hirota’s 1-soliton
solution [1], thus, the obtained solution is a generalized 1-soliton solution with arbitrary choice of non-zero parameters, and the
dynamics are shown in Fig. 1.

With 𝜀 = 2, Eq. (5) gives auxiliary function 𝜕 as

𝜕2 = 𝜕 =
{4}⌋

⊳1 ,⊳2=0,1
⊲
⊳1 ,⊳2 e

⊳101+⊳202 = ⊲0,0 + ⊲1,0e01 + ⊲0,1e02 + ⊲1,1e01+02 . (13)

By substituting the Eq. (13) into bilinear Eq. (10), and equating the coefficients of distinct expressions in power of exponential
functions to zero, we get

⊲1,1 =
⦄
11 ε 12

⟨ 2
⊲0,1⊲1,0⦄

11 + 12
⟨ 2⊲0,0

. (14)

On substituting Eqs (13) into (8), give a two-soliton solution of Eq. (6) as

𝜑2(𝜛, 𝜚) = 𝜑 = 2(ln𝜕2)𝜛𝜛, (15)

that dependents on the arbitrary parameters ⊲0,0, ⊲0,1 and ⊲1,0. Therefore, we study the dynamical behavior of this 2-soliton solution
for distinct values of these arbitrary non-zero parameters. For ⊲0,0 = ⊲0,1 = ⊲1,0 = 1 the solution (15) will represent a Hirota’s
2-soliton solution [1] and Eq. (14) shows the phase shift in Hirota’s bilinear method. Thus, the obtained solution is a generalized
2-soliton solution with these parameters, and Fig. 2 shows the dynamics for this solution.

For 𝜀 = 3 in Eq. (5), we consider the auxiliary function 𝜕 as

𝜕3 = 𝜕 =
{8}⌋

⊳1 ,⊳2 ,⊳3=0,1
⊲
⊳1 ,⊳2 ,⊳3 e

⊳101+⊳202+⊳303 (16)

= ⊲0,0,0 + ⊲1,0,0e01 + ⊲0,1,0e02 + ⊲0,0,1e03 + ⊲1,1,0e01+02 + ⊲1,0,1e01+03 + ⊲0,1,1e02+03 + ⊲1,1,1e01+02+03 .

On substituting the Eq. (16) into the bilinear Eq. (10), and equating the coefficients of distinct expressions in power of exponential
functions to zero, we get

⊲1,1,0 =
⦄
11 ε 12

⟨ 2
⊲0,1,0⊲1,0,0⦄

11 + 12
⟨ 2⊲0,0,0

, ⊲0,1,1 =
⦄
12 ε 13

⟨ 2
⊲0,0,1⊲0,1,0⦄

12 + 13
⟨ 2⊲0,0,0

, ⊲1,0,1 =
⦄
11 ε 13

⟨ 2
⊲0,0,1⊲1,0,0⦄

11 + 13
⟨ 2⊲0,0,0

,

⊲1,1,1 =
⦄
11 ε 12

⟨ 2 ⦄
11 ε 13

⟨ 2 ⦄
12 ε 13

⟨ 2
⊲0,0,1⊲0,1,0⊲1,0,0⦄

11 + 12
⟨ 2 ⦄11 + 13

⟨ 2 ⦄12 + 13
⟨ 2⊲20,0,0

,

which shows the relation as

⊲1,1,1 = (⊲1,1,0 ϱ ⊲0,1,1 ϱ ⊲1,0,1)
⊲0,0,0

⊲1,0,0⊲0,1,0⊲0,0,1
, (17)
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Fig. 1. Dynamical profiles of 1-soliton solitons for (12) with 11 = 0.3 and (a) ⊲0 = 0.1, ⊲1 = 0.9; (b) ⊲0 = 1, ⊲1 = 1 (c) ⊲0 = ε0.5, ⊲1 = ε0.1; (d)–(f) and (g)–(i)
depicts the contour and 2D plots for (a)–(c), respectively.

where ⊲0,0,0, ⊲1,0,0, ⊲0,1,0 and ⊲0,0,1 are arbitrary constants. Thus Eq. (16) satisfies Eq. (10) as a solution with the above parameters.
By substituting Eq. (16) into (8), we establish a 3-soliton solution as

𝜑3(𝜛, 𝜚) = 𝜑 = 2(ln𝜕3)𝜛𝜛, (18)

that dependents on the arbitrary parameters ⊲0,0,0, ⊲1,0,0, ⊲0,1,0 and ⊲0,0,1. Therefore, we study the behavior with dynamics of this
3-soliton solution for distinct values of these non-zero parameters. For ⊲0,0,0 = ⊲1,0,0 = ⊲0,1,0 = ⊲0,0,1 = 1 the solution (18) will
represent a Hirota’s 3-soliton solution [1] and Eq. (17) satisfies the dispersion relation for the parameters as in Hirota’s bilinear
method, thus, the obtained solution is a generalized three-soliton solution with arbitrary parameters, and the dynamics are shown
in Fig. 3.

4. (2+1)-dimensional KP equation

The nonlinear KP equation [3] significantly extends the Korteweg–de Vries (KdV) equation, specifically developed to describe
two-dimensional weakly nonlinear and dispersive waves. Its mathematical form is

(𝜑
𝜚
+ 6𝜑𝜑

𝜛
+ 𝜑

𝜛𝜛𝜛
)
𝜛
ε 𝜑

99
= 0, (19)

where 𝜑 represents the wave amplitude, 𝜛, 9 and 𝜚 are spatial and time coordinate, respectively. The nonlinear KP equation is essential
to studying solitons and integrable systems exhibiting rich and complex behaviors of wave interactions. Similar to the KdV equation,
the KP equation supports solitons, but its two-dimensional nature allows for more elaborate structures, such as two-soliton solutions
that interact in a nontrivial manner. The nonlinear KP equation finds applications in diverse fields, such as plasma, fluid mechanics,
and oceanography, contributing to our understanding of nonlinear wave phenomena in multiple dimensions.

Let us consider the phase variable 0
ℶ
in the KP Eq. (19) as

0
ℶ
= 1

ℶ
𝜛 + .

ℶ
9 ε 2

ℶ
𝜚, (20)
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Fig. 2. Dynamical profiles of 2-soliton solitons for (15) with 11 = 0.7,12 = 1 and (a) ⊲0,0 = 1, ⊲1,0 = 1, ⊲0,1 = 1 (b) ⊲0,0 = 25, ⊲1,0 = 0.5, ⊲0,1 = 1 (c)
⊲0,0 = 0.3, ⊲1,0 = 10, ⊲0,1 = 1; (d)–(f) and (g)–(i) depicts the contour and 2D plots for (a)–(c), respectively.

with 1
ℶ
, .

ℶ
ϑ ℶ = 1, 2,…, as constant parameters and 2

ℶ
as the dispersion coefficients. On putting 𝜑 = e0ℶ in linear terms of Eq. (19),

we get the dispersion 2
ℶ
= 1

4
ℶ
ε.2

ℶ

1ℶ

.
Considering the transformation

𝜑(𝜛, 9, 𝜚) = 𝛻(ln 𝜕 )
𝜛𝜛
, (21)

and putting it with 𝜕 (𝜛, 9, 𝜚) = 1 + e01 in Eq. (19). On solving, we get 𝛻 as 2. Thus, Eq. (21) transforms Eq. (19) into a bilinear
equation in 𝜕 as

𝜕𝜕
𝜛𝜚
ε 𝜕

𝜛
𝜕
𝜚
+ 3𝜕 2

𝜛𝜛
ε 4𝜕

𝜛
𝜕
𝜛𝜛𝜛

+ 𝜕𝜕
𝜛𝜛𝜛𝜛

ε 𝜕𝜕
99

+ 𝜕
2
9
= 0. (22)

Using the bilinear operators 𝜔
ℶ
ϑ ℶ = 3, , , ℷ defined by Hirota [1] as

𝜔
𝛻1
3

𝜔
𝛻2
,

𝜔
𝛻3
ℷ

45 =
⌈

6

6
3

ε 6

6
3ϖ

⌉𝛻1 ⌈
6

6
,

ε 6

6
, ϖ

⌉𝛻2 ⌈
6

6
ℷ

ε 6

6
ℷ ϖ

⌉𝛻3
4 (3, , , ℷ )5 (3ϖ

, ,
ϖ
, ℷ

ϖ){
3=3ϖ ,,=, ϖ ,ℷ=ℷ ϖ ,

with 3
ϖ, , ϖ and ℷ

ϖ as the formal variables and 𝛻
7
ϑ 7 = 1, 2, 3 as positive integers. Thus, the bilinear Eq. (22) can be written in the

Hirota’s bilinear form with bilinear differentials 𝜔 as

[𝜔
𝜛
𝜔

𝜚
+𝜔

4
𝜛
ε𝜔

2
9
]𝜕 .𝜕 = 0. (23)

For 𝜀 = 1 in Eq. (5), we take the function 𝜕 in Eq. (23) as

𝜕1 = 𝜕 (𝜛, 9, 𝜚) =
{2}⌋

⊳1=0,1
⊲
⊳1 e

⊳101 = ⊲0 + ⊲1e01 = ⊲0 + ⊲1e11𝜛+.19ε21𝜚, (24)
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Fig. 3. Dynamical profiles of 3-soliton solitons for (15) with 11 = 0.7,12 = 1,13 = 0.5 and (a) ⊲0,0,0 = ⊲1,0,0 = ⊲0,1,0 = ⊲0,0,1 = 1 (b) ⊲0,0,0 = 4, ⊲1,0,0 = 1, ⊲0,1,0 =
8, ⊲0,0,1 = 1 (c) ⊲0,0,0 = 1, ⊲1,0,0 = 10, ⊲0,1,0 = 5, ⊲0,0,1 = 1; (d)–(f) and (g)–(i) depicts the contour and 2D plots for (a)–(c), respectively.

which satisfies the bilinear Eq. (23) identically with arbitrary choices of ⊲0 and ⊲1. By substituting the Eqs. (24) into (21), we get
one-soliton solution as

𝜑1(𝜛, 9, 𝜚) = 𝜑 =
2⊲0⊲112

18
.
2
1 𝜚
11

+131 𝜚+11𝜛+.19

⟩
⟪
⟪⟫
⊲18

.
2
1 𝜚
11

+11𝜛+.19 + ⊲08
1
3
1 𝜚
❲
❳
❳/

2 , (25)

that dependents on the parameters ⊲0 and ⊲1. Therefore, we observe the behavior and the dynamics of this 1-soliton solution for
distinct values of these non-zero parameters. For ⊲0 = ⊲1 = 1 the solution will represent the Hirota’s 1-soliton solution [3], thus, the
obtained solution is a generalized 1-soliton solutions with these non-zero parameters, and the dynamics are shown in Fig. 4.

Having 𝜀 = 2 in Eq. (5), we take auxiliary function 𝜕 as

𝜕2 = 𝜕 =
{4}⌋

⊳1 ,⊳2=0,1
⊲
⊳1 ,⊳2 e

⊳101+⊳202 = ⊲0,0 + ⊲1,0e01 + ⊲0,1e02 + ⊲1,1e01+02 . (26)

By substituting the Eq. (26) into the bilinear Eq. (23), and equating the coefficients of distinct expressions in power of exponential
functions to zero, we get

⊲1,1 =
⦄
312

11
2
2(11 ε 12)2 + (11.2 ε 12.1)2

⟨
⊲0,1⊲1,0⦄

312
11

2
2(11 + 12)2 + (11.2 ε 12.1)2

⟨
⊲0,0

. (27)

On substituting Eq. (26) into Eq. (21), give a two-soliton solution of Eq. (19) as

𝜑2(𝜛, 𝜚) = 𝜑 = 2(ln𝜕2)𝜛𝜛, (28)
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Fig. 4. Dynamical profiles of 1-soliton solutions for (25) with 11 = 0.2, .1 = ε0.3, 𝜚 = 0 and (a) ⊲0 = 0.1, ⊲1 = 0.2; (b) ⊲0 = 0.8, ⊲1 = 0.11 (c) ⊲0 = 1, ⊲1 = 20; (d)–(f)
depicts the contour plots for (a)–(c), respectively.

Fig. 5. Dynamical profiles of 2-soliton solutions for (15) with 11 = 12 = 0.4, .1 = 0.5, .2 = ε0.3, 𝜚 = 0 and (a) ⊲0,0 = 0.1, ⊲1,0 = 0.2, ⊲0,1 = 0.5 (b)
⊲0,0 = 0.1, ⊲1,0 = 0.2, ⊲0,1 = 20 (c) ⊲0,0 = 1, ⊲1,0 = 20, ⊲0,1 = 1; (d)–(f) depicts the contour plots for (a)–(c), respectively.

that dependents on the arbitrary parameters ⊲0,0, ⊲0,1 and ⊲1,0. Therefore, we study the dynamics of this 2-soliton solution for distinct
values of these non-zero parameters. For ⊲0,0 = ⊲0,1 = ⊲1,0 = 1, the solution (28) will represent a Hirota’s 2-soliton solution [3]
and Eq. (27) shows the relation for the phase shift as in Hirota’s bilinear method, thus, the obtained solution is a generalized
2-soliton solution with these arbitrary parameters, and Fig. 5 shows the dynamics of the solution.
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Fig. 6. Dynamical profiles of 3-soliton solutions for (31) with 𝜚 = 0 and (a) ⊲0,0,0 = ⊲1,0,0 = ⊲0,1,0 = ⊲0,0,1 = 1,11 = 13 = 0.5,12 = 0.7, .1 = 0.5, .2 = 0.2, .3 = 0.1 (b)
⊲0,0,0 = 0.5, ⊲1,0,0 = 0.3, ⊲0,1,0 = 0.5, ⊲0,0,1 = 1,11 = 0.4,12 = 0.3,13 = 0.5, .1 = 0.3, .2 = 0.2, .3 = 0.1 (c) ⊲0,0,0 = 0.1, ⊲1,0,0 = 0.3, ⊲0,1,0 = 0.5, ⊲0,0,1 = 0.1,11 = 0.2,12 = 0.3,13 =
0.2, .1 = 0.3, .2 = 0.2, .3 = 0.1; (d)–(f) depicts the contour plots for (a)–(c), respectively.

For 𝜀 = 3 in Eq. (5), we consider the function 𝜕 as

𝜕3 = 𝜕 =
{8}⌋

⊳1 ,⊳2 ,⊳3=0,1
⊲
⊳1 ,⊳2 ,⊳3 e

⊳101+⊳202+⊳303 (29)

= ⊲0,0,0 + ⊲1,0,0e01 + ⊲0,1,0e02 + ⊲0,0,1e03 + ⊲1,1,0e01+02 + ⊲1,0,1e01+03 + ⊲0,1,1e02+03 + ⊲1,1,1e01+02+03 .

On substituting Eq. (29) into the bilinear Eq. (23), and equating the coefficients of distinct expressions in power of exponential
functions to zero, we get

⊲1,1,0 =
⦄
312

11
2
2(11 ε 12)2 + (11.2 ε 12.1)2

⟨
⊲1,0,0⊲0,1,0⦄

312
11

2
2(11 + 12)2 + (11.2 ε 12.1)2

⟨
⊲0,0,0

,

⊲0,1,1 =
⦄
312

21
2
3(12 ε 13)2 + (12.3 ε 13.2)2

⟨
⊲0,1,0⊲0,0,1⦄

312
21

2
3(12 + 13)2 + (12.3 ε 13.2)2

⟨
⊲0,0,0

,

⊲1,0,1 =
⦄
312

11
2
3(11 ε 13)2 + (11.3 ε 13.1)2

⟨
⊲1,0,0⊲0,0,1⦄

312
11

2
3(11 + 13)2 + (11.3 ε 13.1)2

⟨
⊲0,0,0

,

⊲1,1,1 = (⊲1,1,0 ϱ ⊲0,1,1 ϱ ⊲1,0,1)
⊲0,0,0

⊲1,0,0⊲0,1,0⊲0,0,1
, (30)

where ⊲0,0,0, ⊲1,0,0, ⊲0,1,0 and ⊲0,0,1 are arbitrary constants. Thus Eq. (29) satisfies Eq. (23) as a solution with the arbitrary non-zero
parameters. By substituting Eq. (29) into (21), we establish a 3-soliton solution as

𝜑3(𝜛, 9, 𝜚) = 𝜑 = 2(ln𝜕3)𝜛𝜛, (31)

that depends on the arbitrary parameters ⊲0,0,0, ⊲1,0,0, ⊲0,1,0 and ⊲0,0,1. Therefore, we study the dynamics of this 3-soliton solution
for distinct values of these non-zero parameters. For ⊲0,0,0 = ⊲1,0,0 = ⊲0,1,0 = ⊲0,0,1 = 1 the solution will represent Hirota’s 3-soliton
solution [3] and Eq. (30) satisfies the dispersion relation for the parameters as in Hirota’s bilinear technique, thus, the obtained
solution is a generalized three-soliton solution with these non-zero parameters, and the dynamics are shown in Fig. 6.

5. Results and discussion

This work has analyzed the newly constructed generalized soliton solutions concerning arbitrary parameters utilizing the
proposed symbolic bilinear technique. Our analysis includes the examination of phase shifts and their dependence on the parameters,
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which is essential for characterizing the interaction of solitons in physical systems [1–4]. Additionally, the generalized solitons
produced by our approach provide a more realistic representation of physical processes due to the inclusion of arbitrary parameters.
This approach verifies that the solutions obtained in Hirota’s bilinear approach [1,3] for the studied equations are a case for the
established generalized solutions. We have shown a comparative analysis of the existing solutions for well-known KdV and KP
equations using Hirota’s bilinear method and the solutions using our proposed approach. Researchers and investigators can apply
this technique to the other equations to more broadly understand the behavior and physical appearance of the solutions for a
nonlinear system [5–9].

The analysis of generalized soliton solutions using the symbolic bilinear technique reveals several critical aspects of their physical
significance. These include the flexibility introduced by arbitrary parameters, the importance of phase shifts in soliton interactions,
and the validation of the proposed approach against established methods. Generalized soliton solutions that arbitrarily provide
additional parameters make the description of physical processes more universal and complete, giving a better understanding of
their underlying dynamics. The study of phase shifts as a function of these parameters is particularly relevant for understanding
soliton interactions in physical systems. Otherwise, phase shifts can play a crucial role in influencing the collisions of solitons to
merge like this or cross each other and are, therefore, essential for the nonlinear study of interaction type. It is also checked by the
obtained solution being exact and generalizable concerning Hirota’s bilinear method, confirming its reliability for a new technique.
This study also compares the new solutions with well-known KdV and KP equations to show that the proposed method is effective
against known results and satisfactory compared to available approaches. Here, this comparison illustrates the enhancements and
deviations inserted via arbitrary parameters to give a new understanding of soliton behavior. It is essential for applications where
soliton behavior plays a key role, as in our case, one elementary problem can lead to N-solitons. In addition, its generality for other
nonlinear equations makes it worthwhile in the large toolbox of techniques used by researchers who explore various phenomena
within nonlinear dynamics.

The physical significance lies in the enhanced realism and versatility of soliton solutions with arbitrary parameters, improved
understanding of soliton interactions through phase shift analysis, validation against established approaches, and the potential for
broad application in studying nonlinear systems. Selecting several arbitrary parameters, we have generated 𝜀-soliton up to 𝜀 = 3
with the given symbolic bilinear technique and analyzed the structures for the obtained solutions dynamically. We explains the
analysis as follows:

- Figs. 1 and 4 plot the one solitons in (a) to (c) for investigated KdV and KP equations, and analyses the soliton behavior for
different values of arbitrary parameters ⊲0 and ⊲1 with the constant 11 = 0.3 for KdV equation and 11 = 0.2, .1 = ε0.3, 𝜚 = 0
for KP equation. The solitons change their position with respect to the singularities depending on the parameters ⊲0 and ⊲1.
Graphics (d) to (f) show the contour plots for (a) to (c), respectively. The 2D graphics (g) to (h) in Fig. 1 depict that the
solitons are moving in right direction of 𝜛-axis.

- In Figs. 2 and 5, we illustrate the interactions of two solitons in (a) to (c) for investigated KdV and KP equations, and analyses
the solitons behavior for different values of arbitrary parameters ⊲0,0, ⊲0,1 and ⊲1,0 with the constants 11 = 0.7,12 = 1 for the
KdV equation and 11 = 12 = 0.4, .1 = 0.5, .2 = ε0.3, 𝜚 = 0 for the KP equation. The solitons change their interaction position
with respect to the singularities depending on these parameters. Graphics (d) to (f) show the contour plots for (a) to (c),
respectively. The 2D graphics (g) to (h) in Fig. 2 depict that the solitons interactions moving in right direction of 𝜛-axis.

- Figs. 3 and 6 show the interactions of three solitons in (a) to (c) for investigated KdV and KP equations, and analyze the solitons
behavior for different values of arbitrary parameters ⊲0,0,0, ⊲0,0,1, ⊲0,1,0 and ⊲1,0,0 with the constants 11 = 0.7,12 = 1,13 = 0.5 for
the KdV equation and different values of constants 11,12,13, .1, .2, .3, 𝜚 = 0 for the KP equation. The soliton interactions change
their position with respect to the singularities depending on these parameters. Graphics (d) to (f) show the contour plots for
(a) to (c), respectively. The 2D graphics (g) to (h) in Fig. 3 depict that the solitons interactions moving in right direction of
𝜛-axis.

6. Conclusions

This research study analyzed the newly constructed generalized soliton solution for the well-known KdV and KP nonlinear
evolution equations with a novel symbolic bilinear technique. This technique gave us an advantage in obtaining generalized soliton
solutions depending on the arbitrary parameters and the constant presented in the phase variable for the investigated equations.
We showed that the proposed technique establishes more generalized exact solutions than Hirota’s 𝜀-solitons, which is a case with
the parameter values. We investigated two well-known (1+1)-dimensional KdV and (2+1)-dimensional KP equations with the said
technique and compared the obtained solutions to Hirota’s soliton solutions. Generalized soliton solutions up to the third order
are obtained, providing a better analysis and understanding of the solutions with arbitrary parameters. Dynamical analysis for the
obtained generalized solitons has been shown through wave profiles with distinct values of the real parameters. The graphics for the
first-order solution represented the single solitons. In contrast, the second and third-order solutions showed the solitons’ interactions
in X-type or Y-type interactions. These interactions change the positions depending on the choice of constant parameter present
in phase shift. The physical significance of our research lies in the soliton solutions with more realistic and versatile arbitrary
parameters. We have taken great care to ensure the validity of our results, validating them against the existing Hirota method.
This validation process, along with the phase shift analysis, helps us better understand soliton interactions and provides a strong
foundation for our findings. We have also discussed the phase shift and dispersion coefficient relations among arbitrary parameters,
which verified the condition in Hirota’s solitons solutions by choosing the values of arbitrary parameters as 1. Our analysis of the
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dynamic behavior of the obtained solutions with distinct parameter values, using the symbolic systemMathematica, further reinforces
the reliability of our results.

As, the technique has been demonstrated on established equations like KdV and KP nonlinear models, there is still room for
research to solve a more general class of nonlinear partial differential equations. Further research is needed to characterize how
well this technique performs on computational problems that are more complex systems. These limitations are not roadblocks but
point toward potential research directions. This technique offers the potential to provide generalized soliton solutions, it paves the
way for significant advancements in research. The creation of generalized soliton solutions with variable parameters can enable
a more adaptable and detailed explanation of physical systems, stimulating researchers and scientists intellectually. They can use
this method to investigate and analyze a variety of evolution equations, leveraging the presence of arbitrary parameters to gain a
deeper understanding in the fields of oceanography, plasma, fluid mechanics, water engineering, optical fibers, and other nonlinear
systems.
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Abstract In soliton theory and nonlinear waves, this
research proposes a new Painlevé integrable general-
ized (3+1)-D evolution equation. It demonstrates the
Painlevé test that claims the integrability of the pro-
posed equation and employs Cole–Hopf transforma-
tions to generate the trilinear equation in an auxil-
iary function that governs the higher-order rogue wave
and dispersive-soliton solutions via the symbolic com-
putation approach and dispersive-soliton assumption,
respectively. Center-controlled parameters in rogue
waves show the different dynamical structures with
several other parameters.We obtain solutions for rogue
waves up to third-order using direct symbolic analysis
with appropriate center parameters and other param-
eters using a generalized procedure for rogue waves.
We assume the dispersive-soliton solution, inspired by
Hirota’s direct techniques to create dispersive-soliton
solutions up to the third order.Byapplying the symbolic
softwareMathematica, we demonstrate the dynamical
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structures for rogue waves with diverse center param-
eters and dispersive solitons using dispersion relation
to showcase the interaction behavior of the solitons.
Dispersive solitons and rogue waves are fascinating
phenomena that appear in diverse areas of physics,
such as optical fibers, nonlinear waves, dusty plasma
physics, nonlinear dynamics, andother engineering and
sciences.

Keywords Painlevé analysis · Cole–Hopf transforma-
tion · Generalized equation · Symbolic computational
approach ·Wave interactions

1 Introduction

Dispersive solitons [1–4] are fascinatingwave phenom-
ena that appear in various areas of physics. Due to
a careful balancing act between dispersion and non-
linearity, they stand out for their capacity to maintain
their shape and stability across great distances. Disper-
sive solitons, sometimes called optical solitons or soli-
ton pulses, are fundamental components of high-speed
fiber optic communication systems. Solitons can tra-
verse long distances without experiencing severe dis-
tortion by balancing the optical fiber’s dispersion and
the material’s nonlinearity. This characteristic is essen-
tial for effective and trustworthy data transfer in opti-
cal communication networks. In hydrodynamics, dis-
persive solitons are single waves or solitons in water
waves. The engineering of coastlines, oceanography,
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and wave energy conversion all use them in practical
ways.Comprehending andgoverning these solitons can
support addressing coastal erosion, improve wave fore-
casting, and optimize wave energy extraction. In addi-
tion, dispersive solitons, also known as plasma solitons
or solitonwaves, are observed in plasma physics. These
solitons are produced due to the interaction between the
plasma’s dispersive characteristics and the nonlinear-
ity brought on by particle interactions. They are help-
ful in several plasma physics research fields, such as
investigating wave propagation in magnetized plasma,
plasma heating, and fusion studies. Understanding and
utilizing solitons in these fields has practical impor-
tance, ranging from high-speed data transmission in
optical communication to coastal management and the
advancement of quantum technologies.
The rogue waves [5–19], or localized substantial soli-
tary waves in space-time, have a significant amplitude.
These waves may cause people considerable harm and
are unexpected. Numerous researchers are interested
in exploring the way that rogue waves evolve. They
stand out because of their abnormally steep height,
often more than the neighboring waves. Rogue waves
defy the predictions of traditional linear wave models,
which is why nonlinear wave dynamics study them.
Rogue wave study in nonlinear science seeks to under-
stand their underlying physics and foretell their occur-
rence. One important use is enhancing maritime safety.
Researchers can provide earlier detection and alarm
systems to halt accidents carried out by rogue waves
by developing algorithms or techniques for prediction
models. This knowledge could be helpful in the marine
industry, oil or gas outlets, and seaside infrastructure.
Therefore, we may achieve improved functional secu-
rity and cost-effective answers by understanding the
dynamics of constructing secure systems and design
techniques to decrease their consequences. Addition-
ally, research into rogue wave dynamics advances the
understanding of complex scenarios, interactions of
waves, and how severe events arise in various physi-
cal phenomena.

This research proposes a new generalized (3+1)-D
P-type equation in nonlinear waves as

uxxxy + α1uyt + α2(uux )y + α3uxx + α4uzz = 0,

(1)

with αi ; 1 ≤ i ≤ 4 as real coefficients. The nonlinear
integrable equation carries localized solutions in spe-
cific directions, such as solitons, breathers, lumps, and

other solutions. Analyzing the nonlinear partial differ-
ential equations (PDEs)’ integrability can lead to pre-
cise and analytical solutions.A nonlinear PDEcan have
its entire integrability verified by the Painlevé test [20–
24]. It becomes pretty laborious to determine whether a
PDE meets the Painlevé test. However, this analysis is
possible because of symbolic tools, such asMathemat-
ica and Matlab software. We search for specific solu-
tions to correctly comprehend the peculiarities of dif-
ferent facts in diverse natural science domains. As was
already said, nonlinear PDE has attracted the interest of
various academics because it closely reflects real-world
situations and offers a vast range of solutions. Symbolic
system software can help to encounter these solutions
quickly. In 2006, Baldwin andHereman [20] developed
a computation in Mathematica to perform the WTC-
Kruskal approach-based Painlevé test for PDEs. It has
been an attractive study area to highlight fundamental
concepts in nonlinear sciences, plasmas, water engi-
neering, and shallowwater waves through dynamically
analyzing rogue wave behavior produced by nonlinear
PDEs.
A vast area of mathematics and physics known as non-
linear PDEs deals with nonlinear functions that repre-
sent the models for complex physical systems in var-
ious research fields. Mathematicians have used non-
linear PDEs to showcase several physical phenomena,
from nonlinear dynamics to gravity, and solve prob-
lems like Poincare’s and Calabi’s conjectures. Since
only some general methods can be used to analyze
nonlinear PDEs, they are challenging to study. Each
equation must typically be studied as a separate prob-
lem. However, there are some situations when general
methods canbe applied.These techniques discretize the
domain of the issue into a grid of points and then uti-
lize mathematical approaches to estimate the solution.
For obtaining the analytical and exact solutions, several
techniques are being utilized, including the streamlined
Hirota’s approach [25,26], the Bäcklund transforma-
tion [27,28], Bilinear Neural Network Method [1,29–
31], the Hirota’s bilinearization method [32–35], Lie
symmetry analysis [36–39], and the Darboux transfor-
mation [40–44].

The manuscript is structured as: The next section
examines the proposed generalized equation for being
integrable by utilizing the test of Painlevé. Section3
illustrates the Cole–Hopf transformation and symbolic
computation to get the rogue waves up to the third
order. In this computation, we utilize the dependent
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variable transformation to change the equation in a tri-
linear equation by finding the dispersion through the
phase. It showcases the dynamics graphically for the
obtained solutions. In Sect. 4, we get the dispersive-
soliton solutions up to the third order and portray the
dynamical structures with chosen distinct parameters.
Section5 concerns the research findings of generated
solutions, and the end section discusses the research
conclusion.

2 P-integrability analysis

Painlevé test is a robust tool for investigating the inte-
grability of nonlinear PDEs. It bears the nameof French
mathematician Paul Painlevé, who contributed sub-
stantially to studying nonlinear equations. Determin-
ing whether a given nonlinear PDE admits solutions
devoid of movable singularities is the main objective
of this analysis. A singularity that can be eliminated or
altered by an appropriate coordinate transformation is
movable. A PDE is considered P-integrable if it passes
the Painlevé test, which denotes that it has a complex
structure and may be solved using specialized func-
tions. Assuming a particular form for the PDE solu-
tions as part of Painlevé analysis entails expanding the
Laurent series around a movable singularity. A set of
consistency conditions is generated by inserting these
presumptive forms into the PDE and equating the coef-
ficients of like powers. If the test is unsuccessful, it sug-
gests that the PDE might have singularities that are not

generic or lack Painlevé integrability. It has shown to
be an effective method for analyzing nonlinear PDEs
since it sheds light on the presence of unique solutions
and reveals integrable structures that were previously
concealed. Researchers can create analytical strategies

and methods to solve these equations and better com-
prehend the underlying physical phenomena they rep-
resent by identifying integrable PDEs.
Weiss with Tabor and Carnevale (WTC) [22] gave the
Painlevé test to examine the nonlinear PDEs for integra-
bility by confirming integrable conditions. This analy-
sis has three stages: first, it examines the leading-order
behavior; second, it locates the resonances; and third,
it confirms the conditions for resonances. The test con-
siders P-integrable if all the movable singularities are
the simple poles of the solutions. A Laurent’s series
with analytical function g, about the singular manifold
g = 0, expands the field u as

u =
∞∑

r=0

ur gr+", (2)

with " and ur ; r = 0, 1, 2, ...; as the integer and arbi-
trary functions, respectively. On putting Eq. (2) into
(1), we get " by leading order analysis as

" = −2,

and retrieve

u0 = −12g2x
α2

.

We get the characteristic equation for the resonances
as

(r + 1)(r − 4)(r − 5)(r − 6)α2gyg3x = 0, (3)

which gives the resonances

r = −1, 4, 5, 6.

Due to the arbitrary choice of g = 0, we get resonance
r = −1. Functions ur exist explicitly for r = 0, 1, 2, 3
and arbitrary choices for r = 4, 5, 6, are given as

u1 = 12gxx
α2

,

u2 = −α1gtgxgy + α3g3x + 4gxgxxxgy + α4gxg2z − 3g2xxgy
α2g2xgy

,

u3 =
−α1gtgxgxxg3y + α1g2xgxtg

3
y − 4gxgxxgxxxg3y + · · · + α4g3xgyyg

2
z + 3g3xxg

3
y

α2g4xg3y
,

u4 = u4, u5 = u5, u6 = u6,

where expression of u3 is lengthy, so middle terms
are skipped. The resonances r = 4, 5, 6 identically
fulfill the conditions for compatibility. Therefore, the
proposed Eq. (1) is integrable entirely or satisfies the
P-integrability.
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3 Cole–Hopf transformation and rogue waves

By applying the transformations U = x + t and V =
y + z for u = u(U, V ) in Eq. (1), we get
α1uUV + α2(uV uU + uuUV )+ α3uUU

+α4uVV + uUUUV = 0. (4)
We consider the phase #i in Eq. (4) as
#i = piU − wi V, (5)
with wi as the dispersion-coefficient and pi as real-
parameter. By taking u(U, V ) = e#i into the terms
with linearity of Eq. (4), we get

wi =
p3i + α1 pi ± pi

√
α2
1 − 4α3α4 + 2α1 p2i + p4i
2α4

.

(6)
Now, taking the transformation as
u(U, V ) = R(ln f )UU , (7)
where R and f are the constant and auxiliary function,
respectively. We put this transformation with Eq. (6)
and f (U, V ) = 1 + e#1 into Eq. (4), and solve for R
which gives

R = 12
α2

.

Thus, the transformation (7) becomes

u(U, V ) = 12
α2

(ln f )UU . (8)

On substituting Eq. (8) into Eq. (4) gives a trilinear
equation in f (U, V ) as
α4 f 2 fUV V + α1 f 2 fUUV + α3 f 2 fUUU

+ f 2 fUUUUV + 2α1 fV f 2U + 2α4 f 2V fU
−2α4 f fV fUV − α1 f fV fUU

−α4 f fV V fU − 2α1 f fU fUV − 3α3 f fU fUU

+2α3 f 3U + 8 fV fU fUUU − 6 fV f 2UU

− f fV fUUUU

−4 f fU fUUUV − 4 f fUV fUUU

+6 f fUU fUUV = 0. (9)
We consider the function f for the rogue waves solu-
tions [45–48] as
f (U, V ) = F̂N (U, V,β, γ )

=
N (N+1)

2∑

s=0

s∑

i=0

cN (N+1)−2s,2i (V − γ )2i

(U − β)N (N+1)−2s, (10)
with cp,q ; p, q ∈ {0, 2, · · · , s(s+1)} as the constants;
β, γ as parameters controlling the center.

3.1 First-order rogue waves

To obtain first-order rogue wave, take the function
f (U, V ) from Eq. (10) with N = 1 as

f (U, V ) = c0,0 + c0,2V 2 + c2,0U 2. (11)

On putting Eq. (11) into Eq. (9), we get a system of
equations by equating zero the coefficients of different
powers of U pV q; p, q ∈ Z , as

α4c20,2c2,0 − α3c0,2c22,0 = 0,

α1c0,0c0,2c2,0 + 12c0,2c22,0 = 0,

3α3c0,0c22,0 + α4c0,0c0,2c2,0 = 0, (12)

which gives the constant values as

c0,0 = −12c2,0
α1

, c0,2 =
α3c2,0

α4
, c2,0 = c2,0.

(13)

Therefore, Eq. (11) with values (13) becomes

f (U, V ) = F̂1(U, V,β, γ )

= c2,0

(
α3(γ − V )2

α4
− 12

α1
+ (β −U )2

)
,

(14)

which is a solution of Eq. (9). On putting Eq. (14) into
(8), we obtain first-order rogue wave solution as

u(U, V ) =

−
24α1α4

(
α1

(
α4(β −U )2 − α3(γ − V )2

)
+ 12α4

)

α2
(
α1

(
α4(β −U )2 + α3(γ − V )2

)
− 12α4

)
2 .

(15)

3.2 Second-order rogue waves

We assume the function f (U, V ) for N = 2 in Eq. (10)
as

f (U, V ) = c0,0 + c0,2V 2 + c0,4V 4 + c0,6V 6

+c2,0U 2 + c2,2V 2U 2 + c2,4V 4U 2

+c4,0U 4 + c4,2V 2U 4 + c6,0U 6. (16)

By putting Eq. (16) in trilinear Eq. (9), and taking zero
the coefficients of distinct powers of U pV q; p, q ∈
Z , gets a system. This system gives the constants on
solving as

c0,0 = 76032α4c4,2
61α3

1α3
, c0,2 = −2688c4,2

61α2
1

,
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c0,4 = −20α3c4,2
α1α4

,

c0,6 = α2
3c4,2
3α2

4
, c2,0 =

23808α4c4,2
61α2

1α3
, c2,2 =

24c4,2
α1

,

c2,4 = α3c4,2
α4

, c4,0 =
28α4c4,2

α1α3
,

c6,0 = α4c4,2
3α3

, (17)

with c4,2 as an arbitrary constant. Therefore, Eq. (11)
becomes

f (U, V ) = F̂2(U, V,β, γ )

= c4,2
183

(
183α3(β −U )2(γ − V )4

α4

+4392(β −U )2(γ − V )2

α1
+ 61α4(β −U )6

α3
+

5124α4(β −U )4

α1α3
+ 71424α4(β −U )2

α2
1α3

+61α2
3(γ − V )6

α2
4

− 3660α3(γ − V )4

α1α4

−8064(γ − V )2

α2
1

+ 228096α4

α3
1α3

+183(β −U )4(γ − V )2
)
, (18)

is a solution of Eq. (9). On putting Eq. (18) into (8),
gives a second-order solution of rogue wave as

u(U, V ) = 12
α2

(ln F̂2(U, V,β, γ ))UU . (19)

3.3 Third-order rogue waves

Taking f (U, V ) for N = 3 in Eq. (10) to obtain third-
order rogue wave solution as

f (U, V ) = c0,0 + c0,2V 2 + c0,4V 4 + c0,6V 6

+c0,8V 8 + c0,10V 10 + c0,12V 12

+c2,0U 2 + c2,2V 2U 2 + c2,4V 4U 2

+c2,6V 6U 2 + c2,8V 8U 2 + c2,10V 10U 2

+c4,0U 4 + c4,2V 2U 4 + c4,4V 4U 4 + c4,6V 6U 4

+c4,8V 8U 4 + c6,0U 6

+c6,2V 2U 6 + c6,4V 4U 6 + c6,6V 6U 6

+c8,0U 8 + c8,2V 2U 8 + c8,4V 4U 8 + c10,0U 10

+c10,2V 2U 10 + c12,0U 12. (20)

Putting (20) in trilinear Eq. (9), and taking zero the
coefficients of distinct powers of U pV q; p, q ∈ Z ,

gives a system of equations. We get the constant values
on solving it as

c0,0 = 6140529544625285373α4c10,2
138083523968α6

1α3
,

c0,2 = −171277579856366937c10,2
2655452384α5

1
,

c0,4 = −2623638233493α3c10,2
578656α4

1α4
,

c0,6 = −1387653α2
3c10,2

676α3
1α

2
4

, c0,8 = 42129α3
3c10,2

104α2
1α3

4
,

c0,10 = −31α4
3c10,2

2α1α4
4

,

c0,12 = α5
3c10,2
6α5

4
, c2,0 = 650903203872153α4c10,2

2655452384α5
1α3

,

c2,2 = 1828730331c10,2
1712α4

1
, c2,4 = −1672605α3c10,2

676α3
1α4

,

c2,6 = 32829α2
3c10,2

26α2
1α2

4
, c2,8 = −93α3

3c10,2
2α1α3

4
,

c2,10 = α4
3c10,2
α4
4

,

c4,0 = −19319920533α4c10,2
578656α4

1α3
, c4,2 = 1672605c10,2

676α3
1

,

c4,4 = 89187α3c10,2
52α2

1α4

c4,6 = −31α2
3c10,2

α1α
2
4

, c4,8 = 5α3
3c10,2
2α3

4
,

c6,0 = 1387653α4c10,2
676α3

1α3
,

c6,2 = 32829c10,2
26α2

1
, c6,4 = 31α3c10,2

α1α4
,

c6,6 = 10α2
3c10,2
3α2

4
,

c8,0 = 42129α4c10,2
104α2

1α3
, c8,2 = 93c10,2

2α1
,

c8,4 = 5α3c10,2
2α4

, c10,0 = 31α4c10,2
2α1α3

c12,0 = α4c10,2
6α3

, (21)

with c10,2 as an arbitrary constant. Therefore, Eq. (11)
becomes

f (U, V ) = F̂3(U, V,β, γ ) = c10,2
414250571904α6

1α3α
5
4

+(18421588633875856119α6
4
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Fig. 1 First-order rogue waves of (15) for (14) with values: α1 = −10,α2 = α3 = α4 = 1, and center parameters (β, γ ) as: a (0,0); b
(−1,0); and c (2,1). d–f are 2-D contours for a–c in UV -plane
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2),

(22)

where P = (β−U ) and Q = (γ −V ), that is a solution
of Eq. (9) with center parameters (β, γ ). Putting Eq.
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Fig. 2 Second-order rogue waves of (19) for (18) with values:
a α1 = 10,α2 = −10,α3 = 35,α4 = 2,β = γ = 0; b
α1 = 5,α2 = −0.5,α3 = α4 = 1,β = 1, γ = 6; and c

α1 = 1,α2 = −3,α3 = α4 = 0.01,β = 0, γ = 1; and d-f are
contours w.r.t. a–c in UV -plane

(22) into (8) gives a third-order solution of rogue wave
as

u(U, V ) = 12
α2

(ln F̂3(U, V,β, γ ))UU . (23)

4 Logarithmic transformation and dispersive
solitons

We take #i as the phase in Eq. (1) as

#i = pi x + qi y + ri z − wi t, (24)

where wi and pi , qi , ri with i = 1, 2, 3, ..., are the
coefficients of dispersion and real parameters, respec-
tively. Having u = e#i into the linear terms of (1) gives
dispersion as

wi =
α3 p2i + p3i qi + α4r2i

α1qi
. (25)

Now, we assume the logarithmic transformation

u(x, y, z, t) = R(ln f )xx , (26)

and put it with Eq. (25) and f (U, V ) = 1 + e#1 into
Eq. (1). Thus, solving for R gives

R = 12
α2

.

The transformation (26) becomes

u(x, y, z, t) = 12
α2

(ln f )xx . (27)

Putting the transformation (27) into Eq. (1) gives a tri-
linear equation in f (x, y, z, t) as

α3 f 2 fxxx + f 2 fxxxxy + α1 f 2 fxyt + α4 f 2 fxzz
+2α1 ft fx fy − α1 f ft fxy + 2α3 f 3x − 3α3 f fx fxx
+8 fx fxxx fy − 4 f fx fxxxy − α1 f fx fyt + 2α4 fx f 2z
−α4 f fx fzz − α1 f fxt fy + 6 f fxx fxxy
−6 f 2xx fy − 4 f fxxx fxy − f fxxxx fy
−2α4 f fxz fz = 0. (28)

To obtain dispersive-soliton solution, assume a closed-
form expression for the function f as N dispersive-
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Fig. 3 Third-order rogue waves of (23) for (22) with values: α1 = −0.1,α2 = −1,α3 = 0.5,α4 = 0.5, and parameters (β, γ ) as: a
(0,0); b (15,15); and c (15,−20). d–f are contours w.r.t. a–c in UV -plane

soliton inspired by Hirota [32], in transformation (27)
as

f =
∑

λ=0,1

e
(∑

1≤a≤N λa#a+
∑

1≤a<b≤N λaλb
)
, (29)

where
∑

λ=0,1 is the addition of all possible combina-
tions for λn = 0, 1 for 1 ≤ n ≤ N .
We get two choices λ1 = 0, 1 for N = 1, so f =
1+ e#1 ,
and have λ1 = 0, 1 and λ2 = 0, 1 for N = 2, So
there will be four combinations of λ1 and λ2, thus the
function f will be as

f = 1+ e#1 + e#2 + e#1+#2 ,

similarly, λ1, λ2, λ3 = 0, 1 for N = 3, so the total
combinations for λ1, λ2, and λ3 will be eight. Thus,
the expression for f will be as

f = 1+ e#1 + e#2 + e#3 + e#1+#2 + e#1+#3

+e#2+#3 + e#1+#2+#3 .

4.1 Single-dispersive-soliton solution

Assuming the auxiliary function f in Eq. (28) as

f (x, y, z, t) = 1+ e#1 = 1+ ep1x+q1y+r1z−w1t .

(30)

Equation (30) gives

fx = p1ep1x+q1y+r1z−w1t , (31)

fxx = p21e
p1x+q1y+r1z−w1t . (32)

On substituting (30), (31) and (32) into Eq. (27), a
single-dispersive-soliton solution is obtained as

u(x, y, z, t) =

12p21 exp
(

t
(
α3 p21+p31q1+α4r21

)

α1q1
+ p1x + q1y + r1z

)

α2

(
exp

(
t
(
α3 p21+p31q1+α4r21

)

α1q1

)
+ exp (p1x + q1y + r1z)

)
2
.

(33)
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Fig. 4 Single dispersive soliton for (33) with (30) having values:
a p1 = q1 = r1 = α1 = α2 = α3 = α4 = 1, t = 0, z = 1; b
p1 = 1, q1 = −0.3, r1 = α1 = α2 = α3 = α4 = 1, t = 0, z =

1 and c p1 = 1, q1 = −0.4, r1 = 0,α1 = α2 = α3 = α4 =
1, t = 0, z = 1. d-f and g-i are the 2-D contours with y = 1, for
a-c, respectively

4.2 Two-dispersive-soliton solution

To get a two-dispersive-soliton solution, assume f as

f (x, y, z, t) = 1+ e#1 + e#2 + e#1+#2 , (34)

Which gives

fx = p1e#1 + p2e#2 + (p1 + p2)e#1+#2 , (35)

fxx = p21e
#1 + p22e

#2 + (p1 + p2)2e#1+#2 . (36)

Substituting Eqs. (34), (35) and (36) into (27) gives a
two-dispersive-soliton solution of equation (1) as

u(x, y, z, t) =
12

(
p21 exp

(
t(Q1)
α1q1

+ P1
) (

exp
(
t(Q2)
α1q2

)
+ eP2

)
2 + p22 exp

(
t(Q2)
α1q2

+ P2
) (

exp
(
t(Q1)
α1q1

)
+ eP1

)
2
)

α2

(
exp

(
t(Q1)
α1q1

)
+ eP1

)
2
(
exp

(
t(Q2)
α1q2

)
+ eP2

)
2

,

(37)
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Fig. 5 Interaction of two dispersive solitons for (37) with (34)
having values: a p1 = 1, q1 = r1 == 0.5, p2 = −1, q2 = r2 =
0.5,α1 = α2 = α3 = α4 = 1, t = 0, z = 1; b p1 = 1, q1 =
0.7, r1 = 0.5, p2 = −1, q2 = r2 = 0.5,α1 = α2 = α3 = α4 =

1, t = 3, z = 1; and c p1 = 1, q1 = 0.7, r1 == 0.5, p2 =
−1, q2 = r2 = 0.5,α1 = α2 = α3 = α4 = 1, t = −3, z = 1.
d–f are the 2-D contours for a-c in xy-plane

where P1 = p1x + q1y + r1z, P2 = p2x + q2y +
r2z, Q1 = α3 p21 + p31q1 + α4r21 , and Q2 = α3 p22 +
p32q2 + α4r22 .

4.3 Three-dispersive-soliton solution

A three-dispersive-soliton solution can be obtained by
assuming function f as

f (x, y, z, t) = 1+ e#1 + e#2 + e#3 + e#1+#2 + e#1+#3

+e#2+#3 + e#1+#2+#3 , (38)

Therefore, we can get

fx =
3∑

k=1

pke#k +
∑

1≤m<n≤3

(pm + pn)e#m+#n

+
( 3∑

k=1

pk

)

e#1+#2+#3 , (39)

fxx =
3∑

k=1

p2ke
#k +

∑

1≤m<n≤3

(pm + pn)2e#m+#n

+
( 3∑

k=1

pk

)2

e#1+#2+#3 . (40)

By substituting Eqs. (38), (39) and (40) into Eq. (27),
we obtain the three-dispersive-soliton solution.

5 Results and findings

The complete integrability of the proposed general-
ized nonlinear evolution Eq. (1) can generate various
solutions including kinks, breathers, lumps and others.
Using proper selection of parameter, we established the
rogue waves of higher orders with center-parameter
(β, γ ) doing computation symbolically and demon-
strated the dynamical graphics for the solutions. Also,
we showed the dispersive-soliton solutions with appro-
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Fig. 6 Interaction of three dispersive solitons with the aux-
iliary function (38) having values: a p1 = 1, q1 = r1 =
0.5, p2 = −1, q2 = r2 = 0.5, p3 = 1, q3 = r3 = 2,α1 =
1,α2 = 3,α3 = α4 = 1, t = 0, z = 1; b p1 = q1 =
r1 = 1, p2 = −1, q2 = r2 = 0.5, p3 = 1, q3 = r3 =

2,α1 = 1,α2 = 3,α3 = α4 = 1, t = 0, z = 1; and c
p1 = 1, q1 = 1.5, r1 = 1, p2 = −1.5, q2 = 1, r2 = 0.5, p3 =
q3 = 1, r3 = 2,α1 = 2,α2 = 0.5,α3 = α4 = 1, t = 0, z = 1.
d–f are the 2-D contours for a-c in xy-plane

priate constant parameters in the dispersion relation. In
this context, the finding explanations are as follows:

– In Fig. 1, we illustrate first-order rogue-wave solu-
tions having singularity about center-parameter
U = β with the values: α1 = −10,α2 =
α3 = α4 = 1, and center-parameter: (β, γ ) =
(0, 0), (−1, 0) and (2, 1) for (a)-(c).

– Figure 2 showcases the second-order rogue waves
that depicts that two rogue waves having singu-
larity depend on center parameters and occurs in
a line with the constant values: α1 = 10,α2 =
−10,α3 = 35,α4 = 2,β = 0, γ = 0; α1 =
5,α2 = −0.5,α3 = α4 = 1,β = 1, γ = 7; and
α1 = 1,α2 = −3,α3 = α4 = 0.01,β = 0, γ = 1
for (a)-(c).

– In Fig.3, graphics depicts the third-order rogue
waves having singularities about center-parameter
(β, γ ). Four rogue waves occur in a circular path
with the constant values: α1 = −0.1,α2 =

−1,α3 = 0.5,α4 = 0.5, and center-parameter:
β = γ = 0; β = γ = 15; and β = 15, γ = −20
w.r.t. (a)-(c).

– Figure 4 illustrates the dispersive solitons in (a)
and (c) are moving in positive direction, while (b)
is moving in negative direction, justifying by the
graphics (g)-(i) with the values t = 0, t = 2, t =
4, t = 6. Single solitons exist for singularity with
the values: p1 = q1 = r1 = α1 = α2 = α3 =
α4 = 1, t = 0, z = 1; p1 = 1, q1 = −0.3, r1 =
α1 = α2 = α3 = α4 = 1, t = 0, z = 1 and
p1 = 1, q1 = −0.4, r1 = 0,α1 = α2 = α3 =
α4 = 1, t = 0, z = 1 for (a)-(c).

– In Fig. 5, we showcase the interactions of two dis-
persive solitons, where all interactions show a X -
shape interaction with the values: p1 = 1, q1 =
r1 == 0.5, p2 = −1, q2 = r2 = 0.5,α1 =
α2 = α3 = α4 = 1, t = 0, z = 1; p1 =
1, q1 = 0.7, r1 = 0.5, p2 = −1, q2 = r2 =
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0.5,α1 = α2 = α3 = α4 = 1, t = 3, z = 1;
and p1 = 1, q1 = 0.7, r1 == 0.5, p2 = −1, q2 =
r2 = 0.5,α1 = α2 = α3 = α4 = 1, t = −3, z = 1
for (a)-(c).

– Figure 6 depicts the interaction of three dispersive
solitons, where figures (a) and (b) form an X -shape
interactions, while figure (c) shows the Y -shape
interaction with the values: p1 = 1, q1 = r1 =
0.5, p2 = −1, q2 = r2 = 0.5, p3 = 1, q3 = r3 =
2,α1 = 1,α2 = 3,α3 = α4 = 1, t = 0, z = 1;
p1 = q1 = r1 = 1, p2 = −1, q2 = r2 =
0.5, p3 = 1, q3 = r3 = 2,α1 = 1,α2 = 3,α3 =
α4 = 1, t = 0, z = 1; and p1 = 1, q1 = 1.5, r1 =
1, p2 = −1.5, q2 = 1, r2 = 0.5, p3 = q3 =
1, r3 = 2,α1 = 2,α2 = 0.5,α3 = α4 = 1, t =
0, z = 1 for (a)-(c).

6 Conclusions

In conclusion, this article explored a new generalized
(3+1)-D Painlevé-type nonlinear evolution equation. It
analyzed the Painlevé test to check the complete inte-
grability of the proposed equation. It obtained trilinear
equations in auxiliary functions usingCole–Hopf trans-
formations or logarithmic transformations. It generated
the higher-order solutions for rogue wave with center-
parameter (β, γ ) and dispersive-soliton solutions via
the symbolic computation approach and dispersive-
soliton assumption, respectively. This work established
the rogue waves and dispersive solitons up to the third
order by choosing selective values for different param-
eters and discussing their results and findings. We used
symbolic computer algebra system software Mathe-
matica to generate the dynamics for the solutions of
higher-order rogue wave with several center parame-
ters and dispersive solitons with parameters present in
the dispersion relation.
The proposed equation is a generalized equation with
applications in soliton theory and nonlinear waves.
Thus, the proposed equation is having a future scope to
study different water-waves including kinks, breathers,
lumps, and others solutions. As we have utilized the
methodologies the direct symbolic approach to cre-
ate the rogue waves and dispersive-soliton assump-
tion for dispersive solitons, researchers and engineers
can examine the proposed equation with other strate-
gies and approaches such as the symbol calculation
method based on neural networks proposed by Zhang

et al., Lie symmetry analysis, Darboux transformation,
Hirota’s bilinearization method and others concerned
in the introduction section.
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ABSTRACT

This work investigates a (2þ 1)-dimensional shallow water wave equation of ion-acoustic waves in plasma physics. It comprehensively ana-
lyzes Cole–Hopf transformations concerning dimensions x, y, and t and obtains the dispersion for a phase variable of this equation. We show
that the soliton solutions are independent of the different logarithmic transformations for the investigated equation. We also explore the lin-
ear equations in the auxiliary function f present in Cole–Hopf transformations. We study this equation’s first- and second-order rogue waves
using a generalized N-rogue wave expression from the N-soliton Hirota technique. We generate the rogue waves by applying a symbolic tech-
nique with b and c as center parameters. We create rogue wave solutions for first- and second-order using direct computation for appropriate
choices of several constants in the equation and center parameters. We obtain a trilinear equation by transforming variables n and y via loga-
rithmic transformation for u in the function F. We harness the computational power of the symbolic tool Mathematica to demonstrate the
graphics of the soliton and center-controlled rogue wave solutions with suitable choices of parameters. The outcomes of this study transcend
the confines of plasma physics, shedding light on the interaction dynamics of ion-acoustic solitons in three-dimensional space. The equation’s
implications resonate across diverse scientific domains, encompassing classical shallow water theory, fluid dynamics, optical fibers, nonlinear
dynamics, and many other nonlinear fields.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0185772

I. INTRODUCTION
Shallow water waves (SWWs) are an exquisite phenomenon

described by waves propagating at depths significantly smaller than
their wavelength.1–6 These waves display distinguishing behaviors due
to the influence of the sea or lake floor. It makes them a subject of fas-
cination for scientists, mathematicians, and physicists. SWWs often
find their origin in coastal regions with reasonably shallow water
depths. Various characteristics, including wind, tides, and seismic
activity, can cause them. The interaction between the wind and the
water surface is a primary driver for creating interesting waves that
gracefully transit the shallows. The remarkable characteristics of shal-
low water waves make them relevant in various applications. Coastal
engineering leverages the acquaintance of SWW to design structures
that can withstand wave action.

Furthermore, they play a vital role in activities such as surfing,
where enthusiasts harness the energy of these waves for recreational
purposes. Their presence not only enchants coastal landscapes but also
serves as a canvas for scientific exploration and practical applications
in engineering and recreation. From a scientific perspective, studying
SWWs provides valuable insight into fluid dynamics and the complex
interactions between water and its surroundings. Comprehending
these waves is integral to forecasting coastal erosion, managing water
resources, and comprehending the broader implications of climate
change on coastal ecosystems.

Solitons, or solitary and self-sustaining waves,7–15 are unprece-
dented phenomena in wave dynamics. Unlike conventional waves, sol-
itons maintain their structure and energy, traveling undisturbed long
distances without dissipating or losing their form. The source of
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solitons can be diverse, emerging from nonlinear interactions in
diverse mediums such as ocean, optical fibers, and plasma. Notable for
their ability to resist dispersion and sustain stability, solitons often
emerge due to a delicate balance between nonlinearity and dispersion.
Solitons find applications in a range of scientific and technological
fields. They serve as data carriers, ensuring signal integrity over vast
distances in optical communication. Their presence in fluid dynamics
contributes to understanding rogue waves, and in plasma physics, they
play a crucial role in sustaining plasma stability. Solitons challenge tra-
ditional wave theories, offering insight into nonlinear phenomena and
the preservation of wave coherence. Their occurrence in various natu-
ral systems extends our understanding of complex wave interactions.
Therefore, from revolutionizing communication technologies to
unraveling mysteries in fluid dynamics, solitons stand as silent yet
powerful contributors to the tapestry of scientific exploration.

Rogue waves, often called giant solitary waves emerging unex-
pectedly in the ocean’s vastness, manifest as localized phenomena in
space and time, boasting a considerable amplitude. These enigmatic
occurrences, documented in sources, such as Refs. 16–23, are unpre-
dictable and ubiquitous, posing potential hazards to individuals. Rogue
waves materialize randomly as tiny waves converge the energy in a
confined territory. A crucial application of this research lies in enhanc-
ing marine safety. By developing models and prediction algorithms,
scientists aim to provide early detection and warning systems to pre-
vent accidents triggered by rogue waves. This knowledge significantly
benefits maritime, offshore petroleum platforms, and seaside infra-
structure industries. Consequently, a comprehensive understanding of
the dynamics of rogue waves can lead to improved operational safety
and cost-effective solutions, enabling the construction of safer struc-
tures and formulating strategies to mitigate their impact. Moreover,
delving into the causes and dynamics of rogue waves contributes to
our expanding comprehension of complicated systems, the interac-
tions of nonlinear waves, and the emergence of severe phenomena
across various fields of physics and mathematics. The study of rogue
waves transcends maritime concerns, offering valuable insight into
broader scientific principles and the intricacies of nonlinear wave
behavior.

Researchers and scientists have studied the nonlinear partial dif-
ferential equations (PDEs) or nonlinear evolution equations24–28 using
several methods for obtaining the exact solutions, such as the inverse
scattering method,29,30 the Darboux transformation,31–33 the simplified
Hirota’s technique,34–36 bilinear neural/residual network method,37–43

Hirota’s bilinear method,44–47 the Lie symmetry analysis,48–50 the
B€acklund transformation,51–53 and other techniques.

This research investigates the Cole–Hopf transformations con-
cerning different dimensions and rogue waves for a (2þ 1)-dimen-
sional SWW equation54–56

utt " uxx " uyy þ uxuxt þ uyuyt " uxxtt " uyytt ¼ 0: (1)

In 1978, Yajima et al.54 modeled this equation in three-dimensional
interactions of ion-acoustic solitons in collisionless plasmas. They
studied it using Hirota’s bilinear method and discussed the one- and
two-soliton solutions for the same. In the continuation, Kako and
Yajima55 studied this model of ion-acoustic solitons in collisionless
plasmas in two-dimensional space. They showed the dynamics for the
interaction of two soliton solutions for the obtained solution with
some appropriate parameters. Also, they showed the interaction of two

sinusoidal waves dynamically with chosen constants. In 1994,
Clarkson and Mansfield56 quoted this Eq. (1) in their work on a SWW
equation, in which they studied a generalized SWW equation by non-
Painlev"e behavior and dynamically showed the solitons’ interaction
solutions and breathers using Lie symmetry analysis for classical and
non-classical symmetries. We found it fascinating that no more work
has been done in the literature on this equation as far as we know,
whereas this has an exciting pattern for partial derivatives in its linear
terms. This gave us an idea to think about several Cole–Hopf transfor-
mations in different dimensions.

In the structure of the manuscript, Sec. II analyzes the Cole–Hopf
transformations concerning dimensions x, y, and t and obtains the dis-
persion for a phase variable of the investigated equation with a discussion
of soliton solutions for the different transformations. Section III studies
the equation’s first- and second-order solutions of rogue waves using a
generalized N-rogue wave expression from the N-soliton Hirota tech-
nique with center parameters. We compute a trilinear equation in an
auxiliary function using the logarithmic transformation and create rogue
wave solutions up to second order for suitable values of center parame-
ters and several constants in the equation using a direct computation
technique. Section IV discusses the obtained solutions and the dynamical
analysis. Section V, in the end, concludes our findings and future scope.

II. ANALYSIS OF COLE–HOPF TRANSFORMATIONS
The Cole–Hopf transformation is a mathematical technique used

in partial differential equations (PDEs), particularly in studying certain
nonlinear PDEs. Cole and Hopf57,58 created the transformation in the
1950s to simplify and sometimes linearize certain types of nonlinear
PDEs. It is most commonly associated with the Korteweg–de Vries
(KdV) equation, a nonlinear PDE that involves nonlinear and disper-
sive terms and describes the propagation of long, weakly nonlinear
waves, such as water waves in shallow canals. The Cole–Hopf transfor-
mation has been a valuable tool in the study of soliton theory and inte-
grable systems, where it allows researchers to comprehend the
manners of certain nonlinear wave equations and uncover essential
properties, such as the existence of localized solutions, solitary waves,
and several other solutions that can persist in specific nonlinear sys-
tems. The Cole–Hopf transformation, in general, is given as

u ¼ Rðln f Þxp ; (2)

for a given nonlinear PDE, where p represents the order of partial
derivative concerning x leaning on the balance of the higher-order and
nonlinear terms in the PDE.

In order to create the said transformation, we need to get the dis-
persion with the help of the phase variable. We consider the phase var-
iable as

ai ¼ pix þ qiy " wit; (3)

where wi and pi; qi; i 2 N represent dispersion and constants respec-
tively. On substituting

u ¼ eai (4)

into the linear terms of Eq. (1), we get the wi as

wi ¼ 6

!!!!!!!!!!!!!!!
p2i þ q2i

p
!!!!!!!!!!!!!!!!!!!!!!!!!!!
1" ðp2i þ q2i Þ

p (5)

with p2i þ q2i < 1 for getting real valued dispersion.
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Now, we assume the three Cole–Hopf transformations in differ-
ent dimensions x, y, and t known as spatial and temporal coordinates
as

u ¼ u1 ¼ R1ðln f Þx; (6)

u ¼ u2 ¼ R2ðln f Þy; (7)

u ¼ u3 ¼ R3ðln f Þt ; (8)

where Ri; i ¼ 1; 2; 3 are non-zero constants and f ¼ f ðx; y; tÞ is an
auxiliary function, which will be determined later. To determine the
value of Ri; i ¼ 1; 2; 3 in Eqs. (6)–(8), we consider

f ðx; y; tÞ ¼ 1þ eai ¼ 1þ epixþqiy"wit : (9)

On substituting Eqs. (6), (7), or (8) with Eq. (9) into Eq. (1), we get the
solution for Ri as

R1 ¼
12

!!!!!!!!!!!!!!!
p21 þ q21

p

p1
!!!!!!!!!!!!!!!!!!!!!!!!!!!
1" ðp21 þ q21Þ

p ; R2 ¼
12

!!!!!!!!!!!!!!!
p21 þ q21

p

q1
!!!!!!!!!!!!!!!!!!!!!!!!!!!
1" ðp21 þ q21Þ

p ; R3 ¼ "12;

(10)

for Eqs. (6), (7), and (8), respectively. Thus, the transformations will be
as

u1 ¼
12

!!!!!!!!!!!!!!!
p21 þ q21

p

p1
!!!!!!!!!!!!!!!!!!!!!!!!!!!
1" ðp21 þ q21Þ

p ðln f Þx;

u2 ¼
12

!!!!!!!!!!!!!!!
p21 þ q21

p

q1
!!!!!!!!!!!!!!!!!!!!!!!!!!!
1" ðp21 þ q21Þ

p ðln f Þy;

u3 ¼ "12ðln f Þt :

(11)

On utilizing the above transformations Eq. (11) into Eq. (1), we obtain
transformed equations for Eq. (1) in auxiliary function f as

fxtt f 4 " fxxxf 4 " fxxxtt f 4 " fxyyf 4 " fxyytt f 4 " ftt fxf 3 " 2ft fxt f 3 þ 3fxfxxf 3 þ 3fxtt fxxf 3 þ 6fxt fxxt f 3

þ R1fxxfxxt f 3 þ 3fxfxxtt f 3 þ ftt fxxxf 3 þ 2ft fxxxt f 3 þ R1fxyfxyt f 3 þ ftt fxyyf 3 þ 2ft fxyyt f 3 þ 2fxyfyf 3 þ 2fxytt fyf 3

þ 4fxyt fyt f 3 þ 2fxyfytt f 3 þ fxfyyf 3 þ fxtt fyyf 3 þ 2fxt fyyt f 3 þ fxfyytt f 3 " 2f 3x f
2 " 12fxf 2xt f

2 " R1ft f 2xxf
2 " R1ft f 2xyf

2

" 2fxf 2y f
2 " 2fxtt f 2y f

2 " 4fxf 2yt f
2 þ 2f 2t fxf

2 " 6f 2x fxtt f
2 " 6ftt fxfxxf 2 " 12ft fxt fxxf 2 " 2R1fxfxt fxxf 2 " R1f 2x fxxt f

2

" 12ft fxfxxt f 2 " 2f 2t fxxxf
2 " 2f 2t fxyyf

2 " 4ftt fxyfyf 2 " R1fxt fxyfyf 2 " 8ft fxyt fyf 2 " R1fxfxyt fyf 2 " 8ft fxyfyt f 2

" R1fxfxyfyt f 2 " 8fxt fyfyt f 2 " 4fxfyfytt f 2 " 2ftt fxfyyf 2 " 4ft fxt fyyf 2 " 4ft fxfyyt f 2 þ 6ftt f 3x f þ 6ftt fxf 2y f

þ 12ft fxt f 2y f þ R1fxfxt f 2y f þ 2R1f 3x fxt f þ 36ft f 2x fxt f þ 3R1ft f 2x fxxf þ 18f 2t fxfxxf þ 12f 2t fxyfyf þ 3R1ft fxfxyfyf

þ R1f 2x fyfyt f þ 24ft fxfyfyt f þ 6f 2t fxfyyf " 2R1ft f 4x " 24f 2t f
3
x " 2R1ft f 2x f

2
y " 24f 2t fxf

2
y ¼ 0; (12)

" fxxytt f 4 þ fytt f 4 " fyyyf 4 " fyyytt f 4 þ ftt fxxyf 3 þ 2ft fxxyt f 3 þ 2fxfxyf 3 þ 2fxtt fxyf 3 þ 4fxt fxyt f 3 þ R2fxyfxyt f 3

þ 2fxfxytt f 3 " ftt fyf 3 þ fxxfyf 3 þ fxxtt fyf 3 " 2ft fyt f 3 þ 2fxxt fyt f 3 þ fxxfytt f 3 þ 3fyfyyf 3 þ 3fytt fyyf 3 þ 6fyt fyyt f 3

þ R2fyyfyyt f 3 þ 3fyfyytt f 3 þ ftt fyyyf 3 þ 2ft fyyyt f 3 " 2f 3y f
2 " R2ft f 2xyf

2 " 12fyf 2yt f
2 " R2ft f 2yyf

2 " 2f 2t fxxyf
2

" 4ftt fxfxyf 2 " 8ft fxt fxyf 2 " 8ft fxfxyt f 2 þ 2f 2t fyf
2 " 2f 2x fyf

2 " 4f 2xt fyf
2 " 4fxfxtt fyf 2 " 2ftt fxxfyf 2 " 4ft fxxt fyf 2

" R2fxt fxyfyf 2 " R2fxfxyt fyf 2 " 8fxfxt fyt f 2 " 4ft fxxfyt f 2 " R2fxfxyfyt f 2 " 2f 2x fytt f
2 " 6f 2y fytt f

2 " 6ftt fyfyyf 2

" 12ft fyt fyyf 2 " 2Rfyfyt fyyf 2 " Rf 2y fyyt f
2 " 12ft fyfyyt f 2 " 2f 2t fyyyf

2 þ 6ftt f 3y f þ Rfxfxt f 2y f

þ 12f 2t fxfxyf þ 6ftt f 2x fyf þ 24ft fxfxt fyf þ 6f 2t fxxfyf þ 3Rftfxfxyfyf þ 2R2f 3y fyt f þ 12ft f 2x fyt f þ 36ft f 2y fyt f

þ R2f 2x fyfyt f þ 3R2ft f 2y fyyf þ 18f 2t fyfyyf " 2R2ft f 4y " 24f 2t f
3
y " 2R2ft f 2x f

2
y " f 4fxxy " 24f 2t f

2
x fy ¼ 0; (13)

f 2ftt " f 2fxx " f 2fxxtt " f 2fyy " f 2fyytt þ 4ft fxfxt " 2f 2t fxx
þ 2fft fxxt þ 4ft fyfyt " 2f 2t fyy þ 2fft fyyt " ff 2t " 2ftt f 2x
þ fftt fxx " 2ftt f 2y þ fftt fyy þ 2ffxfxtt þ ff 2x " 4ff 2xt
þ 2ffyfytt þ ff 2y " 4ff 2yt ¼ 0; (14)

for Eqs. (6), (7), and (8), respectively.
Considering the function f in any of the above-mentioned equa-

tion as

f ¼ 1þ ea1 ¼ 1þ e
p1xþq1y"

!!!!!!!
p2
1
þq2

1

p
!!!!!!!!!!!!
1"ðp2

1
þq2

1
Þ

p t

: (15)

Thus, by putting up the expression for f from Eq. (15) into any trans-
formation of u in Eq. (11), we get the same solution as

u ¼ 12
!!!!!!!!!!!!!!!
p21 þ q21

p
ep1xþq1y

!!!!!!!!!!!!!!!!!!!!!!!!!!!
1" ðp21 þ q21Þ

p
e

t
!!!!!!!
p2
1
"q2

1

p
!!!!!!!!!!!!
1"ðp2

1
þq2

1
Þ

p
þ ep1xþq1y

" # ; (16)
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which shows that the (2þ 1)-dimensional SWW equation (1) is inde-
pendent of the Cole–Hopf transformations and any transformation
can be used to get the soliton solutions. Readers can follow the
works54,55 to dive into the soliton solutions and their interactions.

III. CENTER-CONTROLLED ROGUEWAVES
On transforming u ¼ uðn; yÞ with n ¼ x " h & t, Eq. (1), we get

h2ðunn " unnnn " unnyyÞ " hðununn þ unyuyÞ " unn " uyy ¼ 0: (17)

Considering the phase Ui in Eq. (17) as

Ui ¼ pin" wiy; (18)

where pi and wi; i 2 N are parameters and dispersion, respectively. By
putting uðn; yÞ ¼ eUi in Eq. (17) for linear terms, we obtain

wi ¼ 6

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
"h2p4i þ h2p2i " p2i

p
!!!!!!!!!!!!!!!!!
h2p2i þ 1

p : (19)

We take the dependent variable transformation as

uðn; yÞ ¼ Rðlog FÞn; (20)

and put it in Eq. (17) with Eq. (19) and F ¼ 1þ eU1 , then we get R as

R ¼ 12h:

So, the Eq. (20) becomes

uðn; yÞ ¼ u0 þ 12hðlnFÞn; (21)

where u0 is a constant parameter. On substituting Eq. (21) into Eq.
(17), we get a trilinear equation in Fðn; yÞ as

F2h2Fnnnn " F2h2Fnn þ F2h2Fnnyy þ F2Fnn þ F2Fyy
" 4Fh2FnFnnn " 2Fh2FnFnyy þ Fh2F2

n þ 3Fh2F2
nn

þ 4Fh2F2
ny " 4h2FnFnyFy þ 2h2FnnF2

y " 2Fh2FnnyFy

þ 2h2F2
nFyy " Fh2FnnFyy " FF2

n " FF2
y ¼ 0: (22)

In 2023, Kumar and Mohan59 generalized a direct technique to
construct N-order rogue waves using N-soliton solution in Hirota’s
technique which was first discussed by Yang et al.60 in 2022, for a
(3þ 1)-dimensional KdV–BBM equation with limit technique of long
wave. It gives the generalized representation of N-rogue waves as

FNðn; yÞ ¼
XN
2þN
2

j¼0

Xj

k¼0

sN2þN"2j;2kðyÞ2kðnÞN
2þN"2j; (23)

which has a resemblance to the functions used in symbolic computa-
tional approach61,62 by Zhaqilao.63 This can be expressed with center-
controlled parameter as

Fðn; yÞ ¼ cFN ðn; y; b; cÞ

¼
XN
2þN
2

j¼0

Xj

k¼0

sN2þN"2j;2kðy " cÞ2kðn" bÞN
2þN"2j; (24)

where si;j; i; j 2 f0; 2;…; jðjþ 1Þg are constants and ðb; cÞ are center
parameters.

A. First-order solution of rogue waves
Considering Fðn; yÞ withN¼ 1 in Eq. (24) as

Fðn; yÞ ¼ s2;0n
2 þ s0;2y2 þ s0;0; (25)

and substituting it into Eq. (22) gives a system by equating the coeffi-
cients for distinct powers of nmyn;m; n 2 Z to zero as

2h2s32;0 " 2s32;0 þ 2s0;2s22;0 ¼ 0;

12h2s32;0 þ 12h2s0;2s22;0 þ 4s0;0s0;2s2;0 ¼ 0;

12h2s0;2s22;0 þ 12h2s20;2s2;0 " 4h2s0;0s0;2s2;0 þ 4s0;0s0;2s2;0 ¼ 0:

(26)

Solving above system gives constants as

s0;0 ¼
3h2 h2 " 2ð Þs2;0

1" h2
; s0;2 ¼ 1" h2ð Þs2;0; s2;0 ¼ s2;0: (27)

Thus, Eq. (25) with Eq. (27) will be as

Fðn; yÞ ¼ bf1ðn; y; b; cÞ

¼ s2;0 ðb" nÞ2 þ 1" h2ð Þðy " cÞ2 þ 3 h2 " 2ð Þh2

1" h2

" #
; (28)

which gives a solution of Eq. (22). We get a first-order solution of
rogue waves on substituting Eq. (28) into Eq. (21) as

uðn; yÞ ¼ u0 þ
24hðn" bÞ

ðb" nÞ2 þ 1" h2ð Þðy " cÞ2 þ 3 h2 " 2ð Þh2

1" h2

: (29)

B. Second-order solution of rogue waves
Taking auxiliary function Fðn; yÞ with N¼ 2 in Eq. (24) as

Fðn; yÞ ¼ s6;0n
6 þ s4;0n

4 þ s2;0n
2 þ s0;6y6 þ s2;4n

2y4 þ s0;4y4

þ s4;2n
4y2 þ s2;2n

2y2 þ s0;2y2 þ s0;0; (30)

and put it in trilinear Eq. (22). On equating zero the coefficients for
distinct powers of nmyn;m; n 2 Z, we obtain a system, which gives the
constant values as

s0;0 ¼
h6 286h6 " 1383h4 þ 2548h2 " 2076ð Þs4;2

h2 " 1ð Þ4
;

s0;2 ¼
h4 144h4 " 627h2 þ 958ð Þs4;2

3 h2 " 1ð Þ2
;

s0;4 ¼
1
3
h2 33h2 " 50ð Þs4;2; s0;6 ¼

1
3

h2 " 1ð Þ2s4;2;

s2;0 ¼ " h4 144h4 " 507h2 þ 238ð Þs4;2
3 h2 " 1ð Þ3

;

s2;2 ¼ " 6h2 h2 " 6ð Þs4;2
h2 " 1

; s2;4 ¼ " h2 " 1ð Þs4;2;

s4;0 ¼
h2 33h2 " 58ð Þs4;2

3 h2 " 1ð Þ2
; s4;2 ¼ s4;2; s6;0 ¼

s4;2
3ð1" h2Þ

:

(31)

So, the Eq. (25) with Eq. (31) becomes
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Fðn; yÞ ¼ bf2ðn; y; b; cÞ

¼ s4;2
3

33h2 " 58ð Þh2ðb" nÞ4

h2 " 1ð Þ2
" ðb" nÞ6

h2 " 1

 

" 18 h2 " 6ð Þh2ðb" nÞ2ðy " cÞ2

h2 " 1

" 3 h2 " 1ð Þðb" nÞ2ðy " cÞ4 þ 33h2 " 50ð Þh2ðy " cÞ4

þ h2 " 1ð Þ2ðy " cÞ6 " 144h4 " 507h2 þ 238ð Þh4ðb" nÞ2

h2 " 1ð Þ3

þ 144h4 " 627h2 þ 958ð Þh4ðy " cÞ2

h2 " 1ð Þ2

þ 3 286h6 " 1383h4 þ 2548h2 " 2076ð Þh6

h2 " 1ð Þ4

þ3ðb" nÞ4ðy " cÞ2
!

; (32)

which gives a solution of Eq. (22). We get a second-order solution of
rogue waves on substituting Eq. (32) into Eq. (21) as

uðn; yÞ ¼ u0 þ 12hðln bf2ðn; y; b; cÞÞn: (33)

IV. RESULTS AND DISCUSSION
Our investigation shows that the (2þ 1)-dimensional SWW

equation governing ion-acoustic waves in plasma physics can have dif-
ferent Cole–Hopf transformations in different dimensions x, y, and t.
The analysis of these transformations showed that the soliton solutions
for this SWW equation are independent of the Cole–Hopf transforma-
tions and give the same solution as discussed in Sec. II. By selecting the
appropriate parameters, we found the first- and second-order solutions
of rogue waves with center parameters (b; c) with the said symbolic
approach and dynamically showed the graphics of the obtained solu-
tions. The exploration of the evolutionary processes behind rogue
waves is imperative, capturing the attention of numerous academics.
Their excessively steep height sets rogue waves apart, sometimes sur-
passing the magnitude of neighboring waves. These unique character-
istic challenges traditional linear wave models, prompting a focus on
nonlinear wave dynamics in understanding the mechanics and pre-
dicting the occurrence of these formidable waves. Therefore, we
explain the results and findings as follows:

• In Fig. 1, we illustrate the solitons for the solution Eq. (16) with
Eq. (15) with respect to the singularity about the x axis. (a)–(c)
show the dynamics of solitons with values (a) p1 ¼ 0:8; q1 ¼ 0:3,
(b) p1 ¼ 0:7; q1 ¼ "0:7, and (c) p1 ¼ "0:8; q1 ¼ 0:3.

• Figure 2 depicts the first-order solution of rogue waves with cen-
ter parameters ðb; cÞ. It shows single rogue waves concerning sin-
gularity through center parameters ðb; cÞ with values (a)

FIG. 1. Solitons for the solution (16) with (15) having values (a) p1 ¼ 0:8; q1 ¼ 0:3, (b) p1 ¼ 0:7; q1 ¼ "0:7, and (c) p1 ¼ "0:8; q1 ¼ 0:3. (d)–(f) are 2D outlines for
(a)–(c) concerning contours in ny-plane.
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FIG. 2. Rogue waves for first-order solution (29) with (28) having values (a) u0 ¼ 0; h ¼ 0:1; b ¼ c ¼ 0, (b) u0 ¼ 0; h ¼ 0:1; b ¼ 7; c ¼ "6, and (c)
u0 ¼ 0; h ¼ 0:1; b ¼ "5; c ¼ 7. (d)–(f) are 2D outlines for (a)–(c) concerning contours in ny-plane.

FIG. 3. Rogue waves for second-order solution (33) with (32) having values (a) u0 ¼ 0; h ¼ 4; b ¼ c ¼ 0, (b) u0 ¼ 0; h ¼ 8; b ¼ c ¼ 0, and (c)
u0 ¼ 0; h ¼ 12; b ¼ c ¼ 0. (d)–(f) are 2D outlines for (a)–(c) concerning contours in ny-plane.
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u0 ¼ 0; h¼ 0:1; b¼ c¼ 0, (b) u0 ¼ 0; h¼ 0:1; b¼ 7; c¼"5, and
(c) u0 ¼ 0; h¼ 0:1; b¼"5; c¼ 7.

• In Fig. 3, we show the second-order solution of rogue waves with
center parameters ðb; cÞ. Dynamics shows that the direction and
amplitude of rogue waves depend on the transforming parameter
h in n ¼ x " ht. Rogue waves are plotted with values (a)
u0 ¼ 0; h ¼ 4; b ¼ c ¼ 0, (b) u0 ¼ 0; h ¼ 8; b ¼ c ¼ 0, and (c)
u0 ¼ 0; h ¼ 12; b ¼ c ¼ 0.

• Figure 4 shows the second-order solution of rogue waves with
center parameters ðb; cÞ. It shows that the direction and ampli-
tude of rogue waves depend on the transforming parameter h in
n ¼ x " ht. Rogue waves are plotted with values (a)
u0 ¼ 2; h¼ 5; b¼ 4; c¼"2, (b) u0 ¼ 2; h¼ 10; b¼ 4; c¼"2,
and (c) u0 ¼ 5; h¼ 15; b¼ 4; c¼"2.

V. CONCLUSIONS
In conclusion, our investigation of the (2þ 1)-dimensional SWW

equation governing ion-acoustic waves in plasma physics has revealed
analytical insights and dynamic phenomena. Through a meticulous
analysis of Cole–Hopf transformations in dimensions x, y, and t, we
have derived the dispersion relation for the phase variable and illus-
trated soliton solutions that remain unaffected by these transforma-
tions. Our investigation extends to rogue waves, delving into first- and
second-order occurrences using a generalized N-rogue wave

expression derived by the N-soliton in the Hirota technique.
Application of symbolic computation, notably the center parameters b
and c, has allowed us to formulate rogue wave solutions, offering a
subtle understanding between the parameters and the resulting
dynamics. By employing direct computation for various parameter val-
ues and reasonable choices of constants, we have manifested solutions
of rogue waves up to second-order with their dynamics. Moreover, our
exploration incorporates a logarithmic transformation for the depen-
dent variable u, leading to a trilinear equation in Fðn; yÞ. In practical
terms, our findings resonate across diverse scientific disciplines, rang-
ing from classical shallow water theory and fluid dynamics to optical
fibers and nonlinear dynamics. The three-dimensional space investi-
gated in the context of ion-acoustic solitons in plasmas holds promise
for real-world applications, offering insight that transcends the bound-
aries of plasma physics.

This research contributes to the theoretical understanding of the
(2þ 1)-dimensional SWW equation with practical applications in
diverse nonlinear fields. The dynamics, soliton solutions, and rogue wave
occurrences uncovered in this study provide a solid foundation for future
investigations and underline the rich potential of this area of research.
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Abstract
This study explores the behavior of higher-order roguewaves within a (3+1)-dimensional generalized
nonlinear wave equation in liquid-containing gas bubbles. It creates the investigated equation’sHirota
D-operator bilinear form.We employ a generalized formulawith real parameters to obtain the rogue
waves up to the third order using the direct symbolic technique. The analysis reveals that the second
and third-order rogue solutions produce two and three-waves, respectively. To gain deeper insights,
we use theCole-Hopf transformation on the transformed variables ξ and η to produce a bilinear
equation. Using the system softwareMathematica, the dynamic analysis presents the graphics for the
obtained solutions in transformed ξ, η, and original spatial-temporal coordinates x, y, z, t. These
visualizations reveal roguewaves’ intricate structure and evolution, capturing their localized
interactions and significant presencewithin nonlinear systems.Wedemonstrate that roguewaves,
characterized by their substantial height and sudden appearance, are prevalent in various nonlinear
events. The equation examined in this study offers valuable insights into the evolution of longer waves
with smaller amplitudes, which is particularly relevant infields such asfluid dynamics, dispersive
media, and plasmas. The implications of this research extend acrossmultiple scientific domains,
including fiber optics, oceanography, dusty plasma, and nonlinear systems, where understanding the
behavior of roguewaves is crucial for both theoretical and practical applications.

1. Introduction

Partial differential equations (PDEs) [1–9] containing dependent variable functions and their partial derivatives
are a significant topic in appliedmathematics andmathematical physics. Several nonlinear sciences and
engineering fields employ PDEs to represent complex physical procedures.Mathematicians have utilized
nonlinear PDEs to explain various scientific phenomena, including gravitational research and fluid dynamics.
Analyzing and solving nonlinear PDEs can be challenging because no universalmethod exists. Inmany different
nonlinear sciences, PDEs represent and comprehend physical phenomena that contain numerous variables and
their derivatives. Thewave equation [10], heat equation [11], and thewell-known Schrödinger equation [12]
fromquantummechanics are a few examples of PDEs. The Bäcklund transformation [3, 4], Hirota’s
bilinearizationmethod [5–7], Darboux transformation [8, 9], inverse scatteringmethod [13, 14], bilinear neural
networkmethod [15, 16], simplifiedHirota’s approach [17, 18], Lie symmetry approach [19–21], and other
techniques are used to solve nonlinear evolution equations and obtain the analytical and exact solutions.

Roguewaves, sometimes known as extremewaves [22–32], are large-scale localizedwaves in space and time.
They threaten sea-farers, ships and vessels, and other entities. However, itmay also help extract useful
information about a system and its behavior in non-oceanic cases. For example, it can lead to the formation of
extremewave localization in optics. The evolution of roguewaves is an important topic formany scholars.
Unlike typical oceanwaves, roguewaves can reach towering heights of 20-30meters ormore, often appearing
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unexpectedly in relatively calm seas or during storms,making them extremely dangerous for ships and offshore
structures. The height of roguewaves distinguishes them fromneighboringwaves. Roguewaves are investigated
in nonlinear wave dynamics because they violate widely accepted linearwave theories. The goal of scientific
study on exceptional or largewaves is to predict their occurrence and comprehend the fundamental principles
that underlie them.When shorter waves concentrate their energy on a narrow area, roguewaves occur from
nowhere. The sea safety is one such improvement use. In order to prevent the harm that thesewaves can impose,
the evolvingmodels and algorithms give early warnings and detections. Themarine sector, the coastal region,
and offshore oil and gas areas could all benefit fromknowing this information. Thus, knowing themechanics of
roguewaves helps develop safe structures andmitigation techniques. Thus, getting operational safety and
reasonable solutions is feasible. Furthermore, examining the dynamics and origins adds to our understanding of
complicated procedures and the formation of extreme processes in various nonlinear sciences.

In this work, we examine newly constructed roguewaves of a generalized (3+1)-dimensional nonlinear
wave equation [33, 34] in liquidwith gas bubbles as

( ) ( )a a a a a+ + + + + =u uu u u u u 0, 1t x xxx x x yy zz1 2 3 4 5

where u(x, y, z, t) is a wave function representing the amplitude of the propagatingwave as a function of space
and time, andα1�i�5 are non-zero constants. The nonlinear termα1uux represents the self-interaction of the
wave, which captures the formation of roguewaves, vast and unexpectedwaves that occur in the nonlinear
system. The termα2uxxx accounts for the dispersive effects in themedium,where different waves travel at
different speeds, conducting the spreading of thewave packet. The dissipative termα3ux represents the energy
loss or dissipation in themediumdue to factors like viscosity in the liquid and the cross-diffusion termsα4uyy
andα5uzz are a diffusion of thewave in the transverse directions y and z describing the nature of wave
propagation.

This research concentrates on originating roguewave solutions to this generalized nonlinear evolution
equation and investigating their dynamics. The roguewaves in thismodel emphasize the possibility for sudden,
large amplitudewaves in the liquidmediumwith gas bubbles. This is relevant in comprehending underwater
explosions, sonic booms, or extreme oceanic roguewaves. By exploring the dynamics of these roguewaves, the
study provides wisdom into how suchwaves form, evolve and dissipate over time. This learning can potentially
guide the development of processes to predict andmitigate the consequences of roguewaves in real-world
scenarios, offering hope in the face of these unforeseen natural phenomena. The relevance of this research to
understanding and predicting roguewaves in various scenarios keeps the researchers engaged and interested in
the topic. Overall, the physical relevance of thismodel lies in its ability to capture complexwave phenomena in a
nonlinearmediumwithmultiple interacting effects (nonlinearity, dispersion, dissipation, and cross-diffusion),
providing amore profound understanding of themechanisms after roguewave appearance and propagation.

The equation (1)models the propagation of waves in a liquidmedium containing gas bubbles. This equation
accounts for the complex behavior of waves as they interact with the bubbles within the liquid, capturing the
effects of non-linearity, dispersion, and scattering in a three-dimensional space over time. Suchmodeling is
crucial in various physical and engineering applications, including underwater acoustics, bio-medical
ultrasound, and industrial processes involving cavitation. The exact solutions and symmetry reductions
explored in the studies [33, 34] offer valuable insights into the fundamental dynamics of these wave phenomena,
making the equation a vital tool for predicting and understanding howwaves behave in bubbly liquids. The
associated conservation laws also ensure that themodel adheres to essential physical principles, such as energy
conservation andmomentum, further validating its applicability in real-world scenarios. This equation
generalizes thewell-known equations fromdifferent areas of nonlinear science as

• (3+1)-dimensional nonlinear wave equation [35] for a a a= = = -1, , 11 2
1

4 3 , and a a= =4 5
3

4
as⎛⎝ ⎞⎠ ( ) ( )+ + - + + =u uu u u u u
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3

4
0, 2t x xxx x

x
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• (3+1)-dimensional Kadomtsev-Petviashvili equation [36] forα1=− 6,α2= 1,α3= 0, andα4= α5= 3 as

( ) ( ) ( )- + + + =u uu u u u6 3 0, 3t x xxx x yy zz

• (3+1)-dimensional nonlinear wave equation [37] forα1= α2= 1,α3= 0, and a a= =4 5
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• (2+1)-dimensional Kadomtsev-Petviashvili equation [38] forα1= α2= 1,α3= 0,α4= 1, andα5= 0 as

( ) ( )+ + + =u uu u u 0, 5t x xxx x yy

• (1+1)-dimensional Korteweg-deVries equation [39] forα1= α2= 1, andα3= α4= α5= 0 as

( )+ + =u uu u 0, 6t x xxx

These equations (2)–(6), derived from various physical systems, often describewave phenomena. TheKdV-type
equations are crucial in thefield of plasma physics, as they provide insights into the behavior and structures of
waves. Our study is significant as it constructs the bilinear form for the examined equation in transformed
variables and uses a direct symbolic technique to visually evaluate the new roguewaves. This technique
transforms the studied equation into a new (1+1)-dimensional evolution equation in the transformed variables.
Importantly, we show that the investigated equation can be transformed into a bilinear form in the auxiliary
function using theCole-Hopf transformation, which has practical implications for understanding and
predicting nonlinear wave behavior in plasmas.

Our study advances by deriving higher-order roguewave solutions for investigating (3+1)-dimensional
generalized nonlinear wave equation in liquid-containing gas bubbles using its Hirota bilinear form.While
previous studies [33–38] have primarily focused on lower-order roguewaves or different nonlinear solutions,
our research extends this understanding tomore complex scenarios involving second and third-order rogue
waves. This is particularly significant from amathematical viewpoint, as it applies advanced techniques like the
Cole-Hopf transformation and direct symbolicmethods to obtain and analyze these solutions. From a physical
perspective, ourmodel’s depiction of higher-order roguewaves is crucial as it reveals the intricate dynamics and
interactions that occur in nonlinear systems, which are not captured by lower-order solutions. These higher-
order roguewaves provide amore comprehensive understanding of the evolution of large waves from smaller
amplitudes, which is essential for accuratelymodeling real-world phenomena in various scientific domains,
including oceanography, dusty plasma, and fiber optics.

In thismanuscript, the next section details the direct symbolic technique for identifying the solutions for
roguewaves to the analyzed equation. It involves using theCole-Hopf transformation in transformed variables
to obtain a bilinear equation and determines the roguewaves up to the 3rd-order alongwith their dynamics.
Section 3will present and discuss the results and findings, while the final sectionwill conclude the research
study.

2. Roguewaves via direct symbolic approach

We transform the equation (1)with ξ= x+ t; η= y+ z in u(x, y, z, t)= u(ξ, η) as

( ) ( )a a a a a+ + + + + + =xx xx x xxxx xx hh hhu uu u u u u u 0. 71
2

2 3 4 5

Taking the phase θiäN in equation (7) as

( )q x h= -p w , 8i i i

having constants piäN and dispersionswiäN. In linear terms of equation (7), having ( )x h = qu e, i gives
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Considering the dependent variable transformation as

( ) ( ) ( )x h = xxu K f, log , 10

with nonzero constantK and auxiliary function f (ξ, η). Substitution of equation (10)with = + qf e1 1 in
equation (7) gives

a
a

=K
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Thus, the equation (7) can be transformed using the transformation (10) into a bilinear equation in f as
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that further gives a bilinear form inHirotaD-operator [39] as

[ ( ) ( ) ] ( )a a a a+ + + + =x x hD D D f f1 . 0, 122
4
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2

4 5
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where differential operatorsDi=x,y is defined as
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with formal variables ¢ ¢x y, and positive integers ri=1,2.
We construct the roguewaves by assuming the function f [40, 41] as

( ) ( )( )
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where sl,mä{0,2,L,q(q+1)} are the real parameters.

2.1. First-order roguewaves
Having n= 1 in equation (13), we get f as

( ) ( )x h x h= = + +f f s s s, . 141 2,0
2

0,2
2

0,0

Weget a systemof equations by putting the equation (14) in equation (11)with equating all coefficients of
distinct powers of ξ and η to zero as
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So, the function (14) becomes
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So, we get the solution by putting the equation (17) into (10) as
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2.2. Second-order roguewaves
Considering the function f for n= 2 in equation (13) as
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Substitution of equation (19) into (12) gives a systemon equating to zero the coefficients of distinct powers of ξ
and η. On solving, we get the parameters as
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which gives the solution on substituting it into (10)
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2.3. Third-order roguewaves
Having n= 3 in equation (13) gives the function f as
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Onputting the equation (23) into (12), we get a systemon equating to zero the coefficients of distinct powers of ξ
and η. On solving the system, we get the parameters as
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Weobtain the solution by putting the equation (23)with the values (24) into (10) as
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3. Results and analysis

Thiswork studied the roguewaves as an extraordinary oceanic phenomenon characterized by their immense
height, steepness, and sudden appearance. Their formation shows the link to nonlinear interactions, where
energy from smaller waves combines through constructive interference or the interaction between ocean
currents and opposingwaves. Despite their rarity, roguewaves concentrate immense power in a small area
capable of causing catastrophic damage. Predicting thesewaves remains a significant and ongoing challenge in
oceanography, though advances inwavemodeling and satellite technology continue to improve our
understanding of these formidable forces of nature. The investigated equation showed the roguewave structures
in transformed variables ξ and ηwith appropriate parameter values utilizing direct symbolic approach. Thefirst-
order rogue solution generated a single roguewave solution, and second and third-order rogue solutions gave
the interactions of two and three roguewaves, respectively. The dynamics of roguewave solutions have been
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shown in transformed variables ξ, η, and in the starting variables x, y, z, t in ξη, xt, and xy planes. The analytical
and dynamical findings are as follows:

• Figure 1 and 2 depicts the single roguewaves offirst order having singularities at ξ= η= 0. For all three plots
infigure 1, the positive and negative direction of ξ shows the bright and the dark parts of the roguewave
dynamics. Depending on the constant parameters, the roguewave shows the nature of steeped and immense
height from15 to 40 units of u in the forming local region. Figure 2 illustrates the single roguewave structures
in the original variables x, y, z, t. (a)–(c) shows the soliton naturew.r.t. time variable in xt-planewith spacial
coordinates as y= z= 0, and (d)–(f) shows the single roguewaves in xy-planewith z= t= 3. The showed
roguewaves for bothfigures have the parameter values as (a)α1=− 1,α2=− 1,α3= α4= α5= 1; (b)
α1= 1,α2=− 1,α3= 5,α4= 1,α5= 1; and (c)α1=− 1,α2=− 2,α3= 5,α4= 1,α5= 2.

• Infigures 3 and 4, we illustrate the roguewaves of second order which show the interactions of two rogue
waves. For all three graphs infigure 3, the two roguewaves intersect at ξ= η= 0with having a void area
between their bight and darkwave parts whichmakes themdangerous to sail the ships near them. The
interaction of these two roguewaves is dominating each other to form a larger wave than the small waves in a
relatively small area. Figure 4 shows the two roguewave structures in the original variables x, y, z, t. (a)–(c)
shows the solitoninc naturew.r.t. time variable, in xt-planewith y= z= 0, and (d)–(f) shows the two rogue
waves in xy-planewith z= t= 3. The second-order roguewaves for bothfigures have the parameter values as
(a)α1=− 1,α2=− 1,α3= α4= α5= 1; (b)α1= 2,α2=− 1,α3= 2,α4= 1,α5= 2; and (c)α1=− 3,
α2=− 1,α4= 1,α3= α5= 2.

• Figures 5 and 6 show the 3rd-order roguewaves that depict the three roguewaves having their interactions
and creating a void area among their interactions with sharp and steepedwaveforms. The interaction of these
three roguewaves is dominating each other to form larger waves than the small waves in a relatively small area
whichmakes themharmful than the ordinarywaves. For all plots infigure 5, the three roguewaves depict their
bright and dark parts on intersections. Figure 6 shows the three roguewave structures in the original variables
x, y, z, and t. (a)-(c) shows the soliton behavior with respect to the time variable in the xt-plane with y= z= 0,
and (d)-(f) shows the three roguewaves in the xy-plane. with xy-planewith z= t= 3. The showed third-order
roguewaves for bothfigures have the parameter values as (a)α1=− 3,α2=− 2,α3= α4= 2,α5= 1; (b)
α1= 3,α2=− 2,α3= α4= 1,α5= 3; and (c)α1=− 3,α2=− 2,α3= 4,α4= 1,α5= 3.

Figure 1.Dynamics of 1st-order roguewaves for (18) in transformed variables ξ and η. (d)–(f) are the contours for (a)–(c) in ξη-plane.
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Figure 3.Dynamics of 2nd-order roguewaves for (22) in transformed variables ξ and η. (d)–(f) are the contours for (a)–(c) in ξη-plane.

Figure 2.Dynamical profiles of (18) in the starting variables x, y, z, tunder transformations ξ = x + t and η = y + z. (a)–(c) and
(d)–(f) depict 3Dprofiles in xt- and xy-planes, respectively.
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Figure 5.Dynamics of 3rd-order roguewaves for (25) in transformed variables ξ and η. (d)–(f) are the contours for (a)–(c) in ξη-plane.

Figure 4.Dynamical profiles of (22) in the starting variables x, y, z, tunder transformations ξ = x + t and η = y + z. (a)–(c) and
(d)–(f) depict 3Dprofiles in xt- and xy-planes, respectively.
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4. Conclusions

This study successfully derived higher-order roguewave solutions for a (3+1)-dimensional generalized
nonlinear wave equation in liquid-containing gas bubbles using itsHirota bilinear form.We obtained rogue
waves up to the third order through the direct symbolic technique, revealing that second and third-order
solutions generate two and three roguewaves, respectively. By applying theCole-Hopf transformation, we
transformed variables ξ and η to produce a bilinear equation, facilitating dynamic analysis usingMathematica.
The graphical representations in the transformed and original variables illustrate the complex dynamics and
interactions of roguewaves in nonlinear systems. Our findings highlight the significant presence and intricate
behavior of roguewaves, underlining their importance in understanding the evolution of largewaves from
smaller amplitudes. These insights are particularly relevant in nonlinear dynamics, dispersivemedia, and plasma
physics.

The implications of this research extend acrossmultiple scientific domains, including dusty plasma,
oceanography, fiber optics, and other complex nonlinear systems. By deepening our understanding of rogue
wave phenomena, this study contributes to the broader knowledge base. It paves theway for future explorations
and applications infields where critical nonlinear events are pivotal.
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