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Preface

This set of lecture notes was written for a Nachdiplom- Vorlesungen course given at
the Forschungsinstitut fiir Mathematik (FIM), ETH Ziirich, during the Fall Semester
2000. 1would like to thank the faculty of the Mathematics Department, and especially
Rolf Jeltsch and Michael Struwe, for giving me such a great opportunity to deliver
the lectures in a very stimulating environment. Part of this material was also taught
earlier as an advanced graduate course at the Ecole Polytechnique (Palaiseau) during
the years 1995-99, at the Instituto Superior Tecnico (Lisbon) in the Spring 1998, and
at the University of Wisconsin (Madison) in the Fall 1998. This project started in the
Summer 1995 when I gave a series of lectures at the Tata Institute of Fundamental
Research (Bangalore).

One main objective in this course is to provide a self-contained presentation of
the well-posedness theory for nonlinear hyperbolic systems of first-order partial
differential equations in divergence form, also called hyperbolic systems of con-
servation laws. Such equations arise in many areas of continuum physics when
fundamental balance laws are formulated (for the mass, momentum, total energy...
of a fluid or solid material) and small-scale mechanisms can be neglected (which are
induced by viscosity, capillarity, heat conduction, Hall effect...). Solutions to hyper-
bolic conservation laws exhibit singularities (shock waves), which appear in finite time
even from smooth initial data. As is now well-established from pioneering works by
Dafermos, Kruzkov, Lax, Liu, Oleinik, and Volpert, weak (distributional) solutions
are not unique unless some entropy condition is imposed, in order to retain some
information about the effect of “small-scales”.

Relying on results obtained these last five years with several collaborators, 1
provide in these notes a complete account of the existence, uniqueness, and contin-
uous dependence theory for the Cauchy problem associated with strictly hyperbolic
systems with genuinely nonlinear characteristic fields. The mathematical theory of
shock waves originates in Lax’s foundational work. The existence theory goes back
to Glimm’s pioneering work, followed by major contributions by DiPerna, Liu, and
others. The uniqueness of entropy solutions with bounded variation was established
in 1997 in Bressan and LeFloch [2]. Three proofs of the continuous dependence
property were announced in 1998 and three preprints distributed shortly thereafter;
see [3,4,9]. The proof I gave in [4] was motivated by an earlier work ([6] and, in col-
laboration with Xin, [7]) on linear adjoint problems for nonlinear hyperbolic systems.

In this monograph I also discuss the developing theory of nonclassical shock
waves for strictly hyperbolic systems whose characteristic fields are not genuinely
nonlinear. Nonclassical shocks are fundamental in nonlinear elastodynamics and
phase transition dynamics when capillarity effects are the main driving force be-
hind their propagation. While classical shock waves are compressive, independent of
small-scale regularization mechanisms, and can be characterized by an entropy in-
equality, nonclassical shocks are undercompressive and very sensitive to diffusive
and dispersive mechanisms. Their unique selection requires a kinetic relation, as I
call it following a terminology from material science (for hyperbolic-elliptic problems).

This book is intended to contribute and establish a unified framework encom-
passing both what I call here classical and nonclassical entropy solutions.
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No familiarity with hyperbolic conservation laws is a priori assumed in this course.
The well-posedness theory for classical entropy solutions of genuinely nonlinear sys-
tems is entirely covered by Chapter I (Sections 1 and 2), Chapter IT (Sections 1 and
2), Chapter III (Section 1), Chapter IV (Sections 1 and 2), Chapter V (Sections 1
and 2), Chapter VI (Sections 1 and 2), Chapter VII, Chapter IX (Sections 1 and 2),
and Chapter X. The other sections contain more advanced material and provide an
introduction to the theory of nonclassical shock waves.

First, I want to say how grateful I am to Peter D. Lax for inviting me to New
York University as a Courant Instructor during the years 1990-92 and for introducing
me to many exciting mathematical people and ideas. 1 am particularly indebted to
Constantine M. Dafermos for his warm interest to my research and his constant and
very helpful encouragement over the last ten years. I also owe Robert V. Kohn for
introducing me to the concept of kinetic relations in material science and encouraging
me to read the preprint of the paper [1] and to write [6]. I am very grateful to Tai-Ping
Liu for many discussions and his constant encouragement; his work [8] on the entropy
condition and general characteristic fields was very influential on my research.

It is also a pleasure to acknowledge fruitful discussions with collaborators and
colleagues during the preparation of this course, in particular from R. Abeyaratne, F.
Asakura, P. Baiti, N. Bedjaoui, J. Knowles, B. Piccoli, M. Shearer, and M. Slemrod.
I am particularly thankful to T. Iguchi and A. Mondoloni, who visited me as post-doc
students at the Ecole Polytechnique and carefully checked the whole draft of these
notes. Many thanks also to P. Goatin, M. Savelieva, and M. Thanh who pointed out
misprints in several chapters.

Special thanks to Olivier (for taming my computer), Aline (for correcting my
English), and Bruno (for completing my proofs). Last, but not least, this book would
not exist without the daily support and encouragement from my wife Claire.

This work was partially supported by the Centre National de la Recherche Sci-
entifique (CNRS) and the National Science Foundation (NSF).

Philippe G. LeFloch
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CHAPTER 1

FUNDAMENTAL CONCEPTS
AND EXAMPLES

In this first chapter, we present some basic definitions and concepts which will be
of constant use in this course. We also discuss the main difficulties of the theory and
briefly indicate the main results to be established in the forthcoming chapters.

1. Hyperbolicity, genuine nonlinearity, and entropies

We are interested in systems of N conservation laws in one-space dimension:
Owu+0,f(u)=0, u(z,t)el, zeclR,t>0, (1.1)

where U is an open and convex subset of RY and f : U — IR" is a smooth mapping
called the flux-function associated with (1.1). In the applications x and t correspond
to space and time coordinates, respectively. The dependent variable u is called the
conservative variable. To formulate the Cauchy problem for (1.1) one prescribes
an initial condition at t = 0:

u(z,0) = uo(z), z€R, (1.2)

where the function ug : IR — U is given. In this section, we restrict attention to
smooth solutions of (1.1) which are continuously differentiable, at least.

Observe that (1.1) is written in divergence (or conservative) form. Hence, by
applying Green’s formula on some rectangle (z1,22) X (t1,t2) we obtain

/zz u(z,ta) de = /zz u(z,t1) dz — ’ flu(zg, t)) dt + ) flu(zy,t))dt.  (1.3)

1 T1 t1 ti

In models arising in continuum physics (compressible fluid dynamics, nonlinear elas-
todynamics, phase transition dynamics) the conservation laws (1.1) are in fact deduced
from the local balance equations (1.3) which represent fundamental physical princi-
ples: conservation laws of mass, momentum, energy, etc. (Examples will be presented
in Section 4, below.)

When lim|g|—, o u(x,t) = 0 and the flux is normalized so that f(0) = 0, we can
let x; — —o0 and x3 — 400 in (1.3) and obtain

+oo +oo
/ u(z,t)dz = / uo(z)dz, t>0.
—00 —0o0

Hence, the integral of the solution on the whole space (that is, the total mass, mo-
mentum, energy, etc. in the applications) is independent of time.
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DEFINITION 1.1. (Hyperbolic systems.) We say that (1.1) is a first-order, hyper-
bolic system of partial differential equations if the Jacobian matrix A(u) := D f(u)
admits N real eigenvalues

A(u) < A(u) <... < An(uw), uel,

together with a basis of right-eigenvectors {r;(u __ .. The eigenvalues are also
I\Yiici<n

called the wave speeds or characteristic speeds associated with (1.1). The system
is said to be strictly hyperbolic if its eigenvalues are distinct:

AM(u) < Au) <...<An(uw), welU.
O

In other words, we have D f(u)r;(u) = Aj(u)r;(w). The pair (A;,7;) is referred
to as the j-characteristic field. It is assumed that u — A;(u),r;(u) are smooth
mappings which for strictly hyperbolic systems follows from the regularity assumption
already made on f. For strictly hyperbolic systems the eigenvectors are defined up to
a multiplicative constant and, denoting by {lj(u)}1 <N @ basis of left-eigenvectors,
we will often impose the normalization o

l,(u) 7‘]' (U,) = (51']',

where d;; is the Kronecker symbol. By convention, r;(u) is a row-vector while I;(u)
is a column-vector. The transpose of a matrix B is denoted by BT, so the notation
l;(u)T stands for the associated row-vector. A dot is used to denote the Euclidian
scalar product in IRY. When N = 1, there is a single eigenvalue A;(u) = f’(u) and
weset ry =11 = 1.

EXAMPLE 1.2. Linear advection equation. When N = 1 and f(u) = au where the
wave speed a is a constant, (1.1) reduces to the linear advection equation

Oyu+ 0z (au) = du+adyu =0. (1.4)

It is well-known that the solution of the Cauchy problem (1.2) and (1.4) admits the
following explicit formula:

u(z,t) =ug(z —at), z€lR,t>0. (1.5)
O

EXAMPLE 1.3. Inviscid Burgers-Hopf’s equation. When N = 1 and f(u) = u2/2 in
(1.1) we arrive at the (inviscid) Burgers equation

dyu+ 05 (u?/2) = Byu + ud,u = 0. (1.6)

This is an important model for nonlinear wave propagation, originally derived by
Burgers for the dynamics of (viscous and turbulent) fluids. Observe that, in (1.6},
the wave speed f’(u) truly depends on u.

Comparing (1.6) with (1.4) we are tempted to extend the formula (1.5) found for
constant speeds and, for the solution of the nonlinear equation (1.6), to write down
the now implicit formula

u(z,t) = uo(z — u(z,t)t), z€lR,t>0. (1.7)
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When the function ug is of class C* and 8,ug is uniformly bounded on IR we have
By (v — uo(z —vt)) = 1+ ¢(dpuo)(z — vt) >0, (1.8)

for all sufficiently small ¢. Therefore, by the implicit function theorem, (1.7) defines
a unique function u. Interestingly enough, an elementary calculation shows that this
function is the (unique) solution of (1.2) and (1.6) (for small times, at least). O

When N = 1, Example 1.2 is the prototype of a linear equation (f’ being a
constant) and Example 1.3 is the prototype of a genuinely nonlinear equation (f’
being strictly monotone). These two examples exhibit distinguished behaviors which
are observed in systems, as well. Turning our attention to systems, we now introduce
some notions of linearity and nonlinearity for each j-wave family. We will confirm
later on that the key quantity here is the rate of change in the wave speed ); along
the direction of the eigenvector r;.

DEFINITION 1.4. For each j =1,..., N we say that the j-characteristic field of (1.1)
is genuinely nonlinear when

VAj(u) rj(u) #0, uvel
and linearly degenerate when

VAj(u) -rj(uw) =0, uel.

For genuinely nonlinear fields we will often impose the normalization
VAj(w) -rj(u) =1, uwel,

for the general theory. But different normalizations are often more convenient when
dealing with specific examples. In view of Definition 1.4, when N = 1 the equation
(1.1) is genuinely nonlinear if and only if f”(u) # 0 for all w. It is linearly degenerate
if and only if f(u) = 0 for all .

Definition 1.4 will often be used in connection with the integral curves associated
with the system (1.1). By definition, an integral curve of the vector-field r; is a
solution s — v(s) of the ordinary differential equation

V'(s) =r;(v(s))- (1.9)
Relying on (1.9) we see that the j-characteristic field is genuinely nonlinear if
A; is strictly monotone along the integral curves s — v(s),
and is linearly degenerate if
A; remains constant along the integral curves s — wv(s).

This observation sheds further light on Definition 1.4. The above two properties
are natural extensions of similar properties already noticed for scalar equations in
Examples 1.2 and 1.3.

It is important to keep in mind that, quite often in the applications, the examples
of interest fail to be globally genuinely nonlinear. (See again Section 4.) The following
scalar equation will serve to exhibit basic features of such models.
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ExAmPLE 1.5. Conservation law with cubic fluxz. The equation
Ou + 8,ud = 0, (1.10)

is genuinely nonlinear in U := {u > 0} and in Y := {u < 0} but fails to be so in any
neighborhood of u = 0. il

When the function f is linear the explicit formula derived in Example 1.2 for the
linear advection equation extends easily to the system (1.1), as follows.

EXAMPLE 1.6. Linear hyperbolic systems. When f(u) = Awu, where A is a con-
stant matrix with real eigenvalues and a complete basis of eigenvectors, the system
(1.1) is hyperbolic and has N linearly degenerate characteristic fields. By setting
Bi(z,t) :=lju(z,t) (1 < j < N) the characteristic decomposition

N
u(z,t) = Z B;(z,t)r;

transforms (1.1) into N decoupled linear advection equations (Example 1.1) for the
characteristic variables g;:

0B +A;0:8; =0, 1<j<N.

In view of (1.4) and (1.5) we see immediately that the solution of the corresponding
Cauchy problem (1.1) and (1.2) is given by the explicit formula

N
u(z,t) = Zﬂ?(m —-Atyr;, z€lR,t>0, (1.11)
=1

where the coefficients ﬁ? :=1;up, 1 £j < N, are determined from the data ug. O

Now, turning our attention to the nonlinear system (1.1) and for a given contin-
uously differentiable solution u(zx,t) we attempt to repeat the calculation in Exam-
ple 1.6. The variable u cannot be used directly for nonlinear equations, but we can
decompose (1.1) into N scalar nonlinear equations for the characteristic variables
defined now by o := [;(u) Oy, i.e.,

N
Opu(z,t) = oj(z,t) rj(u(z, 1)). (1.12)

=1

Indeed, differentiating (1.1) with respect to z and using (1.12) we obtain

N N
O ZOA]‘ rj(u) + 0, Zaj )\J(u) rj(u) =0.

j=1 7=1
Multiplying the latter by each left-eigenvector [;(u) and using the normalization
li(u)r;(u) = 6;;, we arrive at
Oy + Oy ()\,(u) a,,-) = Z Gijk(u) a;j ag, 1<i<N, (1.13)
1< <k<N

where the right-hand side depends on the interaction coefficients

Giji(u) = (Aj(w) = Ae(w)) Liu) [ri(u), re(u)], 1<4,5,k <N, (1.14)
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the Poisson bracket being defined by

[rj(w), ri(w)):= Dri(u)r;(uw) — Drj(w)re(u).

In the special case that all of the coefficients G;;x(u) vanish, (1.13) provides N
decoupled equations for the characteristic variables o;. This is the case in Example 1.6
where [rj,rk] = 0 for all j, k, and, trivially, in the case of scalar conservation laws.
However, in most examples of interest with N > 1 no such decoupling arises and
one of the main difficulties in extending to systems the arguments of proof known for
scalar equations is to cope with the quadratic terms Gy (u) o o in (1.13).

In the rest of this section we discuss a fundamental notion of the mathematical
theory which will be essential to investigate the properties of weak solutions of systems
of conservation laws (in Section 3, below).

DEFINITION 1.7. (Mathematical entropies.) A smooth function (U, F) : U — IR? is
called an entropy pair if any continuously differentiable solution of (1.1) satisfies
the additional conservation law

8 U(u) + 8, F(u) = 0.
The functions U and F are called entropy and entropy-flux, respectively. O

Attempting to pre-multiply (1.1) by VU (u)T it becomes clear that (U, F) is an
entropy pair if and only if

VFEw)T =VU@)T Df(u), uel.
By differentiation with respect to u we obtain equivalently
D?F(u) = D*U(u) Df(u) + VU(u)T D?f(u).

Since D?F(u) and VU (u)” D?f(u) are symmetric matrices (which is obvious for the
first one and can be checked for the second one by writing the matrix product com-
ponent by component), we see that the matrix D?U(u) Df(u) must be symmetric.
(For the converse, one relies on the fact that the set of definition U is convex and,
therefore, connected.) This discussion leads us to a useful criterion for the existence
of an entropy, summarized as follows.

THEOREM 1.8. (Characterization of the mathematical entropies.) A smooth function
U is an entropy if and only if

D?*U(u) Df(u) is a symmetric N x N matriz, (1.15)

which is equivalent to a linear system of N (N —1)/2 second-order partial differential
equations. a

For each j =1,...,N a (trivial) entropy pair is defined by
U(u) =uj, F(u)=fiju), uel, (1.16)

where u = (u1,uz,...,un)? and f(u) = (fi(v),..., fn(u))T. However, mathemat-
ical entropies of interest should be truly nonlinear in the conservative variable u. A
central role will be played by entropies that are strictly convex, in the sense that
D?U(u) is a positive definite symmetric matrix,

D*U(u) >0, uwel,
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which implies
Ulw)—Uw) = VU@w)-(u—v) >0, u#vinlU.
Definition 1.7 is illustrated now with some examples.

EXAMPLE 1.9. Scalar conservation laws. When N = 1 and Y = IR (1.15) imposes
no restriction on U, so that any (strictly convex) function U : U — IR is a (strictly
convex) mathematical entropy. The entropy flux F is given by F'(u) = U'(u) f'(u),
ie.,

u
F(u) := F(a) +/ U'(v) f'(v)dv
a
with a € U fixed and F(a) chosen arbitrarily. O

ExXAMPLE 1.10. Decoupled scalar equations. Consider a system (1.1) of the form

u=(ug,ug,...,un)t, flu)=(fr(w), f2(u2),..., fn(un))t.
(For example, the linear systems in Example 1.6 have this form if they are written in
the characteristic variables.) Such a system is always hyperbolic, with A;(u) = £;(u;),
and the basis {rj(u)}lstN

system is non-strictly hyperbolic, unless for some permutation o of {1, 2,...,N } we
have

can be chosen to be the canonical basis of IRY. The

Foy (o)) < foa)(to@) < - < fony(Uo(ny), uw€EU.
The j-characteristic field is genuinely nonlinear (respectively linearly degenerate) if
and only if f/'(u;) # 0 for all u € U (resp. fj'(u;) = 0 for all u € U). A class
of mathematical entropies is described by the general formula U(u) := Z;\;l Uj(uj)
where the functions U; are arbitrary. All of the entropies have this form if, for
instance, all the fields are genuinely nonlinear. The interaction coefficients (1.14)
vanish identically. O

EXAMPLE 1.11. Symmetric systems. Consider next
Ou+0;f(u) =0, Df(u) symmetric, (1.17)

which is hyperbolic but need not be strictly hyperbolic. Since the Jacobian Df
is symmetric it coincides with the Hessian matrix of some scalar-valued mapping
¥ :U — IR. (Recall here that u € Y where U is convex and therefore connected.)
Thus f = V1 and a straightforward calculation shows that

Juf?

u
Uu) = ER F(u) = V¢(u) - u - ¢(u) (1.18)
is a strictly convex entropy pair of (1.17). O

More generally, given any system of two conservation laws (i.e., N = 2) the con-
dition (1.15) reduces to a single linear hyperbolic partial differential equation of the
second order. (See the typical equation (4.9) in Section 4, below.) Based on standard
existence theorem for such equations, one can prove that any strictly hyperbolic sys-
tem of two conservation laws admits a large family of non-trivial, entropy pairs. (See
the bibliographical notes.)
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For systems with three equations at least, (1.15) is generally over-determined
so that an arbitrary system of N conservation laws need not admit a non-trivial
mathematical entropy. The notion in Definition 1.7 plays an important role however,
as every system arising in continuum physics and derived from physical conservation
principles always admits one mathematical entropy pair at least, which often (but
not always) is strictly convex in the conservative variable. Therefore, in this course,
we will restrict attention mostly to strictly hyperbolic systems of conservation laws
endowed with a strictly convex mathematical entropy pair.

To close this section we observe that:

THEOREM 1.12. (Symmetrization of systems of conservation laws.) Any system en-
dowed with a strictly convez entropy pair (U, F) may be put in the symmetric form

Big(i1) + O;h(d) = 0,

1.19
Dg(), Dh(@) symmetric, Dg(a) positive definite. (1.19)

Conversely, any system of the form (1.19) can be written in the general form (1.1)
and admits a strictly convex mathematical entropy pair.

We prove Theorem 1.12 as follows. On one hand consider the so-called entropy
variable
u 4= VU (u), (1.20)

which is a one-to-one change of variable since U is strictly convex. Let us rewrite the
conservative variable and the flux in terms of the entropy variable:

u=g(a), f(u)=h(a).
It is easily checked that

-1

Dag(@) = (D2U(w))™!, Dah(#) = Dyf(u)(D2U(w)) ", (1.21)

in which the first matrix is clearly symmetric and the second matrix is symmetric
thanks to (1.15). This proves (1.19).

On the other hand, given a system of the form (1.19), since Dg(%) and Dh(@) are
symmetric matrices there exist two scalar-valued functions ¢ and ¢ such that

g9(a) = Ve(d), h(a)= Vy(d). (1.22)
We claim that the Legendre transform (G, H) of (¢,%), defined as usual by
G() := V() - @ — ¢(@), H(a) := Vi(a) - i — p(a), (1.23)

is an entropy pair for the system (1.19). Indeed, this follows from
8:G(1) = 48 V(d), OH(G) =t 0,Vi(d),
and thus, with (1.19),
0:G(1) + 0, H(4) = 0.
The function G(4) is strictly convex in the variable u since D2G(4) = Dg(i) is

positive definite. Note also that G(¢) = U(u) and H(4) = F(u). This proves the
converse statement in Theorem 1.12. O
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2. Shock formation and weak solutions

The existence and the uniqueness of (locally defined in time) smooth solutions of
strictly hyperbolic systems of conservation laws follow from standard compactness
arguments in Sobolev spaces. Generally speaking, smooth solutions u = u(z,t) of
nonlinear hyperbolic equations eventually loose their regularity at some finite critical
time, at which the derivative d,u tends to infinity. This breakdown of smooth solu-
tions motivates the introduction of the concept of weak solutions, which allows us to
deal with discontinuous solutions of (1.1) such as shock waves.

First of all, in order to clarify the blow-up mechanism, we study the typical
case of Burgers equation, introduced in Example 1.3, and we discuss three different
approaches demonstrating the non-existence of smooth solutions. Let u = u(z,t) be
a continuously differentiable solution of (1.6) satisfying the initial condition (1.2) for
some smooth function ug. Suppose that this solution is defined for small times ¢, at
least.

APPROACH BASED ON THE IMPLICIT FUNCTION THEOREM. Following the discussion
in Example 1.3, observe that the implicit function theorem fails to apply to (1.7)
when ¢ is too large. More precisely, it is clear that the condition (1.8) always fails if
t is sufficiently large, except when

uo is a non-decreasing function. (2.1)

When (2.1) is satisfied, the transformation v — v — ug(x — v t) remains one-to-one for
all times and (1.7) provides the unique solution of (1.6) and (1.2), globally defined in
time.

GEOMETRIC APPROACH. Given yo € IR, the characteristic curve t — y(t) issuing
from yg is defined (locally in time, at least) by

y'(t) = u(y(t),t), t>0, 22)
y(0) = . '

The point yg is referred to as the foot of the characteristic. Setting
v(t) == u(y(t),t)
and using (1.6) and (2.2) one obtains
v'(t) = 0.

So, the solution is actually constant along the characteristic which, therefore, must
be a straight line. It is geometrically clear that two of these characteristic lines
will eventually intersect at some latter time, except if the ug satisfies (2.1) and the
characteristics spread away from each other and never cross.

APPROACH BASED ON THE DERIVATIVE J u. Finally, we show the connection with
the well-known blow-up phenomena arising in solutions of ordinary differential equa-
tions. Given a smooth solution u, consider its space derivative d,u along a character-
istic t — y(¢), that is, set

w(t) == (9zu) (y(¢),t).
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Using that dyu + 4 0pzu = — ((%Eu)2 we obtain Riccati equation
w'(t) = —w(t)?. (2.3)

Observe that the right-hand side of this ordinary differential equation is quadratic
and that
w(0)
)= —t’l .

v() = T w(0)
So, w tends to infinity in finite time, except if w(0) > 0 which is, once more, the
condition (2.1).

REMARK 2.1. General theorems on blow-up of smooth solutions with small amplitude
are known for strictly hyperbolic systems. The proofs rely on the decomposition
(1.12)—(1.14) and, in essence, extend to systems the third approach above presented
on Burgers equation. Let us just sketch this strategy for a system with genuinely
nonlinear fields. Given yg € IR, the i-characteristic curve issuing from the point
yo at the time t = 0 is, by definition, the solution of the ordinary differential equation

Y (1) = Mi(u(y(®),1), t>0,

(0) = 3o -
Using the notation (1.12) and setting
w(t) = ai(y(t), 1),
we deduce from (1.13) the generalized Riccati equation
w'(t) = a(t) w(t)? + b(t) w(t) + c(t) (2.5)

with

N
a(t) == =VAi(u(®) - rault), b(t) ==Y ar(t) ri(u(t)) - VAi(u(?)),
o

c(t) = > Gin(u(t)) a;(t) o).

1<j<k<N

Here, u(t) := u(y(t),t) and a;(t) := o;(y(t),t). For genuinely nonlinear fields, after
normalization we have a(t) = —1, the first term in the right-hand side of (2.5) co-
incides the right-hand side of (2.3). A rigorous proof of the breakdown for systems
requires careful estimates for the remaining terms (particularly, o, ay with j,k not
both equal to ) in order to establish that one of the i-characteristic components o;
blows-up. (See the bibliographical notes for a reference.) O

From the discussion above we conclude that the class of solutions must be enlarged
and should include solutions that are not continuously differentiable and, in fact,
are discontinuous. We consider solutions in the space L*(IR x IR, ,U) of bounded
Lebesgue measurable functions v : IR x IRy — U.
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DEFINITION 2.2. (Concept of weak solution.) Given some initial data ug € L (IR,U)
we shall say that u € L™°(IR x IRy,U) is a weak solution to the Cauchy problem
(1.1) and (1.2) if

/+<>0/ (w80 + f(u) 8:0) dzdt + / 6(0)updz =0 (2.6)
0 R R

for every function § € C°(IR x [0,+00)) (the vector space of real-valued, compactly
supported, and infinitely differentiable functions).

Of course, if u is a continuously differentiable solution of (1.1) in the usual sense,
then by Green’s formula it is also a weak solution. The interest of the definition
(2.6) is that it allows u to be a discontinuous function. To construct weak solutions
explicitly we will often apply the following criterion.

THEOREM 2.3. (Rankine-Hugoniot jump relations.) Consider a piecewise smooth
function v : IR x IRy — U of the form

u-(z,t), <o),
u(z,t) =

U+($,t), T > (p(t),
where, setting Qy := {x 2 <p(t)}, the functions ux : Qy — U and ¢ : IR, — IR are
continuously differentiable. Then, u is a weak solution of (1.1) if and only if it is a

solution in the usual sense in both regions where it is smooth and, furthermore, the
following Rankine-Hugoniot relation holds along the curve ¢:

—¢'(t) (u(t) —u=(t)) + f(us (t)) = fu-(t)) =0, (2.8)

(2.7)

where
u—(t) == limu_(p(t) —&,t), uy(t) = limuyp(p(t) +¢,t).

>0 >0

PrOOF. Given any function 6 in C2°(IR x (0,+00)) let us rewrite (2.6) in the form
Z // (us(z,t) B,0(x,t) + f(us(z,t)) 8,0(x, 1)) dzdt = 0.
+ /0
Applying Green’s formula in each region of smoothness 2. we obtain
+oo
Sk [ (PO usl) + Flua)) Bel01t) =0,
+ 0

which gives (2.8) since 6 is arbitrary. O

When u_ and u, are constants and ¢ is linear, say p(t) = At,

u(z,t) = {

Theorem 2.3 implies that (2.9) is a weak solution of (1.1) if and only if the vectors
u4+ and the scalar A satisfy the Rankine-Hugoniot relation

—A(ug —u) + flug) - fu-) =0. (2.10)

When u_ # uy the function in (2.9) is called the shock wave connecting u_ to u4
and ) the corresponding shock speed.

u—, <At

2.9
Uy, T > A, (29)
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We will be particularly interested in the Riemann problem which is a special
Cauchy problem (1.1) and (1.2) corresponding to piecewise constant initial data, i.e.,

u,, <0,

u(z,0) = ug(z) = { (2.11)

Up, x>0,
where u;, 4, € U are constants. This problem is central in the theory as it exhibits
many important features encountered with general solutions of (1.1) as well. The
Riemann solutions will also serve to construct approximation schemes to generate
solutions of the general Cauchy problem. At this juncture observe that (2.9) and
(2.10) already provide us with a large class of solutions for the Riemann problem
(1.1) and (2.11). As we will see, the shock waves do not suffice to solve the Riemann
problem and we will also introduce later on another class of solutions, the rarefaction
waves, which are Lipschitz continuous solutions of (1.1) generated by the integral
curves (1.9). We refer to Chapters II and VI below for the explicit construction of
the solution of the Riemann problem, for scalar equations and systems respectively,
under various assumptions on the flux of (1.1).

When attempting to solve the Riemann problem one essential difficulty of the
theory arises immediately. Weak solutions are not uniquely determined by their initial
data. To illustrate this point we exhibit two typical initial data for which several weak
solutions may be found.

EXAMPLE 2.4. Non-uniqueness for Burgers equation (increasing data). Observe that,
in view of (2.10), a shock wave connecting u_ to u;+ (u— # u4) and propagating at
the speed A satisfies the Rankine-Hugoniot relation for Burgers equation (1.6) if and
only if

A= % (2.12)
Hence, the Cauchy problem (1.2) and (1.6) with the initial condition
-1, <0,
u(z,0) = yo(z) = { 1 >0,
admits the (steady) solution
u(z,t) = uo(z) for all (z,t). (2.13)
It also admits another solution,
-1, z < —t,
u(z,t) = zft, —t<z<t, (2.14)
1, T >t
which is a continuous function of (x,t) in the region {t > 0}. g

EXAMPLE 2.5. Non-uniqueness for Burgers equation (decreasing data). A Riemann
problem may even admit infinitely many solutions. Consider, for instance, the initial
condition

1, =<0,

-1, x>0.

(@) = {
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The corresponding Cauchy problem admits the trivial solution (2.13) again, as well
as the following one-parameter family of solutions:

1, T < —At,
—v, =At<z <0,
u(z,t) = 2.15
(z,1) v, 0<x <At ( )
-1, x> At,

where v > 1 is arbitrary and A := (v — 1)/2. Here, the initial jump is split into three
propagating jumps. For the same Cauchy problem, the formula (2.15) can be easily
generalized and solutions having an arbitrary large number of jumps could be also
constructed. O

EXAMPLE 2.6. Non-ezistence of weak solutions conserving both u and u®. Consider
a shock wave connecting u_. to u, at the speed A given by (2.12). We claim that the

(additional) conservation law
u? ud
o (%) +oe () =0

satisfied by smooth solutions of Burgers equation, cannot be satisfied by weak solu-
tions. Otherwise, according to Theorem 2.3 (where v and f(u) should be replaced
with u?/2 and u3/3, respectively) we would have

_2 ud —u? _2 ul tu_uy +u?
3ui-—u?2 3 Ug +u_ ’
contradicting (2.12) if u_ # u4. O

To conclude this section, let us mention that one of the main objectives in this
course will be to establish the existence of weak solutions (in a suitable sense to
be discussed) to the Cauchy problem (1.1) and (1.2), and to prove uniqueness and
continuous dependence results. In particular, we will derive the L' continuous
dependence estimate for any two “solutions” u and v (C being a fixed positive
constant)

||u(t2) — ’U(tg)”Ll(IR) S C ||u(t1) — v(tl)”Ll(IR); 0 S tl S tz. (216)

o The existence of solutions is established in Chapters IV, VII, and VIII, below.
See Theorems IV-1.1, IV-2.1, and IV-3.2 and Theorem VIII-1.7 for scalar
equations and Theorems VII-2.1 and VIII-3.1 for systems.

e The continuous dependence of solutions is the subject of Chapters V and
IX. See Theorems V-2.2, V-3.1, V-3.2, and V-4.2 for scalar equations and
Theorems IX-2.3, IX-3.2, and IX-4.1 for systems.

e The uniqueness is established in Chapter X. See Theorems X-3.2, X-4.1, and
X-4.3.
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3. Singular limits and the entropy inequality

Examples 2.4 and 2.5 show that weak solutions of the Cauchy problem (1.1) and (1.2)
are generally non-unique. To single out the solution of interest, we restrict attention
to weak solutions realizable as limits (¢ — 0) of smooth solutions of an augmented
system
Ot + 0, f(u®) = R®, u® =u®(x,t), (3.1)
where ¢ > 0 represents a small-scale parameter corresponding, in the applications,
to the viscosity, capillarity, etc. of the physical medium under consideration. The
right-hand side of (3.1) may contain a singular regularization R® depending upon
uf,eus,e?us,,... and (in a sense clarified by Definition 3.1 below) vanishing when
e —0.
We always assume that the system of conservation laws (1.1) is endowed with a
strictly convex entropy pair (U, F') and that the singular limit

u= ;1_1'1[1) uf (3.2)

exists in a sufficiently strong sense. Precisely, there exists a constant C' > 0 indepen-
dent of € such that (U contains the closed ball with center 0 and radius C and)

[ul| Lo (mxmy) < C (3.3)

and the convergence (3.2) holds almost everywhere in (z,t). To arrive to a well-posed
Cauchy problem for the hyperbolic system (1.1) we attempt to derive some conditions
satisfled by the limit u, which are expected to characterize it among all of the weak
solutions of (1.1).

In the present section, under some natural conditions on the smoothing term
Re, we derive the so-called entropy inequality associated with the entropy pair (U, F)
(that is, (3.8) below). The entropy inequality plays a fundamental role in the mathe-
matical theory for (1.1). As will be further discussed in Section 5, it does not always
completely characterize the limit of (3.1), however.

First of all, we wish that the limit u be a weak solution of (1.1). For each function
8 € C(IR x (0,400)), relying on (3.1)~(3.3) we find

// (w0 + f(u)80) dzdt = lim // (u® 8:0 + f(u®) 0,0) dzdt
IRxIR =0 JJmxIR,

= lim // R® 0 dxdt.
e—0 IRxIR,

Therefore, we arrive at the following condition on R® which is necessary (and suffi-
cient) for the limit u to be weak solution of (1.1).

DerFINITION 3.1. (Conservative regularization.) The right-hand side R® of (3.1) is
said to be conservative (in the limit ¢ — 0) if

lim / / ReQdedt =0, 6 € C(IR x (0, +00)). (3.4)
IRXIR+

e—0
O
Next, we take advantage of the existence of an entropy pair (U, F'). Multiplying
(3.1) by VU (u®) we observe that, according to Definition 1.7, the left-hand side admits
a conservative form, namely

AU (uf) + 8, F (uf) = VU (uf) - RE. (3.5)
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In view of (3.2) and (3.3) the left-hand side of (3.5) converges in the weak sense: For
all § € C& (IR x (0,+00)) we have

//mxm (U(u®) 8,0 + F(u®) 8,6) dmdt_)//szIR u) 0,0 + F(u) 8,0) dzdt.

To deal with the right-hand side of (3.5}, we introduce the following definition.

DEeFINITION 3.2. (Entropy dissipative regularization.) The right-hand side R® of
(3.1) is said to be entropy dissipative for the entropy U (in the limit ¢ — 0) if

lim sup // ‘R°0dzdt <0, 6€CP(Rx(0,400)), 6>0. (3.6)
IR)(IR+

e—0
O
We summarize our conclusions as follows.

THEOREM 3.3. (Derivation of the entropy inequality.) Let u® be a family of approz-
imate solutions given by (3.1). Suppose that u remains bounded in the L™ norm
as € — 0 and converges almost everywhere towards a limit u; see (3.2) and (3.3).
Suppose also that the right-hand side R of (3.1) is conservative (see (3.4)) and en-
tropy dissipative (see (3.6)) for some entropy pair (U, F) of (1.1). Then, u is a weak
solution of (1.1) and satisfies the inequality

// u) 80 + F(u) 8,0) dzdt >0, 6 € CZ(IR x (0,+00)), 6>0. (3.7)
1RX1R+

O
By definition, (3.7) means that in the weak sense

6 U(u) + 0, F(u) <0, (3.8)

which is called the entropy inequality associated with the pair (U, F). In the
following we shall say that a weak solution satisfying (3.8) is an entropy solution.

In the rest of this section we check the assumptions (3.4) and (3.6) for two classes
of regularizations (3.1). The uniform bound (3.3) is assumed from now on. Consider
first the nonlinear diffusion model

Owu® + O0p f(u®) = € (B(u®) 0u®),, (3.9)
where the diffusion matrix B satisfies
v- D?U(u) B(u)v > k|B(u)v?, veRY (3.10)
for all u under consideration and for some fixed constant « > 0.

THEOREM 3.4. (Zero diffusion limit.) Consider a system of conservation laws (1.1)
endowed with a strictly convex entropy pair (U, F). Let u® be a sequence of smooth
solutions of the model (3.9) satisfying the uniform bound (3.3), tending to a constant
state uy, at * — oo, and such that the derivatives u decay to zero at infinity.
Suppose also that the initial data satisfy the uniform L? bound

/ [u(0) — u,|*dz < C, (3.11)
IR

where the constant C > 0 is independent of €. Then, the right-hand side of (3.9) is
conservative (see (3.4)) and entropy conservative (see (3.6)).
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Combining Theorem 3.4 with Theorem 3.3 we conclude that the solution of (3.9)
can only converge to a weak solution of (1.1) satisfying the entropy inequality (3.8).

PROOF. Let us first treat the case B = I. Then, (3.10) means that U is uniformly
convex. It is easy to derive (3.4) since, here,

,// Reﬁdzdt‘ < // £ |6] |0z dadt
1R><1R+ IRXHZ+

S € ||’ll'€||L°<> Hewac“Ll S Ce—0

for all 6 € C° (IR x IRy ).

On the other hand, for the general regularization (3.9) and for general matrices
the identity (3.5) takes the form

U (u) + 8, F(u") = e (VU (uf) - B(u®)ug), —eu - D’U(u®) B(u)u.  (3.12)

xT

When B = I we find
U (u) + 0, F (uf) = e U(uf) 4z — €0l - D*U(uf) us

T*

To derive (3.6) we observe that by integration by parts

// - RF @dxdt
IRX1R+

<s// HOM]dxdt—s// ¢ . D*U(u®) us 6 dedt
1R><1R+ 1R><1R+

for all # € C° with 8 > 0. Using the uniform bound (3.3), the first term of the
right-hand side tends to zero with £. The second term is non-positive since § > 0
and the entropy is convex thanks to (3.10). We have thus established that, when
B(u) = I, the right-hand side of (3.9) is conservative and entropy dissipative.

To deal with the general diffusion matrix, we need to obtain first an a priori bound
on the entropy dissipation. This step is based on the uniform convexity assumption
(3.10).

By assumption, u® decays to some constant state u, at * = Foo and that ug
decays to zero sufficiently fast. Normalize the entropy flux by F(u,) = 0. Since U
is strictly convex and the range of the solutions is bounded a priori, we can always
replace the entropy u — U(u) with U (u) —U(us) — VU (us) - (u —us ). The latter is still
an entropy, associated with the entropy flux F(u) — F(u,) — VU (w.) - (f(u) — f(us))-
Moreover it is not difficult to see that U is non-negative. To simplify the notation and
without loss of generality, we assume that u, =0 € U, U(u.) = 0, and VU (u.) = 0.
Integrating (3.12) over the real line and a finite time interval [0, T] we obtain

T
€ €. N2 ut wEué drdt = ut
/IRU(u (T))dx+a/0 /lRu DU (uf) B(u®)us, dadt /IRU( (0))dz < C,

thanks to the bound (3.11) on the initial data u¢(0). Using (3.10) and letting T — +o00
we conclude that the entropy dissipation is uniformly bounded:

// Yus|? dedt < C. (3.13)
IRXIR_,.
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Relying on the uniform energy bound (3.13) we now prove (3.4) and (3.6). Relying
on (3.13) we find that for each test-function

’// Reé)dxdtl =]s // (B(us)u§)$0dxdt‘
1R>(1R+ IRXIR+
<e / / e |10, dedt
IRXIR+

1/2
< CellbzlL2amrxmy) (// ul|? dxdt)

SCIEI/Z__)O’

which establishes (3.4).

In view of (3.10) the second term in the right-hand side of (3.12) remains non-
positive. On the other hand, the first term in (3.12) tends to zero since following the
same lines as above

+oo
e / / (VU () B(uf) u) dedt’ <Ce // )l | [0,] dzdt
0 R lelR+
<C'eY? 50,
Thus (3.6) holds, which completes the proof of Theorem 3.4. O

Next, we discuss another general regularization of interest, based on the entropy
variable & = VU (u) introduced in the end of Section 1. Recall that u — 1 is a change
of variable when U is strictly convex. Consider the nonlinear diffusion-dispersion
model

O + 0, f(uf) =€, +0Ug,,

=g VU(UE)IE +4 VU(UE)zzza

where € > 0 and 6 = §(e) € IR are called the diffusion and the dispersion parame-
ters. Diffusive and dispersive terms play an important role in continuum physics, as
illustrated by Examples 4.5 and 4.6 below. Understanding the effect of such terms on
discontinuous solutions of (1.1) will be one of our main objectives in this course.

(3.14)

THEOREM 3.5. (Zero diffusion-dispersion limit.) Consider a system of conservation
laws (1.1) endowed with a strictly convex entropy pair (U, F'). Let u® be a sequence of
smooth solutions of the diffusive-dispersive model (3.14) satisfying the uniform bound
(3.3), tending to a constant u. at £ — %00, and such that u, and uj, decay to zero
at infinity. Suppose also that the initial data satisfy the uniform bound (3.11). Then,
the right-hand side of (3.14) is conservative (see (3.4)) and entropy dissipative (see
(3.6)) in the limit £,6 — 0 with §/c — 0.

Again, combining Theorem 3.5 with Theorem 3.3 we conclude that solutions of
(3.14) can only converge to a weak solution of (1.1) satisfying the entropy inequal-
ity (3.8). Note that (3.8) is derived here only for the entropy U upon which the
regularization (3.14) is based.
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ProOOF. Using the uniform bound (3.3), for all 8 € C°(IR x IR+) we obtain

}/om /,R R 0dad]| < /Om fm(siff! 020] + 8185 Bosal) dedt

< Cellbeellir@mxiry) + C 0 0zeellLrarxmy) — 0

when ¢,d — 0, which leads us to (3.4). Multiplying (3.14) by the entropy variable 4,
we find

at(]('uze) -+ amF(uE) =euf - ﬂ‘;z + 6480

(18°P),,, el + 3 ((7P),, - 31asP),

All but one (non-positive) term of the right-hand side of (3.15) have a conservative
form. After normalization we can always assume that u. = 0 € U and, after normal-
ization, U(u) > 0, U(0) = 0, and F(0) = 0. Integrating (3.15) over the whole real
line and over a finite time interval [0,T], we obtain

ZRU(u€(T))dm+eATLta;zdmdt.—./lRU(ue(o))dx.

Provided that the initial data satisfy (3.11) we conclude that

o,

To check (3.6) we rely on the identity (3.15) and the uniform bound (3.16), as
follows. Taking the favorable sign of one entropy dissipation term into account we
obtain for all non-negative § € C2°(IR x IR, ):

// VU (u®) - R 0dzdt
leR+

<t // 64[2 0] ot + 2 // (121 0ozl + (85 1? 165]) dadt
2 1RXIR+ 2 1RX1R+

< Celbuallrimnmy) + C 8 0unsllor @y + C 6 sl / / 1S 2 ddt
IRXIR+
<C'(e+6+6/e).

As e,6 — 0 with §/e — 0 we conclude that (3.6) holds, which completes the proof of
Theorem 3.5. U

e (3.15)

o)

as | dadt < C. (3.16)

4. Examples of diffusive-dispersive models

Systems of conservation laws arise in continuum physics a variety of applications. We
introduce here several important examples that will be of particular interest in this
course.

EXAMPLE 4.1. Burgers equation. The simplest example of interest is given by the
(inviscid) Burgers equation

w2
8tu+8$—2— = € Ugg. (4.1)
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Given any convex function U let F be a corresponding entropy flux (Example 1.9).
Multiplying (4.1) by U’(u) we obtain the entropy balance

OU(u) + 0xF(u) = e U(u)ze — e U" (u) 2,
which, formally as ¢ — 0, leads to infinitely many entropy inequalities
0U(u) + 0, F(u) <0.
O

EXAMPLE 4.2. Conservation law with cubic flux revisited. The equation in Exam-
ple 1.5 may be augmented with diffusive and dispersive terms, as follows

Byu + 0,u® = e ugy + 0 Uggy. (4.2)

2

where ¢ > 0 and § € IR. Using the quadratic entropy U(u) = u® we obtain

—2ul + §(2uugy — “i)x

Tz

— 2eu? + (5((u2)m — 3u§)w

ot +0,(15) = ¢ ()
e ()

which, in the limit €, — 0, yields the single entropy inequality

ot

4
Byu? + aﬁT” < 0. (4.3)

We will see later on (Theorem I1I-2.4 in Chapter III) that for solutions generated by
(4.2) the entropy inequality (3.8) does not hold for arbitrary entropies ! O

ExXAMPLE 4.3. Diffusive-dispersive conservation laws. Consider next the model
Ou + 05 f (u) = € (b(w) “z)z + 0 (c1(u) (ca(u) ug)z), » (4.4)
where b(u) > 0 is a diffusion coefficient and ¢; (u), co(u) > 0 are dispersion coefficients.
Let (Us, Fy) a (strictly convex) entropy pair satisfying
_ Cz(u)
ciw)’

(U, is unique up to a linear function of u.) Interestingly, the last term in the right-
hand side of (4.4) takes a simpler form in this entropy variable ¢ = U} (u), indeed

§ (c1(u) (c2(v) Uz)a), =6 (cr(u) (c1(u) ds)a),, -
Any solution of (4.4) satisfies
OU(w) + 0:Fu(w) =€ (b(u) Us(u) us), — € b(w) Uy (u) Jua|”
+8 (cr(u)it (e1(u) Bn)o — lea(u) usl*/2), -

In the right-hand side above, the contribution due to the diffusion decomposes info a
conservative term and a non-positive (dissipative) one. The dispersive term is entirely
conservative. In the formal limit £, — 0 any limiting function satisfies the single
entropy inequality

U (u) u € IR.

O Uy (u) + 8, Fi(u) 0.
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EXAMPLE 4.4. Nonlinear elastodynamics. The longitudinal deformations of an elastic
body with negligible cross-section can be described by the conservation law of total
momentum and by the so-called continuity equation, i.e.,

0w — Ozo(w) =0,

4.5
Oyw — Ozv =0, (4.5)

respectively. The unknowns v and w > —1 represent the velocity and deformation
gradient respectively, while the stress w — o(w) is a given constitutive function de-
pending on the material under consideration. The constrain w > —1 arises as follows.
Denote by z — y(z,t) the Lagrangian variable, i.e., y(z,t) represents the location
(at time t) of the material particle located initially at the point z. The functions v
and w are defined from the Lagrangian variable by v = 0y, w = 0, (y —z). On the
other hand, the mapping y(.,.) is constrained by the principle of impenetrability
of matter, that is, 8,y > 0 or w > —1. The theoretical limit w — —1 corresponds
to an infinite compression of the material.

Set u = (:;), flu)=- <U(;U)> and Y = IR x (—1,400), and define the sound
speed as c(w) = y/o'(w). For typical elastic materials, we have
o'(w)>0 forallw> -1 (4.6)

so that the system (4.5) is then strictly hyperbolic and admits two distinet wave speeds,
Ay = —A; = ¢(w). Left- and right-eigenvectors are chosen to be

b= (o). n= () 0= (L-ew) = ().

Moreover, in view of the relation V; -r; = —c/(w) we see that the two characteristic
fields of (4.5) are genuinely nonlinear if and only if

d’(w) #0, w>—1. 4.7
However, many materials encountered in applications do not satisfy (4.7) but rather
o’'(w)z0, wz0. (4.8)

Using the characterization (1.15) in Theorem 1.8, one easily checks that the en-
tropies U (v, w) of (4.5) satisfy the following second-order, linear hyperbolic equation
with non-constant coefficients,

Uww — 0 (w) Uyy = 0. (4.9)

One mathematical entropy pair of particular interest is provided by the total energy
v? v
Uv,w) = - +/ o(s)ds, F(v,w)=—-o(w)v, (4.10)
0

which is strictly convez under the assumption (4.6). The change of variables ¢ := v,
W := o(w) clearly put (4.6) in a symmetric form,

Oy — O =0, By Y (W) — B0 =0,
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in agreement with (1.19) and (1.20). Finally, the functions ¢ and ¢ introduced in
(1.22) are found to be

2

8(v,0(w)) = & +wo(w) - /0 Uoe)ds, Yv.ow) = —ow)v.  (411)

Furthermore, the interaction terms (1.13) and (1.14) are determined from the
basic formula

/
[r1,72) =Dry 11— Dry-rg = (2(: )

0
For instance, G11o = —4c¢’ = —20", which vanishes only at the points where the
genuine nonlinearity condition (4.7) fails. Away from such points, the two equations
in (4.5) are truly coupled. O

EXAMPLE 4.5. Phase transitions dynamics. For a model of phase transitions in solid
materials, consider the two conservation laws of elastodynamics (4.5) in which, now,
o is taken to be a non-monotone stress-strain function. For instance, for the modeling
of a two-phase material one assumes that

U’(’l,l)) > 0, w e ("l,wm) U (wMa +OO)7

o'(w) <0, we (W™ wM) (4.12)

for some constants w™ < wM. In the so-called unstable phase (w™, w™) the system
admits two complex conjugate eigenvalues. All of the solutions of interest from the
standpoint of the hyperbolic theory lie outside the unstable region. The system

is hyperbolic for all u = (:j)) in the non-connected set ¢ = (IR x (—1,w™)) U

(IR x (wM, +oo)), and most of the algebraic properties described in Example 4.4
remain valid. One important difference concerns the mathematical entropies: the
total mechanical energy (4.10) is convez in each hyperbolic region but (any extension)
is not globally convex in (the convex closure of) U. Hence, the entropy variable (see
(1.20)) no longer defines a change of variable. The conservative variable of (4.5)
cannot be expressed in the entropy variable ¢ = v, @ = o(w), since w — o(w) fails
to be globally invertible. However, we observe that the entropy variable can still be
used to express the flux f(u) of (4.5) under the assumption (4.12). O

EXAMPLE 4.6. Nonlinear elastodynamics and phase transitions I. High-order effects
such as viscosity and capillarity induce diffusion and dispersion effects which, for
instance, have the form

Btv — 810(11)) = EVgg — 5wzzz,

4.13
Oyw — Oyv =0, ( )

where the stress-strain function o satisfies the assumptions in Example 4.4 (hyper-
bolic) or in Example 4.5 (hyperbolic-elliptic). In the right-hand side of (4.13), e
represents the viscosity of the material and § its capillarity. Observe that

I3 (? + /Ow a(s)ds + gwi) — 8z (vo(w))

=g (v%)x - avi +4 (vz Wy — me)x-
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Clearly the entropy inequality
2

(3

is formally recovered in the limit €,6 — 0. As for Example 4.2 one can check that,
for limiting solutions generated by (4.13), the entropy inequality (4.14) does not hold
for arbitrary entropies. O

+/O a(s) ds) =3z (va(w)) <0 (4.14)

EXAMPLE 4.7. Nonlinear elastodynamics and phase transitions II. Recall a notation
introduced in Example 4.4: (z,t) — y(z,t) is the Lagrangian variable and the velocity
and deformation gradient are determined by v = &y, w = 0, (y —x). We assume that
an internal energy function of the form

e=e(w,wz) = €Yz, Yzz)

is prescribed. The general equations of elastodynamics are then derived (formally)
from the postulate that the action

= /OT/Q (e(w,wm) — 1}2—2> dzdt = /OT/Q (é(ym,ym) — %) dzdt (4'15)

should be extremal among all “admissible” y. Here Q2 C IR is the (bounded) interval
initially occupied by the fluid and [0, 7] is some given time interval.

Let g : 2 % [0,T] — IR be a smooth function with compact support. Replacing
in (4.15) y with y + ¢ and keeping the first-order terms in g only, we obtain

T
_ 1 2
J(y+9) =/ / €Yz + 92, Yoz + Gaz) — 5 (yt + gt) ) dxdt

Oe
/ / ya:v y:cm gz + Fy‘z:(yz’ yzz) Gzz — Yt gt) d(Edt
+0(l91*)

and, after integration by parts,

J(y-l—g / / yzayzx)) + (%(yw’yzz))zx +ytt) g dzdt
+0(g*)

Since the solution y should minimize the action J and that g is arbitrary, this formally
yields

0é 0e
Yue + (— Ey:(ym,yzw) + (3ym (yz,ym)) )x =0. (4.16)
Returning to the unknown functions v and w and defining the total stress as
Oe Oe
Y(w, Wy, Wey) = %(w,wz) - (8wz (w, wm)>z, (4.17)

(4.16) becomes
6{0 - axz(w,wzawzm) =0,
Ow ~ Oy,v = 0.
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Finally, if a nonlinear viscosity p(w) is also taken into account, we arrive at a general
model including viscosity and capillarity effects:

0 — 0, 5(w, Wy, Wyg) = (p(w) vw)

@’ (4.18)
6tw =t 8:,;1) =0.
The total energy
E(w,v,w;) := e(w,w;) + v?/2
again plays the role of a mathematical entropy. We find
Oe
OE(w,v,wy) — Oy (E(w, ww,wm)v) = <vz a—w-—(w, wz)) + (u(w) vvz)z — p(w) vi.

Once more, the entropy inequality similar to (4.14) could be obtained.

Finally, let us discuss the properties of the internal energy function e. A standard
choice in the literature is for e to be quadratic in w,. (Linear term should not appear
because of the natural invariance of the energy via the transformation =z — —z.)
Setting, for some positive capillarity coefficient A(w),

2

e(w, wy) = e(w) + Mw) “’7 (4.19)
the total stress decomposes as follows:
2
5w, wy, Wes) = o(w) + N (w) 3‘;— — M) wp)sy  o(w) = €' (w). (4.20)
The equations in (4.18) take the form
roy Wa
0w = oo (w) = (N(w) 22 - (Mw)ws),) + (uw)va),, (.21)
Ow — O,v = 0.
In this case we have
v? w?
(s(w) + 5 + A(w) 7>t — (o(w)v),
N(w) o

= (p(w)vvg), — w(w) vl + (v — W=V (Mw) wz)  + vz A(w) wm)z

Under the simplifying assumption that the viscosity and capillarity are both constants,
we can recover Example 4.6 above. O

5. Kinetic relations and traveling waves

We return to the general discussion initiated in Section 3 and we outline an important
standpoint adopted in this course for the study of (1.1). The weak solutions of
interest are primary those generated by an augmented model of the general form
(3.1). When small physical parameters accounting for the viscosity, heat conduction,
or capillarity of the material are negligible with respect to the scale of hyperbolic
features, it is desirable to replace (3.1) with the hyperbolic system of conservation
laws (1.1). Since the solutions of the Cauchy problem associated with (1.1} are not
unique, one must determine suitable admissibility conditions which would pick up
the solutions of (1.1) realizable as limits of solutions of (3.1) by incorporating some
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large-scale effects contained in (3.1) without resolving the small-scales in details. As
we will see, different regularizations may select different weak solutions !

The entropy inequality (3.8) was derived for two large classes of regularizations
(Section 3) as well as for several specific examples (Section 4). Generally speaking,
when more than one mathematical entropy is available (N < 2), a single entropy
inequality only is satisfied by the solutions of (1.1). See, for instance, the important
Examples 4.2 and 4.6 above. This feature will motivate us to determine first weak
solutions of (1.1) satisfying the single entropy inequality (3.8). (See Sections II-3 and
VI-3, below.)

For systems admitting genuinely nonlinear or linearly degenerate characteristic
fields only, the entropy inequality (3.8) turns out to be sufficiently discriminating to
select a unique weak solution to the Cauchy problem (1.1) and (1.2). In particular, for
such systems, weak solutions are independent of the precise regularization mechanism
in the right-hand side of (3.1). Such solutions will be called classical entropy
solutions and a corresponding uniqueness result will be rigorously established in
Chapter X (see Theorem X-4.3).

On the other hand, for systems admitting general characteristic fields that fail
to be globally genuinely nonlinear or linearly degenerate, the entropy inequality (3.8)
is not sufficiently discriminating. Under the realistic assumptions imposed in the
applications, many models arising in continuum physics fail to be globally genuinely
nonlinear. For such systems, we will see that weak solutions are strongly sensitive to
the small-scales that have been neglected at the hyperbolic level of physical modeling,
(1.1), but are taken into account in an augmented model, (3.1). In Chapters II and
VI we will introduce the corresponding notion of nonclassical entropy solutions
based on a refined version of the entropy inequality, more discriminating than (3.8)
and referred to as the kinetic relation.

At this juncture, let us describe the qualitative behavior of the solutions of the
nonlinear diffusion-dispersion model (3.14), which includes linear diffusive and disper-
sive terms with “strengths” € > 0 and ¢, respectively. By solving the corresponding
Cauchy problem numerically, several markedly different behaviors can be observed,
as illustrated in Figure I-1:

e When |§| << €2, the effect of the dispersion turns out to be negligible. The
limiting solutions coincide with the ones generated by the zero-diffusion limit
corresponding to § = 0 and € — 0.

e When |§| >> €2, the dispersion dominates and wild oscillations with high
frequencies arise as 6 — 0. The solutions converge in a weak sense only and
the conservation laws (1.1) do not truly describe the singular limit in this case.

¢ The intermediate regime
§=ve%, e—0and 7 fixed, (5.1)

when diffusion and dispersion are kept in balance, is of particular interest in the
present course. There is a subtle competition between the parameters ¢ and
0. The diffusion € has a regularizing effect on the propagating discontinuities
while the dispersion ¢ generates wild oscillations. It turns out that, in the limit
(5.1), the solutions of (3.14) converge (from the numerical standpoint, at least)



24 CHAPTER 1. FUNDAMENTAL CONCEPTS AND EXAMPLES

to a limit which satisfies the conservation laws (1.1) and the entropy inequality
(3.8). Mild oscillations and spikes are visible near jump discontinuities, only.
Interestingly enough, the limiting solution strongly depends on the parameter
~. That is, for the same initial data different values of v lead to different
shock wave solutions !

u(z, t)

A

Y

Figure I-1 : Numerical solution for
6] << €2, 6 = v&2, and |§] >> &2, respectively.

From this discussion we conclude that no “universal” admissibility criterion can
be postulated for nonlinear hyperbolic systems. Instead, some additional information
should be sought and an admissibility condition should be formulated for each prob-
lem (or rather each class of problems) of interest. Before closing this section let us
introduce a few more properties and definitions. First of all, for the entropy inequality
(3.8) we have the obvious analogue of the Rankine-Hugoniot relation derived earlier
in Section 2.

THEOREM 5.1. (Jump relation for the entropy inequality.) We use the same notation
as in Theorem 2.3. The piecewise smooth function (2.7) satisfies the entropy inequality
(3.8) if and only if

~¢(t) (U(u4(8)) = U(u—(t))) + F(u(t)) = F(u-(t)) <O0. (5.2)

In particular, given a shock wave (2.9) connecting two constant states u—. and uy and
associated with the speed X, the entropy inequality reads

~A(U(uy) = Uuo)) + F(uy) — F(u-) 0. (5.3)

O

When dealing with nonclassical solutions, the Rankine-Hugoniot relations (2.10)
and the entropy inequality (5.3) will be supplemented with the following additional
jump condition:
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DEFINITION 5.2. (Kinetic relation.) A kinetic relation for the shock wave (2.9) is
an additional jump relation of the general form

P(uq,u_) =0, (5.4)

where ® is a Lipschitz continuous function of its arguments. In particular, a kinetic
relation associated with the entropy U is the following strengthened version of
the entropy inequality (5.3)

A (Uug) = Uus)) + Flug) = Flus) = $lu—, uy), (5.5)
where ¢ is a Lipschitz continuous function of its arguments.

Two remarks are in order:

e Not all propagating waves within a nonclassical solution will require a kinetic
relation, but only the so-called undercompressive shock waves.

e Suitable assumptions will be imposed on the kinetic functions ® and ¢ in
(5.4) and (5.5), respectively. For instance, an obvious requirement is that the
right-hand side of (5.5) be non-positive, that is, ¢ < 0, so that (5.5) implies
(5.3).

The role of the kinetic relation in selecting weak solutions to systems of conservation
laws will be discussed in this course. We will show that a kinetic relation is necessary
and sufficient to set the Riemann problem and the Cauchy problem for (1.1):

e We will establish that the Riemann problem has a unique nonclassical solution
characterized by a kinetic relation (Theorems II-4.1 and I1-5.4).

e We will also investigate the existence (Theorems IV-3.2, VIII-1.7, and VIII-
3.2) and uniqueness (Theorem X-4.1) of nonclassical solutions to the Cauchy
problem.

To complete the above analysis, we must determine the kinetic function from a
given diffusion-dispersion model like (3.1). The kinetic relation is introduced first in
the following “abstract” way. Let us decompose the product VU (u®) - R® arising in
(3.6) in the form

VU(®) - R = Q° + uf, (5.6)
where Q¢ — 0 in the sense of distributions and p° is a uniformly bounded sequence
of non-positive L' functions. We refer to u° as the entropy dissipation measure
for the given model (3.1) and for the given entropy U. (This decomposition was
established for the examples (3.9) and (3.14) in the proofs of Theorems 3.4 and 3.5.)
After extracting a subsequence if necessary, these measures converge in the weak-star
sense to a non-positive bounded measure (Theorem A.1 in the appendix):

pu(u) == Eh_rrr(l) pf <0. (5.7)

The limiting measure py(u) depends upon the pointwise limit u := lim. _qu®, but
cannot be uniquely determined from it. For regularization-independent shock waves
the sole sign of the entropy dissipation measure py (u) suffices and one simply writes
down the entropy inequality (3.8). However, for regularization-sensitive shock waves,
the values taken by the measure py(u) play a crucial role in selecting weak solutions.
The corresponding kinetic relation takes the form

O U (u) + 0, F(u) = pylu) <0, (5.8)
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where py(u) is a non-positive, locally bounded measure depending on the solution
u under consideration. Clearly, the measure puy (u) cannot be prescribed arbitrarily
and, in particular, must vanish on the set of continuity points of u.

DEFINITION 5.3. (Traveling waves.) Consider a propagating jump discontinuity con-
necting two states u_ and u, at some speed A. A function u®(z,t) = w(y) with
y:= (z— At)/e is called a traveling wave of (3.1) connecting u_ to u4 at the speed
A if it is a smooth solution of (3.1) satisfying

w(—o00) =u_, w(+00)=1uy, (5.9)

and
lim w'(y)= lim w"(y)=...=0. 5.10
yim wi(y)=lim w(y) (5.10)

For instance consider, in (3.1), conservative regularizations of the form
e _ € e 2, ¢
R = (S(u,eul,e®ugy,. .. ),

with the natural condition S(u,0,...) = 0 for all u. Then the traveling waves w of
(3.1) are given by the ordinary differential equation

A’ + f(w) = S(w,w',w",...)
or, equivalently, after integration over intervals (—oo,y] by
S(w,w’ ,w”,...) = f(w) = flu=) = A(w—u_). (5.11)
It is straightforward (but fundamental) to check that:

THEOREM 5.4. If w is a traveling wave solution, then the pointwise limit

-t —, T < At,
u(z,t) = limw(2=20) = { “ (5.12)
e~ € Uy, T > AL,

is a weak solution of (1.1) satisfying the entropy inequality (3.8). In particular, the
Rankine-Hugoniot relation (2.10) follows from (5.11) by letting y — +00.

Moreover, the solution u satisfies the kinetic relation (5.8) where the dissipation
measure is given by

pu(u) = M dg_x¢,
M= = [ )00 W)-..) - DU w) ) dy
where d;_»; denotes the Dirac measure concentrated on the line x — At = 0. 0

We will see in Chapter III that traveling wave solutions determine the kinetic
relation:

o For the scalar equation with cubic flux (Example 4.2) the kinetic relation can
be determined explicitly; see Theorem III-2.3.

e For the more general model in Example 4.3 a careful analysis of the existence of
traveling wave solutions leads to many interesting properties of the associated
kinetic function (monotonicity, asymptotic behavior); see Theorem III-3.3.
This analysis allows one to identify the terms ®, ¢, and py(u) in (5.4), (5.5),
and (5.7), respectively.

o Systems of equations such as those in Examples 4.6 and 4.7 can be covered by
the same approach; see Remark I11-5.4 and the bibliographical notes.
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CHAPTER 11

THE RIEMANN PROBLEM

In this chapter, we study the Riemann problem for scalar conservation laws. In
Section 1 we discuss several formulations of the entropy condition. Then, in Section 2
we construct the classical entropy solution satisfying, by definition, all of the entropy
inequalities; see Theorems 2.1 to 2.4. Next in Section 3, imposing only that solutions
satisfy a single entropy inequality, we show that undercompressive shock waves are
also admissible and we determine a one-parameter family of solutions to the Riemann
problem; see Theorem 3.5. Finally in Sections 4 and 5, we construct nonclassical
entropy solutions which, by definition, satisfy a single entropy inequality together with
a kinetic relation; see Theorem 4.1 for concave-convez flux-functions and Theorem 5.4
for convex-concave flux-functions.

1. Entropy conditions

Consider the Riemann problem for the scalar conservation law
Ou+ 0, f(u) =0, u=u(z,t)€lR, (1.1)

where f : IR — IR is a smooth mapping. That is, we restrict attention to the initial
data

, <0,
“ (1.2)

u(z,0) = {
where u; and u,. are constants. Following the discussion in Sections I-3 to I-5 we seek
for a weak solution of (1.1) and (1.2) satisfying some form of the entropy condition.
As was pointed out in Theorem 1-3.4, solutions determined by the zero diffusion limit
satisfy

Up, x>0,

0U(u) + 0, F(u) <0 for all convex entropy pairs (U, F), (1.3)

while for more general regularizations (Examples I-4.2 and 1-4.3)

O0:U(u) + 0, F(u) <0 for a single strictly convex pair (U, F). (1.4)

Recall that, in (1.3) and (1.4), U is a convex function and F(u) = / U'(w) f'(v) dv.

First, we establish an equivalent formulation of (1.3), which is easier to work with.

THEOREM 1.1. (Oleinik entropy inequalities.) A shock wave solution of (1.1) having
the form

U_, <At
Uy, > AL,

u(z,t) = { (1.5)
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for some constants u_, uy, and A with u_ # uy, satisfies the infinite set of entropy
inequalities (1.3) if and only if Oleinik entropy inequalities

F0) = flus) | fus) = Flu)

V= U Uy — U

for all v between u_ and u, (1.6)

are satisfied. Moreover, (1.3) and (1.6) imply Lax shock inequalities
Fus) 2 A2 fug). (1.7)

According to the Rankine-Hugoniot relation (derived in Theorem 1-2.3), the speed
A in (1.5) is determined uniquely from the states u_ and u4:

flug) - fu)

Uy —U—

1
:/0 a(u_ + s(uy —u_))ds,

A=a(u_,uy):=
(1.8)

where

a(u) = f'(u), ueR.
The (geometric) condition (1.6) simply means that the graph of f is below (above,
respectively) the line connecting u_ to w4 when uy < u_ (u4 > u—, resp.). The
condition (1.7) shows that the characteristic lines impinge on the discontinuity from
both sides. The shock wave is said to be compressive and will be referred to as a
classical shock.

THEOREM 1.2. (Lax shock inequality.) When the function f is convez all of the
conditions (1.3), (1.4), (1.6), (1.7), and Lax shock inequality

U > Up (1.9)
are equivalent.

PROOFS OF THEOREMS 1.1 AND 1.2. For the function in (1.5) the inequalities in
(1.3) are equivalent to (see Theorem I-5.1)

E(u_,uy) == —a(u_,us) (U(uy) = U(u=)) + F(uy) — F(u-) <0,
that is,

u

Blu-u) = [

=_1;lﬂwﬂ—Mv—wJ+ﬂw-fmJﬁw w0

=—L?U%mw-u4(“”_fmJ—fw”_fmJ)“

v —U_ Up — U

") (< + F(0)) do

<0,

where (1.8) was used to cancel the boundary terms in the integration by parts formula.
Since U” is arbitrary (1.10) and (1.6) are equivalent.
On the other hand, it is geometrically obvious that (1.6) is also equivalent to

f(v) = fluy) < fluy) = flu-)

V— Uy Uy —U-

for all v between u_ and u. (1.11)
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To derive the two inequalities in (1.7) we simply let v — u_ in (1.6) and v — u4 in
(1.11).

The particular case of a convex flux is straightforward from (1.6). We just observe
that the single entropy inequality (1.4) provides a sufficient condition. Indeed, the
integrand in (1.10) has a constant sign when f is convex and that this sign is favorable
if and only if (1.9) holds. O

2. Classical Riemann solver

The shock waves (1.5) and (1.8) form a special class of solutions for the Riemann
problem (1.1) and (1.2). Given a left-hand state u_ let us define the (classical) shock
set S(u-) as the set of all right-hand states attainable by shock waves satisfying (1.3).
When the flux is convex, in view of the characterization derived in Theorem 1.2 we
find
S(u-) = (—oo,u_]. (2.1)

In fact, by Theorem 1.2, a single entropy inequality is sufficient to characterize the
solution.

Next, we search for smooth solutions of (1.1) that are centered and of the self-
similar form

u(a:,t) = ’U.)(f), §:= %: (22)
Necessarily we have
—€we + f(w)e =0,

thus (assuming that we(€) # 0)
f'(w(€))=¢ for all £ under consideration.
By differentiation we find

' (w(€))we(€) =1 for all £ under consideration.

Therefore, w is well-defined and strictly monotone except if f”(w(£)) vanishes at some
point &, i.e., if the genuine nonlinearity fails at some value w(§). In the latter case,
we(€) becomes infinite at some finite value &.

Given u_ and u4, suppose that the function f'(u) is increasing when u varies
from u_ to uy. Then, the inverse function of f’, say g, is well-defined on the interval
[f'(u-), f'(uy)], and the formula

U, z <t f'(u-),
u(z,t) = § g(e/t), tf(u-) <z <tf'(uy), (2.3)
Ui, z> tf/(U+)

defines a smooth and monotone solution of the conservation law (1.1). This solution
is called a (centered) rarefaction wave connecting u_ to uy. By definition, the rar-
efaction set R(u_) is made of all right-hand states attainable through a rarefaction
wave. Using the condition that = — f'(u(z,t)) be increasing in the rarefaction fan
(that is, in the interval « € [¢ f'(u_),t f'(u+)]), when the flux is convex we find

R(u-) = [u_,+00). (2.4)

We are now ready to combine together elementary waves and construct a self-
similar solution of the Riemann problem. For clarity in the presentation, we call P
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the class of piecewise smooth functions u = u(z/t) which are made of finitely
many constant states separated with shock waves or rarefaction fans. In the present
chapter, all the existence and uniqueness results will be stated in this class. Of course,
much more general existence and uniqueness results will be established later in this
course.

THEOREM 2.1. (Riemann problem — Convex flux.) Suppose that the flur f is convex
and fiz some Riemann data uw; and u,. Then, the Riemann problem (1.1) and (1.2)
admits a unique classical entropy solution (in the class P), composed of shock waves
satisfying (1.3) and rarefaction waves, given as follows:

(a) If ur > wy, the solution u is rarefaction wave connecting continuously and

monotonically u; to u,.

(b) If u, < uy, the solution is a shock wave connecting u; to ur.

In both cases the solution is always monotone.

The construction when f is concave is completely analogous.

PRrROOF. Observe that, obviously, for a wave pattern to be realizable in the physical
space, one needs the wave speed to be a monotone increasing function of the self-
similar variable z/t. It is clear that the function described in the theorem is an
admissible weak solution of the Riemann problem. On the other hand, the following
two claims are immediate:
e A shock connecting a state u_ to a state uy < u_ cannot be followed by
another shock or by a rarefaction.
o A rarefaction cannot be followed by a shock. (But a rarefaction can always be
continued by attaching to it another rarefaction.)
Hence, a Riemann solution contains exactly one wave and, therefore, the solution
given in the theorem is the only possible combination of shocks and rarefactions.
This establishes the uniqueness of the solution in the class P. O

Next, we consider flux-functions having a single inflection point, normalized to
be u = 0. Suppose first that f is a concave-convex function, in the sense that (see
Figure II-1)

uf’(u) >0 (u#0), f7(0)#0,

lim f'(u) = +oo. (2:5)

Ju|—+o0
The prototype of interest is the cubic flux f(u) = u3 4+ au with a € IR. With some
minor modification the following discussion can be extended to functions f’ having
finite limits at infinity, and functions having several inflection points. Consider the
graph of the function f in the (u, f)-plane. For any u # 0 there exists a unique line
that passes through the point with coordinates (u, f(u)) and is tangent to the graph
at a point (¢"(u), f(¥"(w))) with ©"(u) # u. In other words we set (Figure II-1)

u)— bu
Pl = L= L),

Note that u(u) < 0 and define #(0) = 0. Thanks to (2.5) the map " : IR — IR
is monotone decreasing and onto, and so is invertible. Denote by ¢~% : IR — IR
its inverse function. Obviously, ¢ o ™8 = ¢~ 0 p# = id. By the implicit function
theorem, the functions ¢ and ¢~% are smooth. (This is clear away from u = 0,

(2.6)
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while the discussion of the regularity at v = 0 is postponed to Remark 4.4 below.)
Moreover, we have (p”,(O) = —1/2 and <p’hl(0) = -2,

Y

Figure II-1 : Concave-convex flux-function

When the flux is a concave-convex function and all of the entropy inequalities
(1.4) are enforced, Oleinik entropy inequalities (1.6) in Theorem 1.1 imply

2.7)

In passing we point out that, for functions having one inflection point (or none),
Lax shock inequalities (1.7) and Oleinik entropy inequalities (1.6) are equivalent.
On the other hand, following the general discussion given before the statement of
Theorem 2.1, the rarefaction set is easily found to be

[u—,+00), u_ >0,
R(u-) =<4 (—o00,+00), u_ =0, (2.8)

(—o0,u_], wu-<0.

THEOREM 2.2. (Riemann problem — Concave-convex flux.) Suppose that the function
f is concave-convex (see (2.5)) and fix some Riemann data w; and u,.. Then, the
Riemann problem (1.1) and (1.2) admits a unique classical entropy solution (in the
class P), made of shock waves satisfying (1.3) and rarefaction waves, given as follows
when, for definiteness, u; > 0:
(a) If ur > wy, the solution u is a rarefaction wave connecting continuously and
monotonically u; to u,.
(b) If ur € [p*w), w), the solution is a single (classical) shock wave.
(¢) If ur < oMw;), the solution is composed of a classical shock connecting to
@ (uy) followed by a rarefaction connecting to u,. The shock is a right-contact
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wave, that is, the shock speed coincides with the right-hand characteristic speed:

Flw) = F(Mw)

that is, the rarefaction is “attached” to the shock.

It is obvious that, in Theorem 2.2 (as well as in Theorem 2.3 below) the Riemann
solution is monotone and, when it contains two waves, the intermediate state (specif-
ically here ¢¥(w;)) depends continuously upon the data u; and u, and converges to
uy or to u, when passing from one case to another. These important properties of
classical solutions will no longer hold with nonclassical solutions. (See the weaker
statement after Theorem 4.1, below.)

PROOF. Observe that in Case (c) above, after a right-contact wave one can add a
rarefaction fan, precisely because the left-hand of the rarefaction fan travels with
a speed faster than or equal to (in fact, equal to) the shock speed; see (2.9). In
view of (2.7) and (2.8), the function described in the theorem is an admissible weak
solution of the Riemann problem. To establish that this is the unique solution made
of elementary waves, we make the following observations:

e After a shock connecting u_ to u4, no other wave can be added except when
uy = @¥(u_). (The shock is then a right-contact and can be followed with a
rarefaction preserving the monotonicity of the solution.)

e After a rarefaction connecting u_ to u,, no other wave can be added except
another rarefaction.

We conclude that a Riemann solution is monotone and contains at most two
elementary waves. This establishes the desired uniqueness result. ]

When the flux is a convex-concave function, in the sense that

uf'(u) <0 (u#0), f(0)#0,
lim f'(u) = —o00 (2.10)

Ju| =400

and all of the entropies are enforced, we obtain

—00, “Hu_ Uy TOXO), U 2
S(U_)={( @8 ()] U, +o0)

>
(—00,u_] U [p~H(u_),+00), u_ <0, (2.11)

and
0,u-], u->0,
R(u-)=<¢ {0}, wu_=0, (2.12)
[u_,0], uw-<0.
We state without proof:

THEOREM 2.3. (Riemann problem — Convex-concave flux.) Suppose that the func-
tion f is convex-concave (see (2.10)) and fiz some Riemann data w; and u,. Then,
the Riemann problem (1.1) and (1.2) admits a unique classical entropy solution in
the class P, made of shock waves satisfying all of the entropy inequalities (1.3) and
rarefaction waves which, assuming w; > 0, is given as follows:

(a) If ur > wy, the solution u is a (classical) shock wave connecting u; to uy.
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(b) If u, € [O,ul), the solution is a rarefaction wave connecting monotonically u;
to u,.

(¢) If o7 %) < u, <0, the solution is composed of a rarefaction connecting u; to
o (u,), followed by a shock wave connecting to u,. The shock is a left-contact,
that is, the shock speed coincides with the left-hand characteristic speed:

flur) = (9 (ur))
Ur — Wh(ur)

= f'(¢"(ur)). (2.13)

In particular, the rarefaction is attached to the shock.
(d) Ifu, € (00,97 w)), the solution is a (classical) shock wave connecting u;
to up,.
g

Finally, when the flux-function f admits more than one inflection point but, for
clarity, has only finitely many inflection points, the Riemann problem (1.1)—(1.3) can
also be solved explicitly. The construction is based on the convex hull (when u; < u,)
or the concave hull (when u; > wu,) of the function f in the interval limited by the
Riemann data u; and u,. Denoting this envelop by f and assuming for instance that
u; > u, we can decompose the interval [u,, ;] in the following way: There exist states

uN—l N

ul:u12u2>...> > U = Uy

such that for all relevant values of p

>

(
(

(u), ue (WP, u?Pth),

u)=f
w) < fu), we (uPH u2ts), (2.14)

s

The intervals in which f coincides with f correspond to rarefaction fans in the solution
of the Riemann problem, while the intervals where f is strictly below f correspond
to shock waves.

It is not difficult to check from Oleinik entropy inequalities (1.6) that:

THEOREM 2.4. (Riemann problem — General flux.) Suppose that the function f has
finitely many inflection points and fix some Riemann data uw; and wu,.. Then, the
Riemann problem (1.1) and (1.2) admits a unique classical entropy solution (in the
class P ), made of shock waves satisfying (1.3) and rarefaction waves which, when
uy > ur, S given by

ug, z <tf(w),
u(z,t) =< ((H)7(®), tfw) <z<tflu), (2.15)
Ur, x> tf(ur)‘

O

Observe that f is convex and, therefore, ( f)/ is non-decreasing and its inverse is
well-defined but may be discontinuous.
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3. Entropy dissipation function

In the rest of this chapter we solve the Riemann problem (1.1) and (1.2) when the
single entropy inequality (1.4) is imposed on the solutions. When the flux f : IR — IR
is convex (or concave) the single inequality (1.4) is equivalent to the infinite list (1.3)
and we immediately recover the solution in Theorem 2.1. Consequently, in the rest
of this chapter we focus on non-conver flux-functions and explain how to construct
nonclassical entropy solutions of the Riemann problem.

Our general strategy is as follows. First, in the present section we describe the
class of Riemann solutions satisfying (1.1), (1.2), and (1.4), and we exhibit a one-
parameter family of Riemann solutions, obtained by combining shock waves and rar-
efaction waves. Second, in the following section we explain how a kinetic relation may
be imposed in order to formulate a well-posed Riemann problem.

In this section and in Section 4 the function f is assumed to be concave-convez,
in the sense (2.5). We will use the function ¢ : IR — IR defined in (2.6) together
with its inverse denoted by ¥ : IR — IR. Recall that, by (2.5), both (! and 8 are
monotone decreasing and onto.

Consider a shock wave of the general form (1.5) connecting two states u_ and
u4, where the speed A\ = @(u—,u) is given by the Rankine-Hugoniot relation (1.8).
Recall that the entropy inequality (1.4) holds if and only if the entropy dissipation

E(u-,ut) = —a(u_,us) (U(uy) = U(uo)) + Flug) - Flu-) (3.1)

is non-positive. We can prove that uy — FE(u_,uy) achieves a maximum negative
value at u; = ¢f(u_) and vanishes exactly twice. For definiteness we take u_ > 0
in the rest of the discussion. Dealing with the other case is completely similar and
can also be deduced from the forthcoming results, based on the skew-symmetry of
the function F, i.e., E(u_,u+) = —E(u4,u_).

THEOREM 3.1. (Entropy dissipation for concave-convex flux.) For any left-hand state
u— > 0 the function E(u_,.) is monotone decreasing in (—oo, " (u_)] and monotone
increasing in [¢*(u_),+00). More precisely, we have

Ou, E(u_,.) <0 in the interval (—o0, ¢ (u_)),

Ou, E(u_,.) > 0 in the intervals (goh(u_),u_) U (u_,+oo),

E(u_,u_) =0,

E(u_,¢"(u-)) <0, E(u_,p " (u_)) >0.

(3.2)

Therefore, for u > 0 there exists some value ©%(u) satisfying

E(u, gh(w)) =0, @j(u) € (97Mu), o*(u)).

The definition of ph(u) for u < 0 is analogous, and the function ¢} : IR — IR is
monotone decreasing with
duph(u) <0, uelR, (3.3)
and
oo(wo(uw) =u, uelR. (34)

We refer to Figure II-2 for a graphical representation of the zero-entropy dis-
sipation function . To motivate our notation we stress that ¢! will determine a
critical limit for the range of the kinetic functions ¢° introduced later in Section 4. On
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the other hand, in Chapter III the function ¢}, will also arise from diffusive-dispersive
approximations when a diffusion parameter tends to 0.

E(u-,u)
A

Figure II-2 : Entropy dissipation function.

To the function ¢!, we associate its companion function Lpg : IR — IR defined by
(see Figure II-4 below)

1) = F(eh(w) _ flw) — F(eh(w) (35)
3 - —_ o ’ )
u — py(u) u— pp(u)
so that the points with coordinates

(Dh(u), Feh(w), (ph(w), FlOh)), (u, f(u))

are aligned. Since ¢~8(u) < ¢h(u) < ¢¥(u) we also have

o (u) < @?)(u) <u, u>0.
More generally, when uy # u_, @(u_) it will be useful to define p(u_,u,) € IR by
flo(u_,uy)) = flur) _ flug) - f(u-)

plu—,uy) —u_ Uy — U

s P(U_, u+) 7é Uy Uty (36)
and to extend the mapping p by continuity.

Proor or THEOREM 3.1. Observe first that some of the properties (3.2) are obvious
from the formula

E(u_,u+) - _ /u+ U”(U) (’U R ’U,_) (f(lv) - f(’U,_) _ f(’LL+) — f(u’—)) dv (37)

vV—uU_ Uyg — U

derived earlier in the proof of Theorem 1.1. For instance, when u4 < ¢~ %(u_) or when
Uy > U, the term in the integrand of (3.7) have a constant sign and we see that
E(u_,uy) > 0. On the other hand, for values uy near u_ the dissipation E(u—,u)
is equivalent to (u4 — u_)3 (up to a multiplicative constant). Thus, locally near u._,
E(u_,us) >0 for uy >u_ and E(u_,us) <0 for uy < u_.



38 CHAPTER II. THE RIEMANN PROBLEM

To show the first two statements in (3.2), note that the differentials of the func-
tions F(u_,uy) and a(u—_,uy) are closely related. Indeed, a calculation based on
differentiating (1.8) and (3.1) with respect to u; yields

8u+E(u—au+) = b(u_,u+)6u+6(u_,u+),
b(u—,us) :=U(u-) = Ulug) = U'(ug) (um —uy) >0

for u_ # u4 and

f'(uy) —a(u—7u+).

Ou,a(u_,uy) = —

(3.8)
In view of (3.8) and (2.5) it is clear that

Ou,8(u_,uq) <0, uy< o (u_),

Ou,0(u_,uq) >0, uy> Ou_).

This leads us to the conclusions listed in (3.2). Then, in view of (3.2) there exists

h(u-) satisfying E(u_, pp(u-)) = 0.
By definition, for any u # 0

E(u,¢5(u) =0, u# @p(u)
and, since a similar result as (3.2) holds for negative left-hand side,
E(pp(u), p(w(w) =0, wp(u) # wo(wh(w)-

Thus, (3.4) follows from the fact that the entropy dissipation has a single “non-trivial”
zero and from the symmetry property

E(gh(u),u) = —E(u, pp(w)) = 0.

Finally, by the implicit function theorem it is clear that the function cp% is smooth,
at least away from u = 0. (The regularity at u = 0 is discussed in Remark 4.4 below.)
Using again the symmetry property E(u_,us) = —E(u4,u_) we have

(0u_E) (u, ¢5(w) = (9, B) (5 (u), ). (3.9)
Thus, differentiating the identity E (u, g b (u) )
i (0B 00 _ (00 )(sh0))
T (0 B) (W) (00 B) (u pw)
where we used (3.9). For u > 0 we have already established (see (3.2)) that
(0u, E) (u, 93 (w)) <0,

and since a similar result as (3.2) holds for negative left-hand side and that we have
(b o ) (u) = u, we conclude that

(8u, E) (03 (w),u) >0
and therefore di!)/du < 0. O

= 0 we obtain
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REMARK 3.2. For the choice U(u) = u?/2 the function ¢}, is given geometrically by
an analogue of Maxwell’s equal area rule. Namely, rewriting (3.1) in the form

E@Lﬁu+)=-li+(f@d-:KU—)—:ﬂﬂiliigki(v—4LJ)du

Uy —U—

we see that the line connecting (u—, f(u=)) to (¥}(u_), f(¥}(u_))) cut the graph
of f in two regions with equal areas. This property arises also in the context of
elastodynamics (Example I-4.4) and phase transition dynamics (Example I-4.5). [

a(u—,uy) a(u—,uy)

f’(U+)

Pla).

Figure II-3 : Compressive and undercompressive shock waves.

Using the notation in Theorem 3.1 we reach the following conclusion.

LEMMA 3.3. (Single entropy inequality.) A shock wave of the form (1.5) and (1.8)
satisfies the single entropy inequality (1.4) if and only if

e { (hus)u], uo >0,

[u-, ph(u-)], u-<0. (3.10)

DEFINITION 3.4. Among the propagating discontinuities satisfying (3.10) some satisfy
also Oleinik entropy inequalities (1.6) (and therefore Lax shock inequalities (1.7)) and
will be called classical shocks or Lax shocks. They correspond to the intervals

u [cph(u_),u_], u- 20,
+€ { [u—, ¥ (u_)], u- <0.

On the other hand, the propagating discontinuities satisfying (3.10) but violating
Oleinik entropy inequalities, i.e.,

{[%wJ,Mm»,u~zm
U+€
<0

(3.11)

(3.12)

will be called nonclassical shocks.

Observe (see also Figure 11-3) that nonclassical shocks are slow undercompres-
sive in the sense that characteristics on both sides of the discontinuity pass through
the shock:

f(us) 2 a(u_,uy). (3.13)
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This is in strong contrast with Lax shock inequalities which impose that the charac-
teristics impinge on the discontinuity from both sides. Undercompressive waves are a
potential source of non-uniqueness, as will become clear shortly.

The rarefaction waves associated with the equation (1.1) were already studied in
Section 2. For concave-convex fluxes we found (see (2.8)):

[u—,+00), u_ >0,
R(u-)=1¢ (—00,+0), u_ =0, (3.14)
(—oo, u_], u. <0
We are now in the position to solve the Riemann problem (1.1), (1.2), and (1.4).

THEOREM 3.5. (One-parameter family of Riemann solutions for concave-convex func-
tions.) Suppose that the flux f is a concave-convex function (see (2.5)) and fix some
Riemann data u; and u,. Restricting attention to solutions satisfying the entropy
inequality (1.4) for a given strictly convex entropy pair (U, F) and assuming for def-
initeness that u; > 0, the Riemann problem (1.1) and (1.2) admits the following
solutions in the class P:
(a) If ur > wy, the solution is unique and consists of a rarefaction connecting
continuously u; to u,.
(b) If ur € [(pg(ul),ul), the solution is unique and consists of a classical shock
connecting u; to u,.
(¢) If ur € [(p'é(ul),gog(ul)), there exist infinitely many solutions, consisting of a
nonclassical shock connecting u; to some intermediate state u,, followed by
- a classical shock if um < p(wi,ur) (the function p being defined in (3.6)),
- or a rarefaction if Uy, > U,
The values u, € [p(w), o}(w)] can also be attained with a single classical
shock.
(d) If u, < ©B(w), there exist infinitely many solutions, consisting of a nonclas-
sical shock connecting u; to some intermediate state U, € [go{’,(ul),gpu(ul)]
followed by a rarefaction connecting continuously to u,.

In Cases (¢} and (d) above there exists a one-parameter family of Riemann
solutions. Note that, in Case (c), the solution at time ¢ > 0 may contain two shocks
and have a total variation which is larger than the one of its initial data.

PrOOF. The functions described above are clearly solutions of the Riemann problem.
The only issue is to see whether they are the only admissible solutions. The argument
below is based on the two key properties (3.3) and (3.4). We recall that two wave
fans can be combined only when the largest speed of the left-hand wave is less than
or equal to the smaller speed of the right-hand one.

Claim 1: A nonclassical shock connecting u— to uy € [p)(u_), ¥"(u))
can be followed only by a shock connecting to a value uy € [u+, plu_, u+))
or else by a rarefaction to uz < uq.

Indeed, each state ug € [u+, p(u_,u+)) is associated with a classical shock prop-
agating at the speed a(ug,u, ), which is greater than @(u_,uy). These states are
thus attainable by adding a classical shock after the nonclassical one. On the other
hand, a state us € (cpg(u+),gog(u+)] cannot be reached by adding a second shock
after the non-classical one since, by the property (3.4), ph(us) = u_ and therefore
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any shock connecting v, to some state ug > gog(u+) travels with a smaller speed:
@(uy,uz) < @(u—,uy). Finally, the states ug < u4 cannot be reached since they are
associated with rarefactions which travel faster than the nonclassical shock.

Claim 2 : After a classical shock leaving from a state u_. and reaching
44, no other wave can be added except when uy = ¢%(u_) and, in
that case, a rarefaction only can follow the classical shock.

It is easy to see using the condition on the ordering of waves that a classical
shock cannot be added after another classical shock, nor a rarefaction except when
uy = ¢*(u_). Consider next a nonclassical shock issuing from u; and reaching us.
Consider for instance the case uy < 0. For the nonclassical shock to be admissible
one needs

up < pp(u4),
but the speeds should be ordered,

a(ut,u) > a(u_,u),

and therefore us > u_. By combining the condition (3.4),the monotonicity property
of ¢f, and the inequality uy > ¢%(u_) we find also

u- = h(whu-)) > wy(us) > us,

which is a contradiction.
Claims 1 and 2 prevent us from combining together more than two waves and
this completes the proof of Theorem 3.5. a

4. Nonclassical Riemann solver for concave-convex flux

In view of the results in Section 3 it is necessary to supplement the Riemann problem
with an additional selection criterion which we call a “kinetic relation”. The approach
followed now, in particular the assumptions placed on the kinetic function, will be
fully justified a posteriori by the results in Chapter III, devoted to deriving kinetic
functions from a traveling wave analysis of diffusive-dispersive models.

Imposing the single entropy inequality (1.4) already severely restricts the class
of admissible solutions. One free parameter, only, remains to be determined and the
range of nonclassical shocks is constrained by the zero-entropy dissipation function
@b discovered in Theorem 3.1.

Let ¢ : IR — IR be a kinetic function, i.e., by definition, a monotone decreasing
and Lipschitz continuous mapping such that

P (u) < ¢ (u) < *(u), u>0,
o (1) < ¢ (u) < ph(u), u<O0,

The kinetic function will be applied to select nonclassical shock waves. Observe that
(3.4) and (4.1) imply the following contraction property:

" (" ()] < Jul, w#0. (4.2)
From ¢” we also define its companion function ¢! : JR — IR by

)~ £(Pw) _ ) - £ (w)
e - u—pm 0 " s

(4.1)
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Note that, by (4.1),
Mu) < ofu) < Ph(u), u >0,

oh(w) < f(u) < PM(u), u<O.
(See Figure II-4 for an illustration of the respective positions of these functions.)

Y

Figure II-4 : Concave-convex flux-function

From Theorem 3.5 we easily reach the following conclusion. (See Figure II-5.)

DEFINITION AND THEOREM 4.1. (Riemann solution for concave-convex flux — First
formulation.) Let ¢ be a given kinetic function. Under the assumptions of Theo-
rem 3.5, a weak solution (in the class P) is called a nonclassical entropy solution
(associated with the kinetic function ¢°) if any nonclassical shock conmecting two
states u_. and uy satisfies the kinetic relation

uy =@ (u_)  for all nonclassical shocks, (4.4)

The Riemann problem (1.1), (1.2), and (1.4) admits an (essentially unique) nonclas-
sical entropy solution (in the class P), given as follows when u; > 0:
(a) If ur > wy, the solution is a rarefaction connecting u; to ur.
(b) Ifur € [p*(w), w), the solution is a classical shock.
(©) Ifur € [¢"(w), ¥*(w)), the solution consists of a nonclassical shock connecting
uy to o (u;) followed by a classical shock.
(d) If ur < ¢°(w), the solution consists of a nonclassical shock connecting w; to
©°(w) followed by a rarefaction connecting to uy.
In Cases (a), (b), and (d) the solution is monotone, while it is non-monotone in Case
(c). The classical Riemann solution (Theorem 2.2) is also admissible as it contains
only classical waves (for which (4.4) is irrelevant). o

Observe that the value ¢¥(u;) determines an important transition from a one-wave
to a two-wave pattern. The nonclassical Riemann solution fails to depend pointwise
continuously upon its initial data, in the following sense. The solution in Case (c)
contains the middle state ¢”(u;) which does not converge to w; nor u, when the right
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state converges to ¢#(u;). We point out that the Riemann problem with left data
u; < 0 is solved in a completely similar manner using the value ¢”(u;) > 0. For u; =0
the Riemann problem is simply a rarefaction wave connecting monotonically u; to
u,. Different kinetic functions yield different Riemann solver. This reflects the fact
that different regularizations of the conservation law, in general, yield different limits.
With the trivial choice ¢’ = % we recover the classical Riemann solution, while with
the choice ¢® = ¢ we select nonclassical shocks with zero entropy dissipation. (See
also Chapter IIL.)

N+R N+C C R

Figure II-5 : The four wave patterns for the Riemann solution.

REMARK 4.2. If, in addition to (4.1), the stronger condition

cph(u) < {pﬂ(u) <0, u>0,
0 < oMu) < '), u<0,

is assumed on the kinetic function, then the solution of the Riemann problem is
classical as long as the left- and right-hand states have the same sign. In particular,
this is always the case when U = u2?/2 and f(u) = u® (or, more generally, f is a
skew-symmetric function of u) since then gl = 0. O

In the rest of this section we propose a reformulation of the kinetic relation (4.4),
along the following lines:

e Since the entropy dissipation E in (3.1) played a central role in restricting the
range of nonclassical shocks (see (3.12)) it is natural to set the kinetic relation
in terms of the function E, also.

o Speaking loosely, we regard a nonclassical shock as a “propagating boundary”
separating two “phases” of a material. In continuum physics, an analogue of
E is called a driving force acting on the propagating discontinuity, and one
typically postulates a one-to-one, monotonic relation between the driving force
and the propagation speed.

= ur
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e The (second) formulation in Theorem 4.3 below allows us to eliminate the
classical Riemann solution still left out in the (first) formulation given in The-
orem 4.1.
For a nonclassical shock connecting some states u_ and uy at some speed A =
a(u—,uy) we now write the kinetic relation in the form

Ot(N), uy <u-

for all nonclassical shocks, (4.5)
(D_(A), Uy > U

E(u_,us) = {

where, by definition, the kinetic functions ®* : [f’(0),+00) — IR_ are Lipschitz
continuous mappings satisfying

&*(f'(0)) =0,
&% is monotone decreasing, (4.6)
dt()) > EX()N).

In the latter inequality, the lower bounds E* are the maximum negative entropy
dissipation function defined by

EX(\) = E(u,¢"(w)), X=f'(¢Mw)) for +u<0. 4.7)

Observe that given A > f/(0) there are exactly one positive root and one negative root
u such that A = f’(u). This is why we have to introduce two kinetic functions ®*
associated with decreasing and increasing jumps, respectively. Note also that f’(0)
is a lower bound for all wave speeds. As we will see shortly, (4.5) is equivalent to a
relation

Ut = ‘Pb(u—)a
from which we also define ¢f(u_) as in (4.3).

Finally, in order to exclude the classical entropy solution we impose the following
nucleation criterion. For every shock connecting u_ to u; we have

E(u_,uy) > E(u_,¢*(u_)) =: Ef(u_). (4.8)

This condition enforces that a discontinuity having an entropy dissipation larger than
the critical threshold E*(u_) must “nucleate”, that is, gives rise to nonclassical waves.

THEOREM 4.3. (Riemann problem for concave-convex flux — Second formulation.)
Fiz some kinetic functions ®F : [ f'(0),400) — IR_ (satisfying, in particular, (4.6)).
Then, under the assumptions of Theorem 3.5 the kinetic relation (4.5) selects a unique
nonclassical shock for each left-hand state u_. On the other hand, the nucleation cri-
terion (4.8) excludes the classical solution. As a consequence, the Riemann problem
admits o unique nonclassical entropy solution (in the class P), described in Theo-
rem 4.1 above.

ProOOF. For u_ > 0 fixed we claim that there is a unique nonclassical connection to
a state u4 satisfying the jump relation and the kinetic relation (4.5). Let us write
the entropy dissipation as a function of the speed A:

flur (V) — f(u—)'

ur{A) —u_

¥(A) = E(u_,us(V), A=
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Setting

F(eh(u) - fu)
wp(u-) —u-

from Theorem 3.1 and the assumption (4.6) it follows that

A= (P (us)), Ao:=

¥ is monotone increasing for A € [\, Ag),
T(A") = EF(XF) < T\, (4.9)
(X)) =020 (X).

All of the desired properties are obvious, except the fact that ¥ is increasing. But, note

that uy — E(u_,us) is decreasing in the relevant interval uy € [ph(u_), " (u-)].
The mapping A — u4 () is also decreasing for A € (Ah, )\0] since

Wy )M s (V) — s = e (D), ().

Thus
U4 ()\) — U_

frus (X)) = A

Finally, in view of (4.9) and since ®* is monotone decreasing the equation

ul (A) = <0.

T(\) = 3+())

admits exactly one solution. (See also Figure I1-6.) This completes the proof that the
nonclassical shock is unique.

We now deal with the nucleation criterion (4.8). By the monotonicity properties
of the function E (Theorem 3.1) the condition (4.8) implies that the classical shocks
connecting u_ tou4 € [cph(u_), Lpﬁ(u_)) are not admissible. On the other hand, since
the speeds of the shock connecting u_ to ¢°(u_) and the one of the shock connecting
u_ to p¥(u_) coincide, we have

E(u-,¢*(u-)) — E(u, ¢’ (u-)) = B(¢ (u-), ¢*(u_)) <0.

Moreover, the inequality above is a consequence of Theorem 3.1 and the fact that
oh(u_) < @*(¢"(u_)) (which is clear geometrically). So, we have

B¢ (u_)) > B(u_), (4.10)

which means that the nonclassical value satisfies the nucleation criterion. In conclu-
sion, (4.8) excludes the classical solution precisely when the nonclassical solution is
available. This completes the proof of Theorem 4.3. O
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bt Ao

o*(A)

W) E*())

Figure I1-6 : Dissipation and kinetic functions versus shock speed.

REMARK 4.4.
o It easily follows from the implicit function theorem that, since the flux function
f is smooth, all of the functions ¢?, ¢~ go'(’), and cpg are smooth away from
u = 0 at least. To discuss the regularity at u = 0 we will rely on the assumption
made in (2.5) that the flux is non-degenerate at 0 in the sense that

£(0) £ 0.

The regularity of the function ¢! at u = 0 is obtained by applying the implicit
function theorem to the (differentiable) function

H(u, ) = flu) - f(s(fz - S(01;2— o) f'(¥)

:/1/lf”(<p+ms(u—<p))msdsdm,
0o Jo

which satisfies H(0,0) = 0 and (8H/8¢)(0,0) =2 f"'(0) # 0. A similar ar-
gument would establish the regularity of ¢~1. The regularity of the function
b follows also from the implicit function theorem by relying on the (differen-
tiable) function

Flu) - F(e ) (U) Ulg))alu, )
)3

////f”<p+mu— @) +p(s —m) (u—))
U

"(o+ g5 (u— ) (s — m) s dsdmdpda,

H(u,p) =

which satisfies H(0,0) = 0 and (80H/8¢)(0,0) = f"(0) U"(0)/24 # 0.

e As we will see in the applications in Chapter III, it is natural to assume that
the kinetic function ¢” is solely Lipschitz continuous. The Lipschitz continuity
of the companion function (' follows from a generalization of the implicit
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function theorem for Lipschitz continuous mappings. (See the bibliographical
notes for a reference.) One should use here the function

E(u) (P) _ a(uv (pb(u))
u — " (u)

H(ua@) =

1 1
:/0 /0 (¢ (W) + s (u— (@) +m (1= s)(p — ¢ (w)) m(1 — s)dsdm,

which satisfies H(0,0) = 0 and (8H/dy)(0,0) = f"(0)/9 # 0.

5. Nonclassical Riemann solver for convex-concave flux

In this last section we restrict attention to flux-functions satisfying the convex-concave
property (2.10). Strictly speaking, the case (2.10) could be deduced from the case
(2.5), provided the Riemann solution of (1.1) and (1.2) would be described by fixing
the right-hand state u, and using u; as a parameter. We shall omit most of the proofs
in this section since they are similar to the ones in Sections 3 and 4. First of all, the
functions ¢! and ¢t are defined as in Section 2. Again, we consider a shock wave of
the form (1.5) and (1.8) connecting two states u_ and uy at the speed A = a(u—,u4).
We study the entropy dissipation E(u_,u4) (see (3.1)) by keeping u_ fixed.

THEOREM 5.1. (Entropy dissipation for convex-concave flux.) Given u— > 0, the
function E(u—,.) is monotone increasing in (—oo,cph(u_)] and monotone decreasing
n [(ph(u_),—}-oo). More precisely, we have

B8u, E(u_,.) > 0 in the interval (—o0,¢"(u_)),
Ou, E(u—,.) <0 in the intervals (cph(u_),u_)u(u_, +oo),
E(u_,u-) =0, E(u_,¢%(u_)) >0, E(u_,p " (u_))<O0.
Hence, for each u > 0 there exists p}(u) € (0™ 8(u), ¥%(u)) such that E(u, p}(u)) = 0.

The definition of obh(u) for u < 0 is analogous and the function <p% :IR —- IR is
monotone decreasing (as are both ¢ and ©~%) with

() <0, uelR.

O

To the function ) we associate the function (pg : IR — IR given by (4.3). It can
be checked that

P(u) < phlu) <u, u>0,

u < ph(u) < oi(u ), u < 0.
We conclude from Theorem 5.1 that:

LEMMA 5.2. (Single entropy inequality.) A shock wave of the form (1.5) and (1.8)
satisfies the single entropy inequality (1.4) if and only if

w. ¢ | (7006b(u)] U fu-, +00), w20,
5 (oo,u ] U [gh(us), +00), u_ <O,
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]

With the terminology in Definition 3.4 classical shocks or Lax shocks correspond
here to right states

—00, o 8 (u_)] U [u_, . u_>0,
M{( 00,04 u)] U [u_, +00), u_ > o
(—o0,u-] U [p7f(u_), +00), u_ <0,
while the nonclassical shocks correspond to
—h _ b I, _ >0,
u e | ], w2 52
(b (u-),™(u")), u_ <0.

Observe that, now, nonclassical shocks are fast undercompressive:
flug) <a(u-,uy).

On the other hand, according to (2.12) the rarefaction waves for a convex-concave
flux are

[(), u_], u— >0,
R(u-) =14 {0}, u_ =0,
[u—,0], u_<o.

The Riemann problem admits a class of solutions, described as follows. Recall that

the function p was defined earlier (after (3.6)). In addition, we denote by ¢ > the
inverse of the zero-entropy dissipation function.

THEOREM 5.3. (One-parameter family for convex-concave flux.) Suppose that f is a
convex-concave function (see (2.10)) and fix some Riemann data u; and u,.. Restrict-
ing attention to solutions satisfying (1.4) for a given entropy pair (U, F), the Riemann
problem (1.1) and (1.2) admits the following solutions (in the class P) when u; > 0:
(a) If u, > w, the solution is unique and consists of a classical shock wave con-
necting u; 10 u,.
(b) Ifu, € [0,u), the solution is unique and consists of a rarefaction wave con-
necting monotonically u; to u,.
(c) If u, € [(p‘h(ul),O), there are infinitely many solutions, consisting of a rar-
efaction wave connecting u; to some intermediate state u,, with 0 < u,, <
Yo t’(ur) < uy, followed with a classical or nonclassical shock connecting to u,.
(d) If ur € (—o00,bh(w)), the solution may contain a classical shock connecting
u; to some state u, > uy, followed with a classical or nonclassical shock con-
necting to u,. This happens when there exists un, satisfying with p(Um,u,) <
U < U < gogb(u,«).
(e) Finally, if u, € (—oo,cp_h(ul)), there exists a solution connecting u; to u, by
a classical shock wave.
O

In Case (d), the solution contains two shocks and has a larger total variation than
its initial data. Note that the intervals of right-hand states in Cases (c), (d), and (e)
overlap.
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The kinetic relation is based on a prescribed kinetic function ¢° : IR — IR which,
by definition, is a monotone decreasing function such that

07 (u) < () < pp(w), u>0,
po(w) < ¢"(w) < 7 u), u <O,
We now have the property

(5.3)

lul < |¢" (¢ (w))

To the function ¢® we associate its companion function ¢! : IR — IR, as was defined
in (4.3). Furthermore, relying on the monotonicity property of the kinetic function, it
is not hard to see that, to any point u; > 0, we can associate a point p"(ul) > u; such
that the speed of the classical shock connecting u; to p’(w;) be identical with the speed
of the nonclassical shock connecting p°(u;) to ¢” o p”(1;). This latter corresponds to
a transition in the Riemann solver described now. In addition, we denote by =" the
inverse of the kinetic function. (See Figure II-7.)

, u#0. (5.4)

Figure II-7 : The four wave patterns for the Riemann solution.

THEOREM 5.4. (Riemann solution for convex-concave flux.) Under the assumptions
of Theorem 5.3 let us prescribe that any nonclassical shock connecting two states u_
and uy satisfies the kinetic relation

uy = ¢’ (u_)  for all nonclassical shocks, (5.5)

where ¢® is a given kinetic function (satisfying (5.3)). Then, the Riemann problem
(1.1), (1.2), (1.4), and (5.5) admits an (essentially unique) nonclassical entropy solu-
tion (in the class P), given as follows when u; > 0:
(a) If ur > w, the solution is unique and consists of a classical shock wave con-
necting u; to .
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(b) Ifu, € [0, ul), the solution is unique and consists of a rarefaction wave con-
necting monotonically u; to u,.
() Ifur € [¢"(w),0), the solution contains a rarefaction wave connecting u; to
Um = ¢~ (u,), followed with a nonclassical shock connecting to u,.
(d) If ur < ¢°(w), the solution contains:
—if w; > p(p~"(ur),u,), a classical shock connecting u; to um = ¢~ (u,)
followed by a nonclassical shock connecting ., to u,,
—if up < p(p~*(ur),ur), a single classical shock connecting u; to u,.

In Cases (a), (b), and (c), the Riemann solution is monotone, while it is non-
monotone in Case (d). The solution depends continuously upon its initial data in
the L' norm. Furthermore, the classical Riemann solution (Theorem 2.3) is also
admissible as it contains only classical waves. ]

Note that the condition u; > p(p~"(u,), u,) precisely determines that the shock
connecting u; t0 U, = go"’(ur) is slower than the one connecting to u,. Finally, by
following the same lines as in Theorem 4.3 and imposing a nucleation criterion we
can exclude the classical Riemann solution and select a unique nonclassical Riemann
solution for convex-concave flux.

REMARK 5.5. In Sections 3 to 5, to develop the theory of nonclassical solutions to the
Riemann problem we have first set a strictly convex entropy pair (U, F') and determine
the corresponding zero-entropy function ¢, which was then used to restrict the range
of the kinetic function. This approach is justified by the examples discussed earlier
in Chapter I (Examples J-4.2 and I-4.3). However, the theory can be extended to
encompass even more general kinetic functions which need not arise from a regularized
model. For concave-convex flux-functions (Section 4) it is sufficient to assume, instead
of (4.1), that

0 M) < @ (u) < PH(u), u>0, (5.6)
PH(u) <) <97 (u), u<0,

and

" (P W)| < lul, w#0. (5.7)
For convex-concave flux-functions (Section 5) it is sufficient to assume, instead of
(5.3), that (5.6) holds together with

lul < |¢" (" (w)], u#o0. (5.8)
0
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CHAPTER III

DIFFUSIVE-DISPERSIVE TRAVELING WAVES

In this chapter we study a large class of diffusive-dispersive equations associated with
scalar conservation laws. We investigate the existence of traveling wave solutions
which, as was pointed out earlier (Theorem 1-5.4), converge to shock wave solutions
of (1.1) as the diffusion and the dispersion tend to zero. The corresponding shock
set can be determined and compared with the one obtained in Chapter II by ap-
plying entropy inequalities. The present chapter demonstrates the relevance of the
construction given in Chapter II. We confirm here that classical shock waves are in-
dependent of the small-scale mechanisms, while nonclassical shock waves require the
kinetic relation determined by the given diffusive-dispersive operator. In Section 1
we consider the effect of the diffusion only; see Theorem 1.2. In Section 2 we de-
termine the kinetic relation explicitly for the conservation law with cubic flux and
linear diffusion-dispersion terms; see Theorem 2.3. The main result in this chapter
for general flux-functions are stated in Section 3; see Theorem 3.3. The proofs of the
results given in Section 3 are postponed to Sections 4 and 5.

1. Diffusive traveling waves

Consider the scalar conservation law
Su+0,f(u) =0, u=u(zt)clR, (1.1)

where f : IR — IR is a smooth mapping. In this section we restrict attention to the
nonlinear diffusion model

Byu+ 0z f(u) = £ (b(w) ug) u =u®(z,t) € R, (1.2)

I’
where € > 0 is a small parameter. The diffusion function b: IR — IR, is assumed to
be smooth and bounded below:

b(u) >b >0, (1.3)

so that the equation (1.2) is uniformly parabolic. We are going to establish that
the shock set associated with the traveling wave solutions of (1.2) coincides with the
one described by Oleinik entropy inequalities (see (II-1.6)).
Recall that a traveling wave of (1.2) is a solution depending only upon the
variable
L T=At
T €
for some constant speed A. Note that, after rescaling, the corresponding trajectory
y — u(y) is independent of the parameter . Fixing the left-hand state u_ we search

(1.4)
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for traveling waves of (1.2) connecting u_ to some state u,, that is, solutions
y — u(y) of the ordinary differential equation

Ny + f)y = (b)), (L5)
satisfying the boundary conditions

li =u_, I =uy, 1l =0. 1.6
A u(y) =u-,  lm u(y) =us |ygfr;muy(y) (1.6)

In view of (1.6) the equation (1.5) can be integrated once:

bu(y)) uy(y) = ~A(uly) —u-) + fu(y)) - f(u-), yelR. (1.7)
The Rankine-Hugoniot condition
~A(uy —u_) + flug) = f(u) =0 (1.8)

follows by letting y — +o00 in (1.7). The equation (1.7) is an ordinary differential
equation (O.D.E) on the real line. The qualitative behavior of the solutions is easily
determined, as follows.

THEOREM 1.1. (Diffusive traveling waves.) Consider the scalar conservation law (1.1)
with general fluz-function f together with the diffusive model (1.2). Fiz a left-hand
state u_ and a right-hand state uy # u—. Then, there erists a traveling wave of (1.7)
assoctated with the nonlinear diffusion model (1.2) if and only if u— and uy satisfy
Oleinik entropy inequalities in the strict sense, that is:

F0) = o) | flur) = f(u)

v —U_ Ugp — U

for all v lying strictly between u_ and uy. (1.9)

PrOOF. All the trajectories of interest are bounded, i.e., cannot escape to infinity.
Namely, the shock profile satisfies the equation

p_u—u_ (fu) = flu)  flug) - flu)
v= b(u) ( U— U Uy — U_ )

It is not difficult to see that the solution exists and connects monotonically u_ to
u4 provided Oleinik entropy inequalities hold and the right-hand side of (1.10) keeps
(strictly) a constant sign (except at the end point y = +o0o where it vanishes). O

(1.10)

By analogy with the approach followed in Chapter II, for each left-hand state u_
we define the shock set associated with the nonlinear diffusion model as

S(u) := {uy / there exists a solution of (1.6)-(1.8)}.

Combining Theorem 1.1 with the results obtained earlier in Section 11-2 we reach the
following conclusion.

THEOREM 1.2. (Shock set based on diffusive limits.) Consider the scalar conserva-
tion law (1.1) when the fluz f is convez, concave-convez, or convez-concave. (See
Section II-2 for the definitions.) Then, for any u_, the shock set S(u_) associated
with the nonlinear diffusion model (1.2) and (1.3) is independent of the diffusion func-
tion b, and the closure of S(u_) coincides with the shock set characterized by Oleinik
entropy inequalities (or, equivalently, Laz shock inequalities). O
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REMARK 1.3. The conclusions of Theorem 1.2 do not hold for more general flux-
functions. This is due to the fact that a strict inequality is required in (1.9) for the
existence of the traveling waves. The set based on traveling waves may be strictly
smaller than the one based on Oleinik entropy inequalities. O

2. Kinetic functions for the cubic flux

Investigating traveling wave solutions of diffusive-dispersive regularizations of (1.1)
is considerably more involved than what was done in Section 1. Besides proving the
existence of associated (classical and nonclassical) traveling waves our main objective
will be to derive the corresponding kinetic functions for nonclassical shocks, which
were discovered in Chapter II.

To explain the main difficulty and ideas it will be useful to treat first, in the
present section, the specific diffusive-dispersive model with cubic flux (Exam-
ple 1-4.2)

Opt + Opu = € Ugy + 0 Ugas, (2.1)
which, formally as ¢, — 0, converges to the conservation law with cubic flux
Oyu + 9,u® = 0. (2.2)
We are interested in the singular limit € — 0 in (2.1) when the ratio
€
a=— 2.3
7 (2.3)

is kept constant. We assume also that the dispersion coefficient é is positive. Later,
in Theorem 3.5 below, we will see that all traveling waves are classical when § < 0
which motivates us to restrict attention to § > 0.

We search for traveling wave solutions of (2.1) depending on the rescaled variable

T—At T\t
e Vs
Proceeding along the same lines as those in Section 1 we find that a traveling wave

y + u(y) should satisfy

yi=o (2.4)

“Auy + (1), = auyy + Uyyy, (2.5)
together with the boundary conditions

lim u(y) =uy,

y—too
. L (2.6)
y_llgloo uy(y) = yl{g{_loo Uyy(y) =0,

where u_ # u and A are constants. Integrating (2.5) once we obtain
auy(y) +uyy(y) = -A(u(y) —u-) +u@y)’® -ul, yeR, (2.7)

which also implies
ul —ud

A= =u? fu_uy + ui (2.8)

Uy —U—

To describe the family of traveling waves it is convenient to fix the left-hand state
(with for definiteness u— > 0) and to use the speed A as a parameter. Given u_,
there is a range of speeds,

A€ (3u?/4,3u2),
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for which the line passing through the point with coordinates (u—,u3 ) and with slope
)\ intersects the graph of the flux f(u) := u? at three distinct points. For the discussion
in this section we restrict attention to this situation, which is most interesting. There
exist three equilibria at which the right-hand side of (2.7) vanishes. The notation

Ug < U < Ug 1= U
will be used, where us and u; are the two distinct roots of the polynomial
2 2
u® +ugu +uf = A (2.9)

Observe in passing that ug + u1 + ug = 0.

Consider a trajectory y — u(y) leaving from u_ at —oco. We want to determine
which point, among uy or ug, the trajectory will reach at +00. Clearly, the trajectory
is associated with a classical shock if it reaches u; and with a nonclassical shock
if it reaches uy. (See Section IT-3 for the definitions). Accordingly, we will refer to it
as a classical trajectory or as a nonclassical trajectory, respectively.

We reformulate (2.7) as a differential system of two equations,

d u = u,v
(%) =Ko, (210)
where
K(u,v) = <——av+g(u,1))\)—g(u_,)\))’ g(u,\) = ud — Au. (2.11)

The function K vanishes precisely at the three equilibria (ug,0), (u1,0), and (u3,0)
of (2.10). The eigenvalues of the Jacobian matrix of K(u,v) at any point (u,0) are
—a/2 £ \/a?/4 + g,(u,N). So we set

wu) = % (—a— Va2 +4(3u2 —/\)) ,

(u) = % (—a-l— Vo2 +4(3u? —)\)).

(2.12)

At this juncture, we recall the following standard definition and result. (See the
bibliographical notes for references.)

DEFINITION 2.1. (Nature of equilibrium points.) Consider a differential system of
the form (2.10) where K is a smooth mapping. Let (u.,v.) € IR? be an equilibrium
point, that is, a root of K (u,,v,) = 0. Denote by u = p(u.,v+) and & = i(u«, vs) the
two (real or complex) eigenvalues of the Jacobian matrix of K at (u.,v«), and suppose
that a basis of corresponding eigenvectors r(u.,v.) and 7(u.,v.) exists. Then, the
equilibrium (u.,vs) is called

e a stable point if Re(u) and Re(z) are both negative,

e asaddle point if Re(y) and Re(fz) have opposite sign,

e or an unstable point if Re(u) and Re(fz) are both positive.
Moreover, a stable or unstable point is called a node if the eigenvalues are real and
a spiral if they are complex conjugate.
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THEOREM 2.2. (Local behavior of trajectories.) Consider the differential system
(2.10) under the same assumptions as in Definition 2.1. If (u«,vi) is a saddle
point, there are two trajectories defined on some interval (—oo,y,) and two trajec-
tories defined on some interval (y.,+00) and converging to (u.,v.) at —oo and +oo,
respectively. The trajectories are tangent to the eigenvectors r(u.,v.) and 7(u,vs),
respectively. a

Returning to (2.11) and (2.12) we conclude that, since g, (u,\) = 3u? — X is
positive at both u = us and u = ug, we have

p(uo) <0 <H(uo), p(uz) <0 < F(u2).

Thus both points uy and ug are saddle points. On the other hand, since we have
gl (u1, ) < 0, the point u; is stable: it is a node if a® + 4 (3u2 — ) > 0 or a spiral
if a2 +4(3u? — ) <0. In summary, as illustrated by Figure III-1, for the system
(2.10)-(2.11)

up and ug are saddle points and

. o , (2.13)
u1 is a stable point (either a node or a spiral).

flu)

R

Figure III-1 : Qualitative behavior when a? + 4 (3u? — ) > 0.

In the present section we check solely that, in some range of the parameters uq,
A, and «, there exists a nonclassical trajectory connecting the two saddle points ug
and uy. Saddle-saddle connections are not “generic” and, as we will show, arise
only when a special relation (the kinetic relation) holds between ug, A, and « or,
equivalently, between g, uz, and «; see (2.15) below.

For the cubic model (2.1) an explicit formula is now derived for the nonclassical
trajectory. Motivated by the fact that the function g in (2.11) is a cubic, we a priori
assume that v = u, is a parabola in the variable u. Since v must vanish at the
two equilibria we write

v(y) = a(uy) —uz) (u(y) —w), yeR, (2.14)
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where a is a constant to be determined. Substituting (2.14) into (2.10)-(2.11), we
obtain an expression of vy:

vy = —av+ud —ud - (v~ u)
= —av+ (u—ug) (u—ug) (u+up + ug)
1
=v(-a+ " (u + ug + ug)).
But, differentiating (2.14) directly we have also
vy = auy (2u — ug — ug)
=av(2u —ug — ug).
The two expressions of v, above coincide if we choose

1 1

~=2a, —o+=(u+u2)=—a(ug+up).

a a

So, a = 1/+/2 (since clearly we need v < 0) and the three parameters ug, us, and o

satisfy the explicit relation

2
up = —up + % o. (2.15)
Since u; = —ug — ua we see that the trajectory (2.14) is the saddle-saddle connection
we are looking for, only if ug < u; as expected, that is, only if
2v2
ug > T\[ a. (2.16)

Now, by integrating (2.14), it is not difficult to arrive at the following explicit
formula for the nonclassical trajectory:

Uug + us Ug — U9 U — U2
= - h
u(y) 3 5 tan ( e )
o o a y
= —— —~{u_ — —= tanh u_——)—).
3v2 ( 3v2 ) (( 3v2/ V2
We conclude that, given any left-hand state ug > 2v/2a/3, there exists a saddle-
saddle connection connecting ug to —ug 4 v/2 /3 which is given by (2.17). Later, in
Section 3 and followings, we will prove that the trajectory just found is actually the
only saddle-saddle trajectory leaving from uy > 2v/2 /3 and that no such trajectory
exists when ug is below that threshold.
Now, denote by S,(u—) the set of all right-hand states u4 attainable through a
diffusive-dispersive traveling wave of (2.1) with § > 0 and £/v/3 = o fixed. In the

case of the equation (2.1) the results to be established in the following sections can
be summarized as follows. (See also Figure III-2.)

(2.17)

THEOREM 2.3. (Kinetic function and shock set for the cubic flux.) The kinetic
function associated with the diffusive-dispersive model (2.1) is
—u_ —@a/2, u-<-a,
palu-) = ~u-/2, lu-| <@, (2.18)
—u_+a/2, u_>a,
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with & := 2a1/2/3, while the corresponding shock set is
(u—,@/2) U { —u_ — a/2},
Sa(u-) = § [u-/2,u), (2.19)
{—u_+a/2}u[-a/2,u_),

In agreement with the general theory in Chapter II the kinetic function (2.18)
is monotone decreasing and lies between the limiting functions @f(u) :=

—u/2 and
@b (u) := —u. Depending on u_ the shock set can be either an interval or the union
of a point and an interval.

IS

VARV NI VAN

- < -a,
—a<u- <q,

e

.

—2v/2 ;1/3

Figure ITI-2 : Kinetic function for the cubic flux.

Consider next the entropy dissipation associated with the nonclassical shock:

Bujo,0) == (ph (s + e u)u+02) (U ) U)o
b .
+F(Soa(u—)) —-F(’U,_),

where (U, F) is any convex entropy pair of the equation (2.2). By multiplying (2.5)
by U'(u(y)) and integrating over y € IR we find the equivalent expression

MMMW=éWMMQ%MH%MM®

(2.21)
/ (—aU"(u)u2 + U" (u)ud/2) dy.
R
So, the sign of the entropy dissipation can also be determined from the explicit form
(2.17) of the traveling wave.

THEOREM 2.4. (Entropy inequalities.)
(i) For the quadratic entropy

U(z) =2%/2, z€lR,

the entropy dissipation E(u_;a,U) is non-positive for all real u_ and all
a>0.
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(ii) For all convex entropy U the entropy dissipation E(u_;a,U) is non-positive
for all o> 0 and all ju_| < 2v/2a/3.

(iii) Consider |u_| > 2v/2a/3 and any (convex) entropy U whose third derivative
is sufficiently small, specifically

(lu_| — o/(3v2))* [U"(2)| < 2aV2U"(2), z€RR. (2.22)

Then, the entropy dissipation E(u_;a,U) is also non-positive.
(iv) Finally given any |u_| > 2v/2 /3 there exists infinitely many strictly convex
entropies for which E(u_;a,U) is positive.

PRrROOF. When U is quadratic (with U” > 0 and U"” = 0) we already observed
that (i) follows immediately from (2.21). The statement (ii) is also obvious since the
function (" reduces to a classical value in the range under consideration. Under the
condition (2.22) the integrand of (2.21) is non-positive, as follows from the inequality
(see (2.14))

il < 175 (0 =) = = (u- = a/(3V2))"

This implies the statement (iii). Finally, to derive (iv) we use the (Lipschitz continu-
ous) Kruzkov entropy pairs
Ur(2) := |z — k|, Fp(z):=sgn(z—k)(z* —k*), z€IR, (2.23)

with the choice k = —u_/2. We obtain
3
Blu-;o, Up) = 5 lu-| (fu-| - 20 v2/3)% > 0.

By continuity, E(u_;a, Uy) is also strictly positive for all k in a small neighborhood of
—u_ /2. The desired conclusion follows by observing that any smooth convex function
can be represented by a weighted sum of Kruzkov entropies. O

REMARK 2.5. We collect here the explicit expressions of some functions associated
with the model (2.1), introduced earlier in Chapter II or to be defined later in this
chapter. From now on we restrict attention to the entropy pair

U(u) =u?/2, F(u)=3u*/4.
First of all, recall that for the equation (2.2) the following two functions

O (u) = —g, oh(u) = —u, uelR. (2.24)
determine the admissible range of the kinetic functions.
We define the critical diffusion-dispersion ratio

3
A(Uo, ’U,2) = E (UO + U2) (2.25)
for ug > 0 and uy € (—up, —up/2) and for up < 0 and ug € (—uo/2, —up). In view
of Theorem 2.3 (see also (2.15)), a nonclassical trajectory connecting uo to ug exists
if and only if the parameter o = /v equals A(ug,uz). The function A increases
monotonically in us from the value 0 to the threshold diffusion-dispersion ratio
(uo > 0)

Al(ug) = —~. (2:26)
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For each fixed state ug > 0 there exists a nonclassical trajectory leaving from wug if
and only if o is less than A%(ug). On the other hand, for each fixed o there exists a
nonclassical trajectory leaving from ug if and only if the left-hand state ug is greater

than Ab_l(a). The function AV is a linear function (for ug > 0) with range extending
therefore from A = 0 to Ab = +o0. d

REMARK 2.6. It is straightforward to check that if (2.1) is replaced with the more
general equation
Osu + Oy (K u3) = €Ugg + 0 C Uggy, (2.27)

where C and K are positive constants, then (2.26) becomes
Ai(ug) = S VKT (2.28)
22
O

REMARK 2.7. Clearly, there is a one-parameter family of traveling waves connecting
the same end states: If u = u(y) is a solution of (2.5) and (2.6), then the translated
function u = u(y +b) (b € IR) satisfies the same conditions. However, one could show
that the trajectory in the phase plane connecting two given end states is unique. [

3. Kinetic functions for general flux

Consider now the general diffusive-dispersive conservation law
Byu + 0, f(u) = € (b(u) ug) , + 6 (c1(w) (c2(w) uz):)

where the diffusion coefficient b(u) > 0 and dispersion coefficients c¢;(u), ca(u) > 0
are given smooth functions. Following the discussion in Chapter II we assume that
f IR — IR is a concave-convex function, that is,

uwf’(u) >0 forall u+0,

f(0) #£0, | llirri f'(u) = +oo. (3:2)

u=us%(x,t), (3.1)

x?

As in Section 2 above we are interested in the singular limit ¢ — 0 when § > 0 and
the ratio @ = ¢/V/0 is kept constant. The limiting equation associated with (3.1),
formally, is the scalar conservation law

Owu+0;f(u) =0, u=u(z,t)clR.
Earlier (see Example 1-4.3) we also proved that the entropy inequality
0:U(u) + 0, F(u) <0

holds, provided the entropy pair (U, F') is chosen such that

U"(u) = %, F'(u) :=U'(u) f(u), u€elR, (3.3)

which we assume in the rest of this chapter. Since ¢1,c2 > 0 the function U is strictly
convex.



60 CHAPTER III. DIFFUSIVE-DISPERSIVE TRAVELING WAVES

Given two states uy and the corresponding propagation speed

flug)—f(u-)
A= E(u_,u+) = { , up—u— O’ Uy 7é U—,
f (u—)7 Uy = U,

we search for traveling wave solutions u = u(y) of (3.1) depending on the rescaled
variable y := (z — At) a/e. Following the same lines as those in Sections 1 and 2 we
find that the trajectory satisfies

c1(u) (ca(w) uy)y +abluuy = =A(u—u) + f(u) - f(u-), w=uly), (34)

and the boundary conditions

Jim u(y) =ug, L uy(y) =0.

Setting now

v = ca(u) uy,

we rewrite (3.4) in the general form (2.10) for the unknowns u = u(y) and v = v(y)
(y € R), i.e.,

d (u

@ (v) = K(u,v) (3.5)
with

2
K(“? ’U) = <—-—O£ b(u) ;2f: g{u,A)—g(u_,X\) ) ’ g(u, /\) = f(’U,) - )\U,, (36)
c1(u)ez(u) c1(u)

while the boundary conditions take the form

Jp u(y) =ux,  lim o(y) =0. (3.7
The function K in (3.6) vanishes at the equilibrium points (u,v) € IR? satis-
fying
g(u7 ’\) = g(u—a ’\)a v=0. (38)
In view of the assumption (3.2), given a left-hand state u_ and a speed A there
exist at most three equilibria u satisfying (3.8) (including u_ itself). Considering a
trajectory leaving from u_ at —oo, we will determine whether this trajectory diverges
to infinity or else which equilibria (if there is more than one equilibria) it actually
connects to at +o0o. Before stating our main result (Theorem 3.3 below) let us derive
some fundamental inequalities satisfied by states u_ and u connected by a traveling
wave.
Consider the entropy dissipation

Blu_,us) = —a(u,uy) (U(us) - U(u) + Fuy) - Fw-)  (3.9)
or, equivalently, using (3.3) and (3.7)

+o00
Blusus)= [ U/u(y) (~Auy) + S(u(w)) dy
+oo
- - / U (u(y)) (A (u(y) —u) + F) — fu)) uy(x)dy  (3.10)

__ /u+ (9(z, a(u, 1)) — g(u_, alu_, u))) 28 dz
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In view of
+oo

E(u_,uy) = U'(w) (a (b(w) uy)y + (e1(u) (ca(u) Uy)y)y) dy

+oo
=— / aU"(u) b(u) u? dy,

we have immediately the following.

LEMMA 3.1. (Entropy inequality.) If there exists a traveling wave of (3.4) connecting
u- to uy, then the corresponding entropy dissipation is non-positive,

E(u_,u}) < E(u_,u_) =0.
g

We will use the same notation as in Chapter II. From the graph of the function
f we define the functions ¢" and A" by (see Figure III-3)

_ f) — F(ghw)
u— @ (u)

We have u"(u) < 0 and by continuity ¢%(0) = 0 and, thanks to (3.2), the map

¢" : IR — IR is decreasing and onto. It is invertible and its inverse function is denoted

by ¢ . Observe in passing that, u_ being kept fixed, \(u_) is a lower bound for all
shock speeds A satisfying the Rankine-Hugoniot relation

“A(uy —u)+ flug) - fu) =0

No(w) = £ (H(w) . u#o.

for some u.

The properties of the entropy dissipation (3.9) were already investigated in Chap-
ter IT where the zero-entropy dissipation function cp'{) was introduced. Let us recall
that:

LEMMA 3.2. (Entropy dissipation function.) There exists a decreasing function <p}’) :
IR — IR such that for all u_ > 0 (for instance)

E(u_,uy) =0 anduy #u_  if and only if uy = h(u_),

Eu_,uy) <0 ifand onlyif oh(u_) <uy <u,
and
P~ () < pplu-) < ¢f(u-).
O

In passing, define also the function gog = wg(u_) and the speed A9 = Ap(u_) by

NI (L (. US) N (S I (1) RPN

u- = gg(u-) u_ — pp(u-)

Combining Lemmas 3.1 and 3.2 together we conclude that, if there exists a traveling
wave connecting u_ to u4, necessarily

uy belongs to the interval [h(u_),u_]. (3.12)

In particular, the states u; > u_ and uy < ¢~ %(u_) cannot be reached by a traveling
wave and, therefore, it is not restrictive to focus on the case that three equilibria exist.
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Next, for each u_ > 0 we define the shock set generated by the diffusive-
dispersive model (3.1) by

So(u_) = {u+ / there exists a traveling wave of (3.4) connecting u_ to u+}.

\j

Figure III-3 : Concave-convex flux-function.

THEOREM 3.3. (Kinetic function and shock set for general flux.) Given a concave-
convezr flur-function f (see (3.2)), consider the diffusive-dispersive model (3.1) in
which the ratio o = €/ V6 > 0 is fized. Then, there exists a locally Lipschitz continuous
and decreasing kinetic function <pl; : IR — IR satisfying

M) < Ph(u) < ph(u), u<0,

3.13
) < ) < ), U0, G139
and such that
fu, gk (u))Ufh (un) ), un <0,
Salu_) = .
) { [P} (b)), e >0, 319
Here, the function ©% is defined from the kinetic function cp'; by
- i — b
[0 = S(AW) _ 10 -1(W) L,
u — b (u) u— g (u)
with the constraint

Pi(w) < ph(u) < @h(u), u>0.
Moreover, there exists a function

A" IR — [0, +00),

called the threshold diffusion-dispersion ratio, which is smooth away from u = 0,
Lipschitz continuous at u = 0, increasing in u > 0, and decreasing in u < 0 with

Af(u) ~Clu|] asu—0, (3.16)
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(where C > 0 depends upon f, b, c1, and ¢ only) and such that

@ (u) = @ (u) when o> Al(w). (3.17)
Additionally we have
@ (u) = @h(u) as a— 0 for each u € IR. (3.18)
A
A7)
> U
ATNa)
()
o)
ob(u)

Figure III-4 : Kinetic function for general flux.

The proof of Theorem 3.3 will be the subject of Sections 4 and 5 below. The
kinetic function ¢’ : IR — IR (sketched on Figure III-4) completely characterizes the
dynamics of the nonclassical shock waves associated with (3.1). In view of Theorem 3.3
the theory in Chapter II applies. The kinetic function (,0"’1 is decreasing and its range
is limited by the functions ¢ and Lp'(’). Therefore we can solve the Riemann problem,
urbliquely in the class of nonclassical entropy solutions selected by the kinetic function
2

The statements (3.17) and (3.18) provide us with important qualitative properties
of the nonclassical shocks:

o The shocks leaving from u_ are always classical if the ratio « is chosen to be

sufficiently large or if u_ is sufficiently small.

e The shocks leaving from u_ are always nonclassical if the ratio « is chosen to

be sufficiently small.
Furthermore, under a mild assumption on the growth of f at infinity, one could also
establish that the shock leaving from u_ are always nonclassical if the state u_ is
sufficiently large. (See the bibliographical notes.)

In this rest of this section we introduce some important notation and investigate
the limiting case when the diffusion is identically zero (o = 0). We always suppose
that u_ > 0 (for definiteness) and we set

Up = U_.



64 CHAPTER III. DIFFUSIVE-DISPERSIVE TRAVELING WAVES

The shock speed X is regarded as a parameter allowing us to describe the set of
attainable right-hand states. Precisely, given a speed in the interval

A€ (M(ug), f'(uo)),

there exist exactly three distinct solutions denoted by ug, u;, and uy of the equation
(3.8) with
uy < pM(up) < uy < ug. (3.19)

(Recall that no trajectory exists when  is chosen outside the interval [Af(uo), f'(uo)].)
From Lemmas 3.1 and 3.2 (see (3.12)) it follows that a trajectory either is classical
if ug is connected to

uy € [(ph(uo),uo] with A € [)\h(uo),f'(uo)] (3.20)
or else is nonclassical if ug is connected to
Ug € [(p'(’)(uo),goh(uo)) with X\ € (/\h(uO),)\o(U())]. (3.21)

For the sake of completeness we cover here both cases of positive and negative
dispersions. For the statements in Lemma 3.4 and Theorem 3.5 below only we will set
a :=¢/+/]8] and n = sgn(§) = £1. If (u,v) is an equilibrium point, the eigenvalues
of the Jacobian matrix of the function K(u,v) in (3.6) are found to be

Y N O b(u)? Fl) — A
e ( " et \/a2 e ) ealw) )

So, we set

, _na  bu) L dn a(wes(w) oy
A, o) =3 C1(u)cz(u)< ! n\/1+a2 b(u)? () )\>)’

) = 1o ) _ dn a(weaw) o0
:u'(ua)" )_ 2 cl(u)CQ(u) ( 1+"7\/1+ a2 b(u)z (f( ) ’\)>

(3.22)

LEMMA 3.4. (Nature of equilibrium points.) Fiz some values u— and A and denote
by (u«,0) any one of the three equilibrium points satisfying (3.8).

o Ifn=+1 and f'(u.) — XA <0, then (u.,0) is a stable point.

o Ifn(f'(us) —A) >0, then (u,0) is a saddle point.

o Ifn= -1 and f'(u.) — A > 0, then (u,0) is an unstable point.
Furthermore, in the two cases that n(f'(u«) — A) < 0 we have the additional result:
When a? b(u.)? + 4ncy(uy) c2(us) (f'(us) — A) > 0 the equilibrium is a node, and is
a spiral otherwise. a

For negative dispersion coefficient §, that is, when n = —1, we see that both u;
and ug are unstable points which no trajectory can attain at 400, while u; is a stable
point. So, in this case, we obtain immediately:

THEOREM 3.5. (Traveling waves for negative dispersion.) Consider the diffusive-
dispersive model (3.1) where the flur satisfies (3.2). If € > 0 and 6 < 0, then only
classical trajectories ezist. O
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Some additional analysis (along similar lines) would be necessary to establish the
existence of these classical trajectories and conclude that

[P*(u-),u-], u->0
So(u-) =8(u-):= when § < 0,
[u—,pf(u-)], u_ <0

which is the shock set already found in Section 1 when § = 0.
We return to the case of a positive dispersion which is of main interest here.
(From now on n = +1.) Since gJ,(u, A) is positive at both u = uy and u = ug, we have

B(uo) <0 <(uo), p(uz) <0 <T(ua),

and both points us and ug are saddle. On the other hand, since g (u1,)\) < 0, the
equilibrium u; is a stable point which may be a node or a spiral. These properties
are the same as the ones already established for the equation with cubic flux. (See
Figure III-1.) The following result is easily checked from the expressions (3.22).

LEMMA 3.6. (Monotonicity properties of eigenvalues.) In the range of parameters

where pi(u, A, @) and fi(u; A, o) remain real-valued, we have

o o OF
a(u,)\,a) >0, a—a(u, Aa)<0 B—X(u,/\,a) <0,

and, under the assumption f'(u) — X >0,
S—Z(u; A a) <O0.

O

To the state ug and the speed A € (A¥(up), Ao(ug)) we associate the following
function of the variable u, which will play an important role throughout,

u

G(u;ug, A) = / (9(2, ) — g(uo, ) Z’fg; da.

Observe, using (3.10), that the functions G and F are closely related:

G(u;up,A) = —F(ug,u) when X =a(ug,u). (3.23)

Note also that the derivative 8,G(u;ug, \) vanishes exactly at the equilibria ug, u;,
and ug satisfying (3.8). Using the function G we rewrite now the main equations
(3.5)-(3.6) in the form

ca(u)uy = v, (3.24a)
c2(u) vy = — %(13)— v+ Gl (u;ug, A), (3.24b)

which we will often use in the rest of the discussion.
We collect now some fundamental properties of the function G. (See Figure III-5.)
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THEOREM 3.7. (Monotonicity properties of the function G.} Fiz some ug > 0 and
A € (A(uo), f'(uo)) and consider the associated states uy and uz. Then, the function

u— G(u) := G(u; ug, \) satisfies the monotonicity properties

G'(u) <0, u<uy oruc (uy,u),
G'(u) >0, wu€ (ug,u1) oru>up.

Moreover, if X € (\(ug), Ao(uo)) we have

Gl(ug) = 0 < G(up) < G(uy), (3.251)
while, if A = Ao(uo),

Glug) = Gug) =0 < G(uy) (3.25ii)
and finally, if X € (Mo(uo), f'(uo)),

G(ug) < 0= G(ug) < Glwy). (3.25iii)

7 -
uz2 Ul u uy uy U

Figure III-5 : The function G
when A € (AB(ug), Ao(u0)); A= Ao(uo); A= (Ao(uo), f'(uo)).

PROOF. The sign of G’ is the same as the sign of the function

U —u

9(u, ) — glug, N) = (u — o) (&)_:_fé@ -3).

So, the sign of (' is easy determined geometrically from the graph of the function
f. To derive (3.25) note that G(ug) = 0 and (by the monotonicity properties above)
G(u1) > G(ug). To complete the argument we only need the sign of G(ug). But by
(3.23) we have G(ug) = —E(ug, u) whose sign is given by Lemma 3.2. O

We conclude this section with the special case that the diffusion is zero. Note
that the shock set below is not the obvious limit from (3.14).

THEOREM 3.8. (Dispersive traveling waves.) Consider the traveling wave equation
(3.4) in the limiting case & = 0 (not included in Theorem 3.3} under the assumption
that the fluz f satisfies (3.2). Then, the corresponding shock set reduces to

So(u-) = {pp(u_),u-}, u_ €R.
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PRrROOF. Suppose that there exists a trajectory connecting a state u.. > 0 to a state
uy # u_ for the speed A\ = @(u_,u) and satisfying (see (3.24))

co(u) uy = v,

ex(w) vy = 9(u, A) — glu_., ). (3:26)

Multiplying the second equation in (3.26) by v/c1(u) = ca2(u) uy/c1(u), we find

1 clu
3 ('u2)y = (g(u, N) — g(u—, ) o E“; Uy
and, after integration over some interval (—oo,y],
1
S0 (y) = Gu(y)iu-,A), yeR. (3.27)

2
Letting y — +o0 in (3.27) and using that v(y) — 0 we obtain
Glug;u_,A) =0
which, by (3.23), is equivalent to
E(uy,u_)=0.

Using Lemma 3.2 we conclude that the right-hand state vy is uniquely determined,
by the zero-entropy dissipation function:

up = @h(us), A= Ao(u). (3.28)

Then, by assuming (3.28) and u_ > 0, Theorem 3.7 implies that the function
u +— G(u;u—,A) remains strictly positive for all u (strictly) between u; and u_.
Since v < 0 we get from (3.27)

v(y) = —vV2G(u(y); u-, A). (3.29)

In other words, we obtain the trajectory in the (u,v) plane:

v="0(u) = —v/2G(u;u_,A), u€ uy,u_],
supplemented with the boundary conditions
(u_) = 0(uy) = 0.

Clearly, the function v is well-defined and satisfies o(u) < 0 for all u € (uy,u_).
Finally, based on the change of variable y € [—00, +00] — u = u(y) € [u4,u_] given
by
dy = : ) du,
o(u)

we immediately recover from the curve v = #(u) the (unique) trajectory

y = (u(y), v(y))-
This completes the proof of Theorem 3.8. |
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4. Traveling waves for a given speed

We prove in this section that, given ug, u2, and A = @(uop, u2) in the range (see (3.21))

uz € [ph(uo), ¥ (uo)), A€ (A'(uo), Xo(uo)], (4.1)

a nonclassical connection always exists if the ratio a is chosen appropriately. As we
will show in the next section this result is the key step in the proof of Theorem 3.3.
The main existence result proven in the present section is stated as follows.

THEOREM 4.1. (Nonclassical trajectories for a fixed speed.) Consider two states
up > 0 and uz < 0 associated with a speed

A= E(UO, UQ) € (/\N(UO), Ao(UO)] .

Then, there exists a unique value o > 0 such that ug is connected to us by a diffusive-
dispersive traveling wave solution.

By Lemma 3.4, uy is a saddle point and we have fi(ug) > 0 and from Theorem 2.2
it follows that there are two trajectories leaving from uy at y = —o0, both of them

satisfying
lim v(y)

y——o0 u(y) — uo
One trajectory approaches (ug,0) in the quadrant @y = {u > ug, v > O}, the other

in the quadrant @2 = {u < up, v< 0}. On the other hand, us is also a saddle point
and there exist two trajectories reaching us at y = 400, both of them satisfying

lim _v(y)
y-r+oo u(y) — uo

= ﬁ(uo; )\,a) Cz(Uo). (4.2)

= p(uz; ), @) calua). (4.3)

One trajectory approaches (ug,0) in the quadrant Q3 = {u > us, v < 0}, the other
in the quadrant Q4 = {u < U, v > O}.

LEMMA 4.2. A traveling wave solution connecting ug to us must leave the equilibrium
(ug,0) at y = —oo in the quadrant Qq, and reach (ugz,0) in the quadrant Qs at
y = +o00.

ProOF. Consider the trajectory leaving from the quadrant )y, that is, satisfying
u > ug and v > 0 in a neighborhood of the point (ug,0). By contradiction, suppose
it would reach the state us at +00. Since ug < up by continuity there would exist yg
such that

u(Yo) = uo-
Multiplying (3.24b) by u, = v/co(u) we find

b(w)
c1(u) co(w)

Integrating over (—oo, yo] we arrive at

(02/2)y +a v? = G (u; ug, \) uy.

v’ (%) g blu)
—+ta v —————dy = G(u(yo); o, A) = 0. 4.4
2 o [" o S dy = Glutwo)ie, ) (49)
Therefore v(yo) = 0 and, since u(yp) = up, & standard uniqueness theorem for the
Cauchy problem associated with (3.24) implies that 4 = ug and v = 0 on IR. This
contradicts the assumption that the trajectory would connect to ug at +oc.
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The argument around the equilibrium (u2, 0) is somewhat different. Suppose that
the trajectory satisfies u < ug and v > 0 in a neighborhood of the point (ug,0). There
would exist some value y; achieving a local minimum, that is, such that

w(yr) <uz, uy(y1) =0, uyy(yr) 2 0.
From (3.24a) we would obtain v(y;) = 0 and, by differentiation of (3.24a),

vy(Y1) = Uyy (Y1) c2u(y1)) > 0.

Combining the last two relations with (3.24b) we would obtain
G (u(y1);uo, A) 2 0

which is in contradiction with Theorem 3.7 since u(y;) < uz and G, (u(y1); o, A) < 0.
a

Next, we determine some intervals in which the traveling waves are always mono-
tone.

LEMMA 4.3. Consider a trajectory u = u(y) leaving from up at —oo and denote by §
the largest value such that uy < u(y) < ug for all y € (~00,£) and u(§) = u1. Then,
we have

uy <0  on the interval (—00,§).

Similarly, if v = u(y) is a trajectory connecting to ug at +00, denote by € the smallest
value such that us < u(y) < uy for all y € (§,+00) and w(€) = uy. Then, we have

uy <0  on the interval (€, +00).

In other words, a trajectory cannot change its monotonicity before reaching the
value uy.

PRrOOF. We only check the first statement, the proof of the second one being similar.
By contradiction, there would exist 31 € (—o0,£) such that

uy(y1) =0, uyy(y1) 20, u <u(yr) < uo.

Then, using the equation (3.24b) would yield G (u(y1);ug, A) > 0, which is in con-
tradiction with the monotonicity properties in Theorem 3.7. O

ProOOF OF THEOREM 4.1. For each a > 0 we consider the orbit leaving from uy and
satisfying u < up and v < 0 in a neighborhood of (ug,0). This trajectory reaches the
line {u = uy} for the “first time” at some point denoted by (u1,V_(e)). In view of
Lemma 4.3 this part of trajectory is the graph of a function

[u1,u0] 3 u— v_(uw; A, @)

with of course v_(u1; A, @) = V_(a). Moreover, by standard theorems on differential
equations, v_ is a smooth function with respect to its argument (u; A, @) € [ug, ug] X
(A (uo), Ao(uo)] x [0,+00).

Similarly, for each « > 0 we consider the orbit arriving at us and satisfying u > us
and v < 0 in a neighborhood of (uz,0). This trajectory reaches the line {u = ul} for
the “first time” as y decreases from +oc at some point (u1, Vi(@)). By Lemma 4.3
this trajectory is the graph of a function

[ug, 1] 3 u = vy (45 4, 0).
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The mapping v; depends smoothly upon (u,A, @) € [ug,u1] X (A%(ug), Ao(ug)] x
[0, +-00).

For each of these curves u — v_(u) and u — v4(u) we derive easily from (3.24)
a differential equation in the (u,v) plane:

b(u)
c1(u)

o(u) Z—Z(u) +a 2 ) = G, N). (4.5)

Clearly, the function
[0,4+00) 3 a W(a) : = vi(ug; A, ) —v_(u1; A, @)
=Vi(a) - V_(a)

measures the distance (in the phase plane) between the two trajectories at u = u.
Therefore, the condition W (o) = 0 characterizes the traveling wave solution of interest
connecting ug to us. The existence of a root for the function W is obtained as follows.

Case 1: Take first a = 0.
Integrating (4.5) with v = v_ over the interval [u;,uo] yields

%(V—(O))2 = G(u1; u0, A) — G(uo; uo, A) = G(u; ug, A),
while integrating (4.5) with v = v4 over the interval [ug,u1] gives
%(v+(0))2 — G(un;uo, A) — Glus; up, A).
When A # Ag(up), since G(ug;ug, A) > 0 (Theorem 3.7) and Vi(a) < 0 (Lemma 4.3)
v‘:‘rf(g)oz:lél‘de that W(0) > 0. When XA = Xg(ug) we have G(uz;up,A) = 0 and

Case 2: Consider next the limit oo — +o0.
On one hand, since v_ < 0, for a > 0 we get in the same way as in Case 1

—;-(V_(a))2 < G(ug;ug, A). (4.6)

On the other hand, dividing (4.5) by v = v, and integrating over the interval [ug,u;]

we find u g w g \
V+(C¥) = —a/ (’LL) du +/ —u(u, 4o, ) du.
w a@ ™, T e
Since v = co(u) uy < 0 and G,(u) > 0 in the interval [ug,u;] we obtain

Vi(a) € —sa(u; — ug), (4.1

where k = inf,¢[y, v, b(u)/c1(u) > 0. Combining (4.6) and (4.7) and choosing o to
be sufficiently large, we conclude that

W(a) =Vi(a) - V_(a) <0.

Hence, by the intermediate value theorem there exists at least one value o such
that
W(a) =0,
which establishes the existence of a trajectory connecting ug to ugz. Thanks to
Lemma 4.3 it satisfies u, < 0 globally.
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The uniqueness of the solution is established as follows. Suppose that there would
exist two orbits v = v(u) and v* = v*(u) associated with distinct values @ and o* > a,
respectively. Then, Lemma 3.6 would imply that

Blug; A, @) < fi(uos A @), plug; A, @) < plug; A, @).

So, there would exist ug € (ug,ug) satisfying

dv*

dv
o (ua) 2 == (us).
Comparing the equations (4.5) satisfied by both v and v*, we get

dv dv* b(us)
= - = (a* — - . 4.
vls) (g (us) = G (us)) = (@7 = ) s o(us) (48)
Now, since v(ug) # 0 (the connection with the third critical point (u,0) is impossible)
we obtain a contradiction, as the two sides of (4.8) have opposite signs. This completes
the proof of Theorem 4.1. ]

v(uz) = v*(u3),

REMARK 4.4. It is not difficult to see also that, in the proof of Theorem 4.1,

a — V_(a) is non-decreasing (4.91)

and
a - Vi (o) is decreasing. (4.9ii)
In particular, the function W{a) := V4 (@) — V_(a) is decreasing. O

THEOREM 4.5. (Threshold function associated with nonclassical shocks.) Consider
the function A = A(ug, ug) which is the unique value o for which there is a nonclassical
traveling wave connecting ug to uy (Theorem 4.1). It is defined for ug > 0 and ug < 0
with uz € [ph(uo), ¥*(uo)) or, equivalently, ug € [@h(ua), 0™ (u2)). Then we have
the following two properties:
o The function A(ug,us) is increasing in up and maps {go‘(’,(uo),(ph(UO)) onto
some interval of the form [0, A%(ug)) where A%(uo) € (0, +00).
o The function A is also increasing in ug and maps the interval [} (uz), o~ (uz))
onto the interval [0, A%(p™%(u2))).

Later (in Section 5) the function A will also determine the range in which classical
shocks exist. From now on, we refer to the function A as the critical diffusion-
dispersion ratio. On the other hand, the value A%(ug) is called the threshold
diffusion-dispersion ratio at up. Nonclassical trajectories leaving from ug exist if
and only if o < A%(uo).

Observe that, in Theorem 4.5, we have A(uo,u2) — 0 when uy — ¢} (ug), which
is exactly the desired property (3.18) in Theorem 3.3.

ProOF. We will only prove the first statement, the proof of the second one being
completely similar. Fix up > 0 and 43 < ua < ug so that

Ni(ug) < » = 12 = Fluo) 5o F(u3) — J(wo)

< A .
Uy — Ug Uy — Ug - O(UO)

Proceeding by contradiction we assume that

o™ = Aluo, u3) > o := A(ug, up).
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Then, Lemma 3.6 implies
ﬁ(u(% Aa a) > ﬁ(um A’ CY*) > E(UJO, )‘*7 a*)‘

Let v = v(u) and v* = v*(u) be the solutions of (4.5) associated with @ and o*,
respectively, and connecting ugp to ug, and ug to uj, respectively. Since uj < uq, by
continuity there must exist some state uz € (ug,ug) such that

o) = 0" (), () 2 T (),

On the other hand, in view of (4.5) which is satisfied by both v and v* we obtain

T (00) ~ o)) + o(u)(a” = o) 252 = (O = ) (un — ua) 22,

v(ua) (3

which leads to a contradiction since the left-hand side is non-positive and the right-
hand side is positive. This completes the proof of Theorem 4.5. a

We complete this section with some important asymptotic properties (which will
establish (3.16)-(3.17) in Theorem 3.3).

THEOREM 4.6. The threshold diffusion-dispersion ratio satisfies the following two
properties:
e Ab(up) < +oo for all ug.
) ngere exists a traveling wave connecting ug to ug = ¢l (up) for the value o =
A (uo)

PROOF. Fix up > 0. According to Theorem 4.1, given A € (A%(ug), Ao(ug)] there
exists a nonclassical trajectory, denoted by u — v(u), connecting ug to some uy with

\  flu) — f(uo)

, Uz < <ph(uo), a = A(ug, u2). (4.10)
Ug — Ug

On the other hand, choosing any state u§ > uo and setting

o 108) — f(up)

v =)

it is easy to check from (3.22) that, for all o* sufficiently large, p(ut; \*, o*) remains
real with

pui; A", a) <0.

Then, consider the trajectory u — v*(u) arriving at u} and satisfying

lim — () - = p(ul; A", a%) ea(u]) < 0.
e e U

Two different situations should be distinguished.

Case 1 : The curve v* = v*(u) crosses the curve v = v(u) at some point uz where

N . dv dv*
uy <ug <up, v(uz)=v"(u3), du( uz) > du (u3).
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Using the equation (4.5) satisfied by both v and v* we get

v(uz) = Gy, (uz;ug, X*) — Gy, (us; up, A)
< 0.
In view of our assumptions, since v(uz) < 0 we conclude that @ < a* in this first case.

Case 2 : v* =v*(u) does not cross the curve v = v(u) on the interval (u},up).
Then, the trajectory v* crosses the u-axis at some point ugq € (u],uo]. Integrating
the equation (4.5) for the function v on the interval [ug, ug] we obtain

a/u2 ) v(u) du = G(uz;u0, A) — G(uo; uo, A)-

, ci(u)

On the other hand, integrating (4.5) for the solution v* over [u}, u4] we get

u*
a*/ s v*(u) du = G(uj; ug, A") — Gug; ug, A").

. ci(u)
Since, by our assumption in this second case,
“2 blu Ul b(y
/ () v(u)du > / ) v*(u)du,
w C1(w) us C1(v)
we deduce from the former two equations that

G(”Z;“O» A) - G(“Oy Uug, A) *
<
Clur i, 3~ Clug i Ay = 0%

a<a*

where C is a constant independent of ug. More precisely, uy describes a small neigh-
borhood of ¢ (uo), while ug, u¥, us, and A* remain fixed.
Finally, we conclude that in both cases

A(ug,u2) < C' o,

where a* is sufficiently large (the condition depends on ug only) and C’ is independent
of the right-hand state us under consideration. Hence, we have obtained an upper
bound for the function us — A(ug, uz). This completes the proof of the first statement
in the theorem.

The second statement is a consequence of the fact that A(ug, u2) remains bounded
as ug tends to ¢%(ug) and of the continuity of the traveling wave v with respect to
the parameters A and «, i.e., with obvious notation

v(5 M (ug), A%(ug)) = lim w5 Muo, uz), Alug, us)).

uz— b (uo)

O

The function A% = A%(ug) maps the interval (0,4o00) onto some interval [A!, Af]
where 0 < A" < Al < +00. The values Al and At correspond to lower and upper
bounds for the threshold ratio, respectively. The following theorem shows that the
range of the function A%(ug), in fact, has the form [O,E].
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THEOREM 4.7. With the notation in Theorem 4.5 the asymptotic behavior of A%(ug)
as ug — 0 is given by

Alug) ~ kg, Ki= a2t al 0)02(0) V3f(0) > 0. (4.11)

Note that of course (3.2) implies that f’” (O) > 0. In particular, Theorem 4.7
shows that A%(0) = A%(0) = 0. Theorem 4.7 is the only instance where the assumption
F"(0) # 0 (see (3.2)) is needed. In fact, if this assumption is dropped one still have
A%(ug) — 0 as ug — 0. (See the bibliographical notes.)

PROOF. To estimate A" near the origin we compare it with the corresponding crit-
ical function Ai determined explicitly from the third-order Taylor expansion f* of
f = f(u) at u=0. (See (4.16) below.) We rely on the results in Section 2, especially
the formula (2.26) which provides the threshold ratio explicitly for the cubic flux.

Fix some value ug > 0 and the speed A = X(ug) so that, with the notation
introduced earlier, uy = u; = ¢! (ug). Since f”(0) # 0 it is not difficult to see that
Up

ug = @M ug) = —(1 + O(ug)) — 5

(as is the case for the cubic flux f(u) = u3). A straightforward Taylor expansion for
the function

G(u) := G(u; ug, \(uo))
yields
G(u) = G(uz) = G(u) — G(¢"(uo))

= Lol (5100) 2D sua + 0) + Ofual + ).

Since, for all u € [uz, ug)
4dus <u+3ug < ug+3ug = us (1+O(UO)),
we arrive at

Glu) - Clu) — 17(0) 2

C1 (O)

Now, given € > 0, we can assume that ug is sufficiently small so that

(u — uz)?

(u+3ug) 51

< Cuglu+3ug| (u—u)?. (4.12)
() -F+e)Sus-2(1-e),
MO 5 1420 e s, wo), (413)

@ (=925 < an) )
(i) o(0)(1—e) < oj(u) < ;(0) (1 +¢), uefunugh =12

Introduce next the flux-function

foluw) =k %3, k=(1+¢)f"(0), uelR. (4.14)

Define the following (constant) functions

b*(u) = b(0), ci(u) =c1(0), c3(u) = c2(0).
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To these functions we can associate a function G, by the general definition in Section 3.
We are interested in traveling waves associated with the functions f,, b*, ¢}, and c3,
and connecting the left-hand state uj given by

uy = —2us

to the right-hand state ug (which will also correspond to the traveling wave associated
with f).
The corresponding function
G.(u) = G (s, N1(u))
satisfies
c2(0) (1+¢)

Gu(u) = Ga(uz) = f(0) ca(0) 24

In view of Remark 2.6 the threshold function A% associated with fuy 0%, cf, and ¢ is

x/Ii__kZlg(((z)))cﬂ . (4.16)

(u+ 3ug) (u —up)?. (4.15)

Al (u5) =

By Theorem 4.6, for the value a* := Ali(ug) there exists also a traveling wave trajec-
tory connecting uf, to u3 := ug, which we denote by v* = v*(u). By definition, in the
phase plane it satisfies

o (W)

- (u)+ « m v*(u) = G (u), (4.17)

with

§)

. o G(w)
CLw) = (fulw) — £ulu) — filua) (u ) 2V,
ci(u)
We consider also the traveling wave trajectory v — v = v(u) connecting ug to us
which is associated with the data £, b, c1, and co and the threshold value o := A% (uq).
We will now establish lower and upper bounds on A"(u); see (4.23) and (4.24) below.

Case 1: First of all, in the easy case that A%(ug) (1 —e) < A(u?), we immediately
obtain by (4.16) and then (4.13)

Ar(uo) < (14 2¢) Ab(u) = (1 + 2¢) v3k 2Q20) .

46(0) 0
< (1+26)\/ﬂ%0~)u0(1+5)
01(0)62(0)

< (1+Ce) Va(0) = = wo

which is the desired upper bound for the threshold function.

Case 2 : Now, assume that A%ug) (1 —¢) > Ai(u(*j) and let us derive a similar
inequality on A%(up). Since G'(uz2) = G%(u2) = 0, G" (uz) = G”(uz) = 0, and

. dv dv*
v(ug) =v(u3) =0, @(w) <0, T

(U2) < 0,
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it follows from the equation

%(u) N bu) G (u;up,N)

ci(u) v(u)
by letting u — ug that
) =~ o) 22 < T abu) 2 (1) = ).

du

This tells us that in a neighborhood of the point us the curve v is locally below the
curve v*.
Suppose that the two trajectories meet for the “first time” at some point u3 €
(UQ,UO], 80 Qo
v
du (U3)
From the equations (4.5) satisfied by v = v(u) and v* = v*(u), we deduce

N .. dv
v(uz) =v*(ug) with %(u;:,) >

lv(ug)2 +a /u3 v(u) b(w) du = G(ug) — G(us),

2 R c1(u)
and . ” ,
3 v*(uz)? + o* /u2 v*(u) cl((uu)) du = G« (u3) — Gy (u2),

respectively. Subtracting these two equations and using (4.12) and (4.15), we obtain

“ b(u) e [k b (u)
o /M v(u) () du — o /u2 v*(u) () du
= G(U,?,) - G(Uz) - (G*(’U,g) - G*('LLQ))
> (O(ug) — Ce) (uz + 3ug) (uz — ug)®.

(4.18)

But, by assumption the curve v is locally below the curve v* so that the left-hand side
of (4.18) is negative, while its right-hand side of (4.18) is positive if one chooses ug
sufficiently small. We conclude that the two trajectories intersect only at up, which
implies that uj < up and thus

/ * lo(w)| du > / 10t ()] du. (4.19)

2 u2

On the other hand we have by (4.13)

2(u) 2 (1) [ ol du < 3(ug) [ 2 ju(u)
c1(0) u2 up C1{1) (4.20)

= G(ug) — G(up).
Now, in view of the property (i) in (4.13) we have

143 U 3+¢
Bz +uo| < 20 (14 36) < [ug] -5, Jug —uo| < L (B+¢€) < Jug| ST
2 l—¢ 2 1—
Based on these inequalities we deduce from (4.12) that
0) 9ugl*
Glus) — Glug) < (0) 2D 22l (1 4 6y (4.21)

C1 (0) 8
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Concerning the second curve, v* = v*(u), we have

b(0) [Uo

AL(5) o5

0™ (w)] du = G (uz2) — G (ug)
(4.22)

= £"(0)

c2(0) 9 |ug|* (1+e)
C1

0 8

by using (4.15).
Finally, combining (4.19)—(4.22) we conclude that for every ¢ and for all suffi-
ciently small wug:

A'(uo) < (1+ Ce) Al(up)

< (1+0e) Va0 2D,

(4.23)

which is the desired upper bound. Exactly the same analysis as before but based on
the cubic function f,(u) = ku® with £ = (1 — ¢) f"”/(0) (exchanging the role played
by f. and f, however) we can also derive the following inequality

Ab(ug) > /3F7(0) 01102%(0) up (1 —Ce). (4.24)

The proof of Theorem 4.7 is thus completed since ¢ is arbitrary in (4.23) and (4.24).
O

5. Traveling waves for a given diffusion-dispersion ratio

Fixing the parameter o, we can now complete the proof of Theorem 3.3 by identifying
the set of right-hand state attainable from wug by classical trajectories. We rely here
mainly on Theorem 4.1 (existence of the nonclassical trajectories) and Theorem 4.5
(critical function).

Given ug > 0 and a > 0, a classical traveling wave must connect u_ = ug to
uy = uy for some shock speed A € (Af(ug), f'(ug)). According to Theorem 4.5,
to each pair of states (ug,uz) we can associate the critical ratio A(ug,usz). Equiva-
lently, to each left-hand state ug and each speed A, we can associate a critical value
B(A,up) = A(ug, u2). The mapping

A — B(A,ug)

is defined and decreasing from the interval [A(ug), Ao(uo)] onto [0, A%(uo)]. It admits
an inverse

a— Ay (ug),

defined from the interval [0, A”(uo)] onto [A(ug), Ao(uo)]. By construction, given
any a € (0, Ah(uo)) there exists a nonclassical traveling trajectory (associated with
the shock speed A, (ug)) leaving from ug and solving the equation with the prescribed
value a.
It is natural to extend the definition of the function A, (ug) to arbitrary values «
by setting
Aaluo) = M(ug), a > AB(ug).
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The nonclassical traveling waves are considered here when « is a fixed parameter. So,
we define the kinetic function for nonclassical shocks,

(uo, @) — SDZ(UO) = Uz,
where ug denotes the right-hand state of the nonclassical trajectory, so that

f(UO) - f(u2) — AQ(UQ). (51)

Up — U2
Note that ¢!, (ug) makes sense for all ug > 0 but o < Ab(ug).
THEOREM 5.1. For all ug > 0 and a > 0 and for every speed satisfying
Aa(ug) <A < f'(uo),

there exists a unique traveling wave connecting u— = ug to u+ = uy. Moreover, for
o > Ab(ug) there exists a traveling wave connecting u_ = ug to uy = u; for all

A€ [N(uo), f'(uo)].

PrOOF. We first treat the case o < A%(ug) and A € (Aa (uo), f’(uo)]. Consider the
curve u +— v_(u; A, &) defined on [u1,ug] that was introduced earlier in the proof
of Theorem 4.1. We have either v_(u;; A, @) = 0 and the proof is completed, or
else v_(u1;A, @) < 0. In the latter case, the function v_ is a solution of (4.5) that
extends further on the left-hand side of u_ in the phase plane. On the other hand,
this curve cannot cross the nonclassical trajectory u — v(u) connecting u_. = ug to
uy = ¢’ (up). Indeed, by Lemma 3.6 we have

A(uo; A, ) < Li(uo; Aa(uo), ).
If the two curves would cross, there would exist u* € (@, (uo), u1) such that

W) =o-(u) and ) < D),

By comparing the equations (4.5) satisfied by these two trajectories we get

o) (R (w) - D= )) = (- Kalw) 0 —u0) XD (52)
c1(u*)
This leads to a contradiction since the right-hand side of (5.2) is positive while the
left-hand side is negative. We conclude that the function v_ must cross the u-axis
at some point uz with up < ¢ (ug) < uz < u;. The curve u — v_(u, A, @) on the
interval [us,ug] corresponds to a solution y — u(y) in some interval (—oo,ys] with
uy(ys) = 0 and

g(u(yg),)\) - g(uo,)\) _ G (u3;ug, A)
c1(u(ys)) c2(u(ys)) ca(ug)?
which is positive by Theorem 3.7. Thus uyy(y3) > 0 and necessarily u(y) > us for

y > y3. Indeed, assume that there exists ys > 3, such that u(ys) = u(ys) = us.
Then, multiplying (3.24b) by v_/c2 and integrating over [ys, y4], we obtain

Uyy (Y3) = (5.3)

Ya b(u)
2 +a/ ———_ 22 dy = G(us; ug, ) — G(us; ug, \) = 0.
(y4) v C1(U)C2(u) Y ( 35 Y0 ) ( 3, U0 )
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This would means that u(y) = us for all y, which is excluded since u_ = u;.
Now, since u < ug we see that u is bounded. Finally, by integration over the
interval (—o0,y] we obtain

L, v b(u) 02 duy = Glu —Clu
3 +a [ et dy = Gluly) - Glw),

which implies that v is bounded and that the function u is defined on the whole real
line IR. When y — 400 the trajectory (u,v) converges to a critical point which can
only be (uq,0).

Consider now the case a > A"(ug). The proof is essentially same as the one given
above. However, we replace the nonclassical trajectory with the curve u — vy (u)
defined on the interval [ug,u;]. For each ) fixed in (A\¥(ug), f(u0)) (since o > A%(ug))
and thanks to Remark 4.4, the function, W = V, — V_ (defined in the proof of
Theorem 4.1, with v_(u; A\, @) and vy (u; A, @) and extended to A € (f'(u2), f'(uo)))
satisfies W{a) < 0. On the left-hand side of uy, with the same argument as in the
first part above, we can prove that the extension of v_ does not intersect v, and
must converge to (uy,0). Finally, the case A = A%(ug) is reached by continuity. This
completes the proof of Theorem 5.1. ]

THEOREM 5.2. If M(up) < A < Ay{ug) there is no traveling wave connecting u_ = ug
to uy = us.

PROOF. Assume that there exists a traveling wave connecting ug to u;. As in
Lemma 4.2, we prove easily that such a curve must approach (ug,0) from the quad-
rant Q; and coincide with the function v_ on the interval [u, ug]. On the other hand,
as in the proof of Theorem 5.1, we see that this curve does not cross the nonclassical
trajectories. On the other hand, Lemma 3.7 gives

-/I('U/O; >‘7 a) 2 ﬁ(uo; Aa(u0)> a),

thus, the classical curve remains “under” the nonclassical one. So we have
b

v_ (<pl;(uo)) < U(Sf’«bx (u0)),

where 4 > (u,v(u)) denotes the nonclassical trajectory. Assume now that the curve
(u,v_(u)) meets the u-axis for the first time at some point (uz, 0) with uz < ¢’ (ug) <
ug. The previous curve defined on [ug, ug] corresponds to a solution y +— u(y) defined
on some interval (—o0, y3] with uy(y3) = 0 and uy,(y3) > 0. Thus v,(ys) satisfies (5.3)
and is negative (Lemma 4.3). This implies that uy,(ys) < 0 which is a contradiction.
Finally, the trajectory remains under the u-axis for u < us, and cannot converge to
any critical point. O

According to Theorem 5.1 the kinetic function can now be extended to all values
of a by setting

@h(uo) = ©*(ug), > A%(uo). (5.4)
Finally we have:

THEOREM 5.3. (Monotonicity of the kinetic function.) For each o > 0 the mapping
ug — ¢ (ug) is decreasing.
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PRrROOF. Fix up > 0, @ > 0, A = A,(up) and ug = cpg(ug). First suppose that
o > A%(ug). Then, for all u} > ug, since ¢ is known to be strictly monotone, it is
clear that

h(ug) < M ug) < ' (uo) = ¢l (uo).
Suppose now that o < A%(ug). Then, for u% > ug in a neighborhood of ug, the speed
A* = f—("ﬁllm satisfies A* € (A"(ug), Ado(uy)). Then, there exists a nonclassical

6 —u2
traveling wave connecting ug to ug for some o* = A(uf, u2). The second statement in
Theorem 4.5 gives a* > a. Since the function A, is decreasing (by the first statement
in Theorem 4.5) we have Aq, (ug) < Ax(ug) and thus ¢ (u) < ua = ¢’ (ug) and the

proof of Theorem 5.3 is completed. O

PROOF OF THEOREM 3.3. Section 4 provides us with the existence of nonclassical
trajectories, while Theorems 5.1 and 5.2 are concerned with classical trajectories.
These results prove that the shock set is given by (3.14). By standard theorems
on solutions of ordinary differential equations the kinetic function is smooth in the
region {a < A%(ug)} while it coincides with the (smooth) function ¢ in the region
{a> Ah(uo)}. Additionally, by construction the kinetic function is continuous along
o = AY(ug). This proves that ¢ is Lipschitz continuous on each compact interval. On
the other hand, the monotonicity of the kinetic function is provided by Theorem 5.3.
The asymptotic behavior was the subject of Theorem 4.7. O

REMARK 5.4. To a large extend the techniques developed in this chapter extend to
systems of equations, in particular to the model of elastodynamics and phase transi-
tions introduced in Examples 1-4.7. With the notation of Examples 1-4.7, the corre-
sponding traveling wave solutions (v, w) = (v(y), w(y)) must solve

—svy — (v, wy’wyy)y = (p(w) Uy)y’
swy + vy =0,
where s denotes the speed of the traveling wave, ¥ is the total stress function, and

p(w) is the viscosity coefficient. When X is given by the law (I-4.20) and after some
integration with respect to y we arrive at

—s(v-v-) = ow) + o) — ) v, = 2w~ (w)u,),,

s(w—w)+v—v_=0,

where (v_,w_) denotes the upper left-hand limit and A(w) the capillarity coefficient.
Using the second equation above we can eliminate the unknown v(y), namely

A(w)/? (/\(w)l/2 wy)y + p(w) vy = 8% (w—w_) — o(w) + o(w-), (5.5)

which has precisely the structure of the equation (3.4) studied in the present chapter !
Additionally, the hypothesis (3.2) in this chapter is very similar to the hypotheses (I-
4.8) and (1-4.12) in Examples I-4.4 and I-4.5, respectively. All the results in the present
chapter extend to the equation (5.5) under the hypothesis (I-4.8) (monotonicity of
the kinetic function, threshold diffusion-dispersion ratio, asymptotic properties) and
most of them extend to (5.5) under the hypothesis (I-4.12). See the bibliographical
notes. ]
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CHAPTER IV

EXISTENCE THEORY
FOR THE CAUCHY PROBLEM

This chapter is devoted to the general ezistence theory for scalar conservation laws
in the setting of functions with bounded variation. We begin, in Section 1, with an
existence result for the Cauchy problem when the flux-function is conver. We exhibit
a solution given by an explicit formula (Theorem 1.1) and prove the uniqueness of
this solution (Theorem 1.3). The approach developed in Section 1 is of particular
interest as it reveals important features of classical entropy solutions. However, it
does not extend to non-convex fluxes or nonclassical solutions, and an entirely differ-
ent strategy based on Riemann solvers and wave front tracking is developed in the
following sections. In Sections 2 and 3, we discuss the existence of classical and of
nonclassical entropy solutions to the Cauchy problem, respectively; see Theorems 2.1
and 3.2 respectively. Finally in Section 4, we derive refined estimates for the total
variation of solutions (Theorems 4.1 to 4.3) which represent a preliminary step toward
the forthcoming discussion of the Cauchy problem for systems (in Chapters VII and
VIII).

1. Classical entropy solutions for convex flux

The main existence result in this section is:

THEOREM 1.1. (An explicit formula.) Let f : IR — IR be a convex function satisfying

f” >0 and lim f' = +o0,
+oo

and let ug be some initial data in L°(IR). Then, the Cauchy problem

Ou+ 0. f(u) =0, u=u(z,t) eR,z € R, t >0,

(1.1)
u(z, 0) = ug(x), z€IR,

admits a weak solution u € L (IR x IR,) satisfying Oleinik’s one-sided inequality
(£L‘1 <z9, t> 0)
Tog—
f'(u(@2,1)) = f'(u(z1,t)) < =2—

In particular, for almost all t > 0 the function x — u(z,t) has locally bounded total
variation. 5

Denote by f the Legendre transform of f and by g the inverse function of f'.
Then, the solution of (1.1) is given by the explicit formula

wz,t) =g (w) , (1.3a)

(1.2)

t
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where y(z,t) is a point that achieves the minimum value of the function

y— Gz, t;y) = /y up dx +tf(u). (1.3b)
0 t

A discussion of the initial condition at £ = 0 is postponed to Theorem 1.2 below.
Some important remarks are in order:
1. Recall that the Legendre transform of f is

f(m) = Sgp(mv - f(v)), memR.

Since f is strictly convex and grows faster than any linear function, the supre-
mum above is achieved at the (unique) point v such that

f'(v)=m or, equivalently, v = g(m).
Thus for all reals m
f(m) =mg(m) - f(g(m)), andso f'=g, (1.4)

which implies f/(m) = 1/f" {g(m)) > 0. Hence, the function f is strictly con-
vex and we also have limy o f' = lim4oo g = *oo. For instance, if f(u) = u?/2,
then g(u) = u, f(u) = u?/2, and

@—w%

Y
G(x,t;y)z/ uop(z) dz +
o 2t

2. The formula in Theorem 1.1 should be regarded as a generalization to dis-
continuous solutions of the implicit formula (I-1.7) of Chapter I. The value
y(z,t) can be interpreted as the foot of the characteristic line passing through
the point z at the time ¢. It is not difficult to deduce from the property that
y(z,t) minimizes G that, when the function uo has bounded variation,

uo-(y(z, 1)) < u(z,1) < uoy(y(=,1)). (1.5)

3. Setting E :=1/min f” where the minimum is taken over the range of the
solution under consideration, (1.2) implies that (z; # x2)

u(za,t) — u(zy,t) < E
Ty — X1 -t

(1.2)

and, by taking the limit z; — x5 — 0,

E

In particular, the solution u has bounded variation in z (since the function
z — u(x,t) — E z/t is non-increasing) and u satisfies Lax shock inequality (see
(II-1.9)):

u—(z,t) 2 us(z, 1),

where we use the notation u4(z,t) := u(z+,t).
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PRrROOF. We consider the Cauchy problem (1.1) and, to begin with, we show that the
formula (1.3) is valid for any piecewise smooth solution with compact support satisfying
Lax shock inequality.

Define

T

wiz, 1) = / wn.0dy, wola) = [ uals)dy

— 00 —00
and normalize the flux so that f(0) = 0. By integration of the equation in (1.1) we
get

Ow + f(0,w) = 0.

Since f is convex we have for all v € IR
F) + f'(v) (Oaw — v) < f(Bow) = —Oyw,
thus by re-ordering the terms
Syw + f'(v) 0pw < f'(w)v — f(v). (1.6)

Fix a point (z,t) and some real v. The line passing through (z,t) and with slope
f'(v) intersects the initial axis at some point y with, clearly,

y=z-1tf(v).
Integrating (1.6) along this straight line yields

w(z,t) —wo(y) <t (f'(v)v—fv)) =t fof'(v),

since the right-hand side is a constant. When v describes the whole of IR the parameter
y also describes IR. We thus arrive at the fundamental inequality (y € IR)

0
-~ I —
we) <w) +e7 (25Y) = [ wdsrG@en. @
—00
Since the left-hand side does not depend on y it is natural to minimize the right-hand
side over all y.

Since w is piecewise smooth, from any point (z,t) (not on a shock curve) we can

trace backward the (characteristic) line with slope

v = u(z,t).

Since u satisfies Lax shock inequality this line cannot meet a shock curve of u and,
therefore, must eventually intersects the initial line at some point y = y(z,t). Plug-
ging this specific value in (1.6), we see that (1.6) and (1.7) become equalities. As a
consequence, the minimum value of the right-hand side of (1.7) is achieved, precisely
for the choice v = u(z, t):

0
w(z,t) — / up dx = G(z,t;y(x,t)) = min G(z, t;y).
— o0 y€IR
Finally, in view of the relation

y(z,t) =z — t f'(u(z,1)),

the value u(z, t) is recovered from y(z,t) and (1.3a) holds. This establishes the explicit
formula (1.3), at least for piecewise smooth solutions.

Conversely, consider now the function u given by the explicit formula (1.3).
Note that the minimizer y(z,t) always exists since f grows faster than any linear
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function (indeed, limyoo f' = +00) while the term foy uo dz grows at most linearly
(uo € L*®(IR)). It need not be unique and, to begin with, we consider any (measur-
able) selection. However, we claim that the function z » y(z,t) is increasing (but
not necessarily strictly increasing). Indeed fix z; < 3 and y < y; := y(z1,t) and let
us check that

G(z2,t;31) < G(z2,t5y)- (1.8)
This will prove that y(xs,t) > y;. Indeed, we have

G(z1,ty1) < G(z1,ty)

for all y, and especially for y < y;. On the other hand, the function f being strictly

convex we have
)<r(m5) (=),

f<972;y1> +f($1

Multiplying the latter inequality by ¢ and adding to the former, we arrive at (1.8).

Therefore, for each t, the function z — y(z,t) has locally bounded total variation
and so is continuous at all but (at most) countably many points. Hence, for each
t, excluding (at most) countably many x at most the minimizer y(z,t) is uniquely
defined.

Consider next the following approximation of u,

/ g (u) e_% G(a:,t;y) dy
R t

IR

/ (f o g) (x_.t‘y) e_'gl' G(Ivt§y) dy
R

/ et Glztiy) dy
R

’Us(l‘,t) = log/ e—% G(z,t;y) dy.
IR

(The functions under consideration are integrable, as can be checked easily from the
estimates to be derived below.) A simple calculation using (1.3b) yields

atG=—(fog)(”“’;y>, azG=g(”’;y),

and thus u. = —£ 0,v. and f. = € 6yv., from which it follows that

Byue + O f. = 0. (1.9)

ue(z,t) =

and similarly for f(u)

fe(x’ t) =

Set also

Consider a point (z,t) at which the function y(.,%) is continuous in space (again,
only countably many points are excluded). The minimizer is unique and the function
y + G(z,t;y) achieves its minimum solely at y = y(z,t). We claim that, as ¢ — 0,
ue(z,t) converges to the value of the integrand computed at a point that achieves the
minimum of G(z,t;.). We now provide a proof of this fact.
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Normalize G by G(z,t;y(z,t)) =0. (Adding a constant to G does not modify
ue(z,t).) Fix 6 > 0. Since G is Lipschitz continuous in y there exists C; > 0 (de-
pending on the point (x,t)) such that

G(x7t;y) < Cl ly - y(-’l', t)la ye [y(d:, t) - 6vy($7t) + 6]7

which implies Yo t)+5
e~Glatu)/e gy > / e=Cr lv=v(@1)l/z g,

IR y(z,t)—8

)
:2/ e~ C1v/e gy
0

é/e
:26/ e’C”’dyZC’gs
0

for all € < § and for some Cs independent of .

On the other hand, in the region |y — y(z,t)| > § the function G is bounded away
from zero (since y(z,t) is the unique minimum of G). Since it tends to infinity at
infinity there exists a constant C3 = C3(d) (depending also on the point (z,t)) such
that

e~Clatw/e < g=Calu=y@Nl/e 1y _ (. 1)] > 4.

Collecting the above inequalities and denoting by C4 the Lipschitz constant of

9(-)/t, we arrive at

/ ly — y(z,t)| e ¥/ dy
[’U’E(mvt) - u’(x7t)l < Cy =

/ e_G(w7t;y)/5 dy

IR

C
<Cyd+ ~C——4—/ ly = y(z, )| e~ lvmv@Ole gy
2€ Hiy-y(z,i26}
20, +0o0 o
=Cy6+ 5— av/e g
10+ 5, ove Y
< 04(5 + C5 £,

for some constant Cs > 0.
As e — 0 we find
lim sup |ue(z,t) — u(z, t)] < Ch6.
£—0

Since § was arbitrary and the arguments for f.(z,t) are completely similar we conclude
that at each point (z,t) where the function y(.,t) is continuous

;i_l_}(l) ue(z,t) = u(z, t), Eh_rg fe(z,t) = f(u(z,t)).

Passing to the limit in (1.9), we deduce that the function u is a weak solution of the
conservation law in (1.1).

To show that u is an entropy solution, we derive the stronger statement (1.2).
By using the explicit formula (1.3) and the monotonicity of the function z — y(z,t)
established earlier, we see that

f/(U(ZJQ,t)) _ f,(u(.’l,'l,t)) — Tg — yt(x27t) _ 1 — yt(xl’t) S T2 't_xl‘

This completes the proof of Theorem 1.1. O
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Concerning the initial condition we can now prove the following result.

THEOREM 1.2. (Initial condition.) When up € L*(IR) N BV(IR) (with bounded vari-
ation denoted by TV (ug)), the solution u = u(x,t) obtained in Theorem 1.1 assumes
its initial data ug in the L' sense:

llu(t) — uOHLl(lR) —0 ast—0. (1.10)
If the Legendre transform of f satisfies the lower bound
fw)>Co(ju't*-1), velR (1.11)

for some constants Cy,a > 0, then for each T > 0 there ezxists a constant C = C(T)
such that
lu(t) ~ vollLramy < CTV (up) t¥/+2)  t 0,7 (1.12)

PROOF. Since y minimizes the function G we have

() o
Gle ty(z,1)) = /O T w4 ¢ YR

. (1.13)
< / uodx—}—tf(O) < (.
0
Therefore, we have the following upper bound for |y(z,t) — z|:
-, —yz,t
tf(—‘%(—)‘) <Ci+ ”UO“LI(IR) =: Cs. (1.14)

Under the assumption of Theorem 1.1 (f” > 0 and limy.., f' = £00) it follows that
for all =
y(z,t) >z ast—0.
In view of (1.5) we deduce that u(z,t) — up(z) at all z but the points of jump of ug
and, by Lebesgue theorem, we conclude that (1.10) holds.
Now, with the stronger condition (1.11) we deduce from (1.14) that
< O

|x — y(z,t) 11+a 1%
~ Cyt

t
thus, for C = C(T) and t € [0, T,
ly(z,t) — x| < Ct¥/(He) = 0P,
Thus, from (1.5) it follows that
lu(z,t) — uo(z)| < TV (uo; (z — CtP,z + CtF)),

+1

hence
flu(t) — U()”Ll(lR) < / TV(UO; (xz - Ctﬂ, T+ C’tﬂ)) dz.
IR

When u) € L'(IR), by commuting the orders of integration we find

z+CtP
// |u6|dydz=2Ctﬁ/ lug| dy.
IR Jz—Cth IR

Clearly, ug can be realized as the limit of functions whose derivatives are in L', and
therefore ||u(t)—uo| L1 (my < 2C TV (ug) t#, which completes the proof of Theorem 1.2.
O
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We now turn to the uniqueness of solutions for conservation laws with convex
flux. We provide a proof based on the inequality (1.2) discovered in Theorem 1.1,
rather than on the (weaker) entropy conditions stated in Section II-1. A more general
uniqueness result will be established in Chapter V using a different approach.

THEOREM 1.3. (Uniqueness of entropy solutions.) Let f : IR — IR be a strictly convex
fluz-function. Let u; and ug be weak solutions of the problem (1.1) with

up, Uy € L°(IR x IRy) N L (R, L'(IR)),
satisfying Oleinik one-sided entropy inequality (x # y)

u) —wy) B us(z) —u(y)

E
<5 <4
-y t -y t

(1.15)
where E is a positive constant. Suppose that uy and uo share the same initial data
ug € L°(R) N L*(IR) with
llua(2) — woll 1) + llua(t) — wollLigmy < CtF, £>0 (1.16)
for some C,3 > 0. Then, we have
ug(t) = ui(t) for allt > 0.

In fact, in Chapter V we will derive the L! contraction property (Theorem V-
5.2)

luz(t) —wi®)llrry < lluz(s) —w(s)m), s<t (1.17)
and see that the solution is actually Lipschitz continuous in time with values in L1.

PROOF. Since u; and ug are weak solutions, the function ¢ := us — u; satisfies the
linear equation
Byp + 82 (ap) =0, (1.18)
where a = a(z,t) is defined by
1
flu) = flw) = [ 76w+ (1~ 0)uz) b (up = ) =s .

0

Setting M := max f” we deduce from (1.15) that
o) o) _ " £100(e) £ 1 =0)e) = S 0le) £l
r—y 0

z—y
_ ' "y w1 (z) — u(y) _ ug () — uz(y)
—/Of((:c,y,e)) (9 =)y (1) O >d0

—a(y) < ME

for some point v(z,y, ), thus a(z)

. . So, letting y — z in the above
-y

inequality we arrive at

dpa < ME (1.19)

T

In view of (1.18) the function ¥(x,t) := / ©(y,t) dy satisfies

Ot + a8yt = 0. (1.20)

By definition, 0,% is bounded and so is ;% in view of (1.20). Therefore, the function
) is Lipschitz continuous and the calculations below make sense.
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Next, given any even integer p we multiply (1.20) by ¥?~! and obtain
0P + a0, y? =0
or equivalently, using the weight t~™ (m > 0 being a real number),
B (™™ YP) + 8y (at ™ YP) = (~mt ™1 +17™ G,a) YP < 0. (1.21)

The inequality above follows from (1.19) when m is chosen so that m > M E.

Fix now two constants L, A > 0 and integrate the equation (1.21) on the trape-
zoidal domain —L + At < © < L — At. Noticing that the boundary terms have a
favorable sign when A is larger than the sup-norm of the coefficient a we arrive at

d(,_
= (™ IOy arz-an) SO

that is,

GO pranoan S 5 IO pinerng S<t (122)

Since, by (1.16), the two solutions assume the same initial data we find

I6(8) | (- L+ as,L—a5) < (RL)VP [90(8)| Lo (m)
< (2L)7 |lua(s) — w1 (s)ll L2 gm)
< 2L)Y7 (Jlus(s) — uollzrm) + luz(s) — vollrm))
<@L)YPCsP.

(1.23)

Finally, combining (1.22) with (1.23) we deduce that (s <t)

NGO raei—an S 5T NGO To (L4 a0,1-45)
<C's™PP 50  whens— 0,

provided p is chosen so large that p > m. Therefore, we have proven that ¢¥(z,t) = 0
and thus u1(z,t) = ug(z,t), for all z € (—~L + At, L — At). Since L is arbitrary this
establishes the desired uniqueness property. d

2. Classical entropy solutions for general flux

We now turn to the existence of classical entropy solutions for the Cauchy problem
O+ 0y f(u) =0, (2.1)

u(z,0) = uo(z), z€lR, (2.2)

where the flux f : IR — IR is a smooth function which need not be convex but, for
simplicity, has only finitely many inflection points. The initial data up : IR — IR
are supposed to be integrable and with bounded total variation (denoted by TV (uy)),
that is, ug € L*(IR) N BV (IR). We restrict attention to weak solutions satisfying all of
the entropy inequalities and we establish the existence of a classical entropy solution
to the Cauchy problem (2.1) and (2.2). Later, in the following two sections, we shall
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extend the analysis to nonclassical entropy solutions selected by a kinetic relation. It
will be convenient to use the following notation (u_,u € IR)

1
ﬂuﬂu+)ﬁi4 F(1=6)u_ +0uy)do
{ fup)=fu-) # uy,

— Uy —U~ ?

f,(u—)v U = Uy

The classical Riemann solver was defined explicitly in Theorem 11-2.4. It corre-
sponds to the solution of the Cauchy problem associated with (2.1) and

M@m:{

for constant data u; and u,. Recall that the classical entropy solution of the Riemann
problem is easily determined by using Oleinik entropy inequalities (II-1.6)), and is
defined from the convex (respectively, concave) hull of the flux f on the interval
limited by u; and u, when v; < u, (resp., u; > u,). Based on the Riemann solver,
the wave front tracking method allows us to construct a sequence of piecewise
constant approximate solutions of the Cauchy problem (2.1) and (2.2), as explained
now.

Fixing a sequence h — 0+ and the initial data ug, we consider piecewise constant
approximations u? : IR — IR that have compact support and at most 1/h jump
discontinuities and satisfy

u;, <0,

2.3
Up, x>0, (23)

infup < ug < sup ug,
TV (uf) < TV (uo), (2.4)
ul — g in the L' norm, as h — 0.

For instance, one can choose finitely many points 1 < 22 < ... < Tk and set

0, z < xi,
Th+1
uh(z) := zk+11—zk / wpdz, =€ (Tg,zp4+1) 1<k<K-1), (2.5)
Tk
0, T > IK.

Then, at each jump point z of u® we can solve (at least locally in time) the Rie-
mann problem associated with the initial data ul(z+). A Riemann solution is not
truly piecewise constant and may contain both shock waves and rarefaction fans (The-
orem II-2.4). Therefore, any rarefaction fan centered at some point (z,t) = (zo,0)
and connecting two states u; and us, say, will be replaced with a single rarefaction
front, i.e.,

ui, T - To < ta(ur,us),
{ ug, T —xo > ta(uy,us),
if its strength |ug — uy] is less than or equal to h, while if |ug —u1| > h the rarefaction
fan will be replaced with several rarefaction fronts with small strength, i.e.,

uy, = —zo <ta(up,wr),
Wy, tﬁ(wj_l,wj) <Tr—20 < ta(wj,wj+1) (1 <j<N- 1),
ug, T-—2xg>ta(wy_1,us),
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where |uz — u1|/N < h and
w; :=u1+J—JV—(uQ—u1) for j=0,...,N.

Each small jump travels with the speed determined by the Rankine-Hugoniot relation.
We can patch together these local solutions and we obtain an approximate solution
uP = u"(z,t) defined up to the first interaction time ¢; when two waves from different
Riemann solutions meet.

At the first interaction point we face again a Riemann problem which is solved by
several shock waves and rarefaction fans. Again, rarefaction fans are replaced with
small rarefaction fronts with strength less than or equal to h and traveling with the
Rankine-Hugoniot speed. At the second interaction time ¢ we proceed similarly and
continue the construction inductively.

We point out that the number of outgoing waves in each Riemann solution is
finite, since f has finitely many inflection points so there are always finitely many
rarefaction fans. However, it is not clear, at this stage, that our construction can be
continued for all times since the number of waves may well increase at interactions
and, in principle, could become infinite in finite time. The number of interaction
points as well could be unbounded. In fact, we will show below that this is not the
case and that the construction can be continued for all times.

By modifying slightly the initial approximation u? if necessary, we can always
assume that, at any given time, there are at most one interaction point and only two
waves interacting. The condition is not essential but simplify our presentation.

Finally, since every front propagates at the Rankine-Hugoniot speed it is obvious
that the functions u" are ezact solutions of (2.1) with the initial condition (2.2)
replaced with

uh(z,0) = ub(z), = e€lR.

However, u® does not quite satisfy the entropy inequalities since our construction
introduces rarefaction fronts violating the entropy requirement (but having small
strength). In fact, the correct solution is recovered in the limit A — 0, as stated now.

We refer to u” as the sequence of wave front tracking approximations
generated by the sequence of initial data uf and based on the classical Riemann
solver.

THEOREM 2.1. (Existence of classical entropy solutions.) Consider the Cauchy prob-
lem for a scalar conservation law, (2.1) and (2.2), associated with a fluz-function f
having finitely many inflection points and some initial data uo € L'(IR) N BV (IR).
(i) Then, the wave front tracking approzimations u® = ul(z,t), based on the
classical Riemann solver determined by Oleinik entropy inequalities, are well
defined globally in time. In particular, the total number of waves in ul(t) is
uniformly bounded in t (but tends to infinity when h tends to 0).
(ii) The approzimate solutions satisfy the uniform estimates

(a) infuy < ul(z,t) < supup, z€lR,t>0,
(b) TV (ul(t)) < TV(uo), t>0, (2.6)
(c) |lur(®t) —uP()llLrgmr) < TV (uo) sup|f'|It—sl, s,t>0,

where the sup-norm of f' is taken over the range determined by (2.6a).
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(i) The sequence ub (or a subsequence of it, at least) converges strongly to a
classical entropy solution u = u(x,t) of the Cauchy problem (2.1) and (2.2),

i.€e.,
uh(t) = u(t) in L, for allt, (2.7)
and for every convex entropy pair (U, F)
OU(u) + 0, F(u) <0 (2.8)
with, moreover,
(a) infuy < u(z,t) < supug, z€IR,t>0,
(b) TV(u(t)) <TV(up), t>0, (2.9)

(¢) llu(®) —u(s)llrary <TV(wo) sup|f'||t - s, s,¢20,

and, concerning the initial condition,

lu(t) — uollLrry < tTV (uo) sup|f’|, t>0.

PROOF. First of all, we check that the total number of waves in u” remains finite

(h being kept fixed). Consider an arbitrary interaction, involving a left-hand wave
connecting u; to u,, and a right-hand wave connecting u,, to u,. We distinguish
between two cases:

e monotone incoming patterns when (up, — u;) (uy — Uy) > 0,

e non-monotone incoming patterns when (um — u;) (Ur — tp,) < 0.
For each time ¢ excluding interaction times we denote by N;(t) the total number of
changes of monotonicity in u”"(t). Observe that the function Nj(t) diminishes at all
interactions associated with a non-monotone pattern, precisely:

[M1(t)] = N1(t+) — N (t-)
{ 0 if there is a monotone incoming pattern at time ¢,

—1 if there is a non-monotone incoming pattern at time ¢.

Since N1 (0+) is obviously finite, this implies that the number of “non-monotone inter-
actions” is finite. On the other hand, we observe that at each “monotone interaction”
we have only the following three possibilities:

e Both incoming waves are shocks and the outgoing pattern is a single shock.

e The incoming pattern contains a shock and a rarefaction and the outgoing

pattern contains a single shock.

e The incoming and outgoing patterns both contain exactly one shock and one

rarefaction.
Therefore, “monotone interactions” cannot increase the number of waves. In turn,
we deduce that the total number of waves is finite.

Call Ny(t) the total number of waves in u”(t). Suppose that there exists a point
(zo,to) at which infinitely many interactions take place. As noted above, the total
number of “non-monotone interactions” is also finite, so only “monotone interactions”
take place in a backward neighborhood of the point (zg, ). Since a Riemann solution
contains at most two waves, it is clear geometrically that one wave must be cancelled
and the number of waves must decrease strictly at that point, that is,

Ng(to) < lim Ng(t)
5t

t<tg
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Therefore, there can be at most finitely many points at which infinitely many interac-
tions take place. Finally, we can “pass through” any of these interactions by observing
that since the singularity is localized at isolated points, on any given line ¢t = ¢ty we
have

Lim ul(z,t) = u(z, to)
Qtf,’

&b are well-defined

for all z # xo. This completes the proof that the approximations u
globally in time.

We now derive uniform bounds on u”. The properties (2.6a) and (2.6b) are clearly
satisfied by the classical Riemann solver as well as by the approximate one. This is
due to the facts that the classical Riemann solution is a monotone function of the
space variable and that replacing the rarefaction fans by propagating fronts does not
change the L* nor the total variation norms.

The Lipschitz estimate (2.6c) is a consequence of the total variation estimate
(2.6b) and the property of propagation at finite speed. Indeed, in any interval [t;, 2]
containing no interaction time let us denote by yx = yx(t) (k = 1,2,...) the propa-
gating fronts in u”, which are in finite number. The speed Y5, (t) is a constant in the
time interval [t;, 2] and it is not difficult to check, by decomposing the interval [¢1, t2]
in smaller intervals if necessary,

luh(t2) — " (t) |y < D I (weltr) ta) — u? (we(tr), )] ye (t2) — ve(t)]
k

where u® (yx(t1),t1) are the left- and right-traces, with

lyr(t2) — yk(t1)| = |yi| [t — t1] < sup [F'| [t — ta],

which yields (2.6c).

By Theorem A.3 in the appendix (Helly’s compactness theorem) the conditions
(2.6) imply the existence of a limit u and the convergence (2.7), as well as the prop-
erties (2.9). We rely here on the lower semi-continuity properties of the L! norm and
total variation, for instance:

TV (u(t)) < lim inf TV (uh(t)).

Since by construction

dyul + 8, f(uh) =0,
it is obvious that the limit u satisfies the conservation law (2.1). The initial condition
(2.2) follows from (2.3) and (2.6c), namely

Ju(t) ~ voll oy < limint [[u”(8) — okl

(2.10)
< TV(up) sup|f'|t — 0

ast — 0.

To check, finally, that u is the classical entropy solution of the Cauchy problem we
rely on the fact that a propagating front either is a classical shock satisfying Oleinik
entropy inequalities or else is a rarefaction front with small strength, that is, setting
uk:t = ui(yk(t))t)a

—y (Uuf) = U(uy)) + F(uf) — F(u;) <0 for shock fronts (2.11)
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and
luf —u; | <h for rarefaction fronts. (2.12)

Therefore, for every convex entropy pair (U, F') and every smooth function with
compact support 6 = 6(z,t) > 0 we have by (2.11)

Q) : = — /}R - (U@W) 8,8 + F(u") 8,8) dzdt

< Y [ (- Oh) - V) + Faf) - Fp) dt.

rarefactions ¥ o+

Since
—vk (uf =) + F(uf) - flug) =0
and F':= U’ f', in view of (2.12) we obtain

|~k (Uud) = Uuy)) + Flug) = Flug)| = /ﬁk U'(v) (—yk + f'(v)) dv

k

< sup |U’| sup f" |uf — u,:|2
< Chluf —ug],

so that
0O <Ch Y [ (0,0 |ut () - uy ()]
k VIE+
<Ch supTV(uh(t)) / sup 0(z,t)dt — 0.
t IR z€IR
This completes the proof of Theorem 2.1. a

3. Nonclassical entropy solutions

The strategy described in Section 2 can be applied to the same Cauchy problem (2.1)
and (2.2) but by replacing the classical Riemann solver with the nonclassical one
discovered in Section II-4. As we will see, the corresponding approximate solutions are
expected to converge toward weak solutions, which we will refer to as the nonclassical
entropy solutions of the Cauchy problem. For a rigorous definition of nonclassical
solutions we refer to Remark 3.3 and to Chapter X.

To be able to implement this approach we must overcome some new difficulties:
As was pointed out in Chapter II, nonclassical entropy solutions of the Riemann
problem do not satisfy the maximum principle ((2.6a) above) nor the total variation
diminishing property ((2.6b) above). Namely, the total variation of a nonclassical
solution may increase in time, especially at times when a nonclassical shock arises
from the interaction between classical waves. To control the total variation on the
approximate solutions uniformly, it will be necessary here to investigate carefully the
geometric structure of the approximate solutions. In particular, we will have to keep
track of certain wave fronts, that is, the “crossing shocks” defined below.

Let f: IR — IR be a concave-convex flux function satisfying

wf'(wW) >0 (uA0), F7(0)£0,
lim f'(u) = 4o0. 3.1)

jul— o0
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As before, we associate with f the functions ¢% p~% : IR — IR; see (II-2.6). We
want to consider the Cauchy problem (2.1)-(2.2) in a class of “nonclassical entropy
solutions”. In view of the results in Chapters I and I1I, a Lipschitz continuous kinetic
function ¢ : IR — IR is now prescribed such that

P7i ) <'(u) < PM(w), u>0,

! N i (3.2a)
¢iu) < @’(u) <97 (u), u<0,
¢’ is monotone decreasing, (3.2b)
<pb satisfies the strict contraction property:
b b
0<#27W oy uzo, (3.20
the Lipschitz constant of ¢® o ¢° near u = 0 is strictly less than 1:
b o) — o o
lim sup wow(v) — ¢t o) <L (3.2d)
u,v;o, v—Uu

and the companion function ¢! : IR — IR associated with ¢ (see (II-4.3)) satisfies:
upt(u) <0, welR. (3.2¢)

REMARK 3.1.
e If a strictly convex entropy pair (U, F) is prescribed and ¢, denotes the zero
entropy dissipation function associated with f and U (Theorem II-3.1) and if
a kinetic function satisfying the condition (1I-4.1),

oh(u) < ¢°(u) < Pf(u), u>0,
©M(u) < " (u) < gh(u), u<O,

is prescribed, then obviously (3.2a) holds true and since @} oh = id, (3.2c) also
holds. The setting proposed in the present section is more general than the one
investigated in Section II-4 and in Chapter III. However, it is a simpler matter
to observe that the Riemann solver is still well-defined under the conditions
(3.2a)~(3.2c) and that the Riemann solution depends L'-continuously upon
its initial states. (See also Remark I1-5.5.)

e Assumptions (3.2a) to (3.2d) are always satisfied by kinetic functions gen-
erated by nonlinear diffusive-dispersive limits in Chapter III. These kinetic
functions are monotone decreasing and coincide with the classical value ¢! on
a neighborhood of 0. Since f(u) ~ —u/2 at u = 0, the Lipschitz constant of
©® 0 " near 0 is about 1/4.

e The assumption (3.2¢), in fact, is the only genuine restriction made on the
kinetic function in the present section. It implies that the Riemann solution
is always classical when the Riemann data are in the same region of convexity
or concavity of f. Of course, this assumption is fulfilled in most situations
of interest. It is satisfied when the flux is f(u) = u® and the diffusion and
dispersion functions are constant (Section III-2) or, more generally, when the
regularization terms are consistent with the entropy U(u) = u?/2. It is also
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satisfied for a general concave-convex flux, provided the diffusion « is suf-
ficiently large or provided u remains in a sufficiently small interval near 0.
(See (I11-3.17).)

O

Now, to the kinetic function we can associate the nonclassical Riemann solver
described in Theorem I1-4.1. Recall that the Riemann solution contains two waves, at
most: either a single rarefaction wave, or a single classical shock wave, or a nonclassical
shock plus a classical one, or else a nonclassical shock plus a rarefaction wave. We can
construct a sequence of piecewise constant, approximate solutions u® = u"(z,t) of the
Cauchy problem (2.1)-(2.2), as was done in the previous section but now relying on
the nonclassical Riemann solver. Precisely, let us start with a sequence h — 0 and
some initial data ul satisfying the usual convergence conditions (2.4). At the initial
time t = 0, we decompose every rarefaction fan into small propagating jumps with
strength less than h. At each interaction, we always replace a rarefaction fan with
a single rarefaction front traveling with the Rankine-Hugoniot speed. For simplicity
in the discussion we can assume that there is at most one interaction taking place at
any given time and there are exactly two waves meeting at any interaction. Minor
modifications are needed to cover the more general situation.

THEOREM 3.2. (Existence of nonclassical entropy solutions.) Consider the Cauchy

problem for the scalar conservation law (2.1) and (2.2) associated with a concave-

convez fluz-function f satisfying (3.1). Consider also a kinetic function ¢° satisfying
the assumptions (3.2).

(i) Then, for arbitrary initial data ug € L*°(IR)N BV (IR) the wave front tracking

approzimations determined from the nonclassical Riemann solver satisfy, for

some constants C1,Cy > 0 depending only on |lug||L~ur) and on the data f

and ¢’,
(a) |uP®)||peqm) < C1, t>0,
(b) TV (uh(t)) < C2TV (up), t>0, (3.3)
(¢) ful(ta) —u(t)llgr) < CaTV (uo) sup |f'|lta —t1],  ti,t2 > 0.

(i) The sequence u" (or a subsequence of it, at least) converges strongly to a weak
solution u = u(z,t) of (2.1) and (2.2), specifically

uh(t) — u(t) in LL. for all times t (3.4)
and uP(x,t) — u(x,t) for almost every (z,t), with
(¢) |u®)ll=@m) < C1, t>0,
(b) TV(u(t)) < CaTV(up), t>0, (3.5)

(¢) Multz) —ult)llrary < CoaTV(uo) sup |f'lJt2 —tal,  t1,b2 2 0.

(iil) If the kinetic function ¢ satisfies the inequalities

po(u) < ¢'(u) < PH(u), u>0,

Piu) <P (w) < gp(u), uw <O,
for the zero-entropy dissipation function @} associated with some strictly con-
vez entropy pair (U, F), then the solution u satisfies also the (single) entropy

inequality
O U(u) + 0, F(u) <0. (3.6)
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Additionally, one can also establish that the solution satisfies the prescribed ki-
netic relation; see the forthcoming Section VIII-4. The solutions generated in The-

orem 3.2 will be called nonclassical entropy solutions of the Cauchy problem
(2.1)-(2.2).

REMARK 3.3. The solutions, in principle, could depend upon the approximation
scheme under consideration or upon the discretization parameters. In Chapter X
we will see that this is not the case. A general definition of nonclassical entropy so-
lutions can be stated, independently of any approximation scheme, in the framework
to be developed later in Chapter X: by definition, a nonclassical entropy solution
of the Cauchy problem (2.1)-(2.2) is a (®, ¥)-admissible solution of (2.1)-(2.2) for the
following families of admissible discontinuities and speeds:

u u—, p*(u- (u- U
q)::{(“—ﬂbr)/ + €fum, M u))U{e’ (u-)}, <0 }’

uy € {<pb(u_)} U(pfuo),u], u_>0

1
W(u_,uy) :=a(u_,u+)=/0 F((1=0)u_ +6uy)do.
O

The rest of this section is devoted to a proof of Theorem 3.2. We will now give a
complete classification of all possible wave interaction patterns when a left-hand wave
connecting two states w; and w,, interacts with a right-hand wave connecting two
states u,, and u,. For definiteness, we restrict attention to positive left-hand states
uy, the other case being entirely similar. We use, for instance, the notation (RC)—(R’)
when the left-hand incoming wave is a rarefaction front, the right-hand incoming wave
is a classical shock, and the outgoing wave pattern contains a single rarefaction front.
The notation (RC)—(N'C") is used when the outgoing pattern contains a nonclassical
shock followed by a classical shock, etc. In each case, we indicate whether the incoming
solution is locally monotone or not and we specify the relevant ranges for u;, u,,, and
u,. We indicate whether the wave is increasing or decreasing by adding an up (7) or
down (]) arrow. It is important to note that the notation N may also represent the
limiting case when a left-hand state u; is connected to ¢#(w;). So, our classification
also covers the classical case. On the other hand, we exclude from our construction
the classical shocks connecting u; to @#(u;) (when the latter is distinct from ¢%(u;))
since such waves cannot be generated by interactions.

Our analysis below will keep track of the crossing fronts, that is, fronts con-
necting two states u.. and us such that u_uy < 0, uy # 0. So, in each case we
will specify whether the incoming or outgoing pattern contains such fronts. Clearly,
such waves are classical or nonclassical shock waves, but not rarefaction fronts. All
nonclassical shocks are crossing shocks (by our assumption (3.2a)). So, we only have
to distinguish between crossing classical shocks and non-crossing ones, the latter be-
ing referred to as classical shocks for short. We will use the notation C for a shock
connecting two non-negative states with u_ # 0, Cx for a classical shock connecting
a non-negative state to a negative one (so, here, uy < 0), R for a rarefaction con-
necting two non-negative states, and so on. For the sake of completion we provide
the classification when the assumptions (3.2a) to (3.2d) hold but without imposing
(3.2e).
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(i) Interactions involving a rarefaction on the left-hand side:

Case RC-1 : (RL.CY)~(C"') (non-monotone and entirely classical) when
max(cp”(ul),ga”(um)) <ur <uy, 0<u < Upy.

The incoming classical shock survives the interaction with its strength decreased by

an amount equal to the strength of the incoming rarefaction. The latter is completely

cancelled. There are two-subcases: (RLC}F)—(C}F') if u, > 0 and (RILCi)—(C’i’)
otherwise.

Uy
Uy

Case RC-2 : (RLCi)—(Ni,Rl_ ,) (non-monotone and possibly entirely classical)
when

O (Um) <ty < (W) <0 < g < Upp.
The right-hand incoming crossing classical shock transforms into a nonclassical shock,
while the left-hand incoming rarefaction passes through the crossing shock. Note that

the wave R* , may be trivial, that is, the limiting case u, < ¢°(u;) is possible.




98 CHAPTER 1V. EXISTENCE THEORY FOR THE CAUCHY PROBLEM

Case RC-3 : (RLCl)—(Ni/C’T/) (non-monotone and exclusively nonclassical) when

max(‘»ob(ul)a‘pn(um)) <ur < ‘Pﬁ(ul%o < Uy < U

The right-hand incoming crossing classical shock is transformed into a nonclassical
shock, while the left-hand incoming rarefaction passes through the crossing shock and
is transformed into a right-hand classical shock. There are two-subcases: (RILCi)—
(NiCI,) if 4, < 0 and (R_T,FC'}F)—(N}:,C;’) otherwise. In the latter, the incoming
pattern is entirely positive while a nonclassical shock and a crossing shock are gener-
ated; hence, the number of crossing shock increases.

Case RN : (RLNi)-(NiIRl_ /) (non-monotone and exclusively nonclassical) when
0<w <uy and u, = @b(um).

The nonclassical shock survives the interaction, while the left-hand rarefaction passes
through it and exits on its right-hand side.
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(i) Interactions involving a classical shock on the left-hand side:

Case CR-1 : (CiRl_ )A(Ci,) (monotone and entirely classical) when
(pﬁ(ul) <Ur < Um S0 <y

The left-hand incoming classical crossing shock survives the interaction, its strength
being increased by an amount equal to the strength of the right-hand incoming rar-
efaction. The latter is completely cancelled. In the special case u,, = 0 we have

actually (Ci R )—(le:/).

Case CR-2 : (CiRL )A(Ci,) (non-monotone and entirely classical) when
max(cpn(ul),o) L Um < Up < Uy

The left-hand incoming classical shock survives the interaction, its strength being
decreased by an amount equal to the strength of the right-hand incoming rarefaction.
The latter is completely cancelled.
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Case CR-3: (CLR' )—(Ni,Rl_,) (monotone and possibly entirely classical) when
ur < O (w) < O (W) < U <0 < uy.

The incoming crossing classical shock is transformed into a nonclassical shock, while
the right-hand incoming rarefaction bounces back on the right-side of the crossing

shock. The wave RY "is trivial when ur = ¢©°(u). In the special case u, = 0 we have
(CLR )-(NL'RY).

Case CR-4 : (CLR' )—(NiICE,) (monotone and exclusively nonclassical) when
gob(ul) <up < (pﬁ(ul) < Um <0< .

The incoming crossing classical shock is transformed into a nonclassical shock, while
the right-hand incoming rarefaction is transformed into a classical shock exiting on

the same side. In the special case u,, = 0 we have (C’iRl_ )—(Nj:’C’I,).
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Case CC-1 : (C’iC’l)~(Cl/) (monotone and entirely classical) when

max(p! (u), 0" (Um)) < Ur < Um <u  and uy, > 0.
Two incoming shocks join together to form a single classical shock. Either all waves are
non-crossing or else there are exactly one incoming crossing shock and one outgoing
! !
crossing shock. There are two-subcases: (CiCi)—(Ci }if u, > 0 and (CiCJ‘C)—(Ci )
otherwise.

Case CC-2 : (CLCT)~(C') (non-monotone and entirely classical) when
O (uy) < U < up < @ (um) <w;  and upy, < 0.

Two incoming classical shocks cancel each other, and a single classical shock survives
the interaction. There are two-subcases: (Cic;)f(Ci,) if u, > 0 and (CLCT )f(Ci/)
otherwise.
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Case CC-3 : (CiCl)—(Ni,CTI) (monotone and exclusively nonclassical) when
@ (u) < O (Um) < ur < () < Upm <, Um > 0.

The classical crossing shock is transformed into a nonclassical shock, while the classical
shock passes through them from left to right. There are two subcases: (C’iC’i)—

(Ni,C'II) when u, < 0 and (CiCi)—(Ni,C:TF’) otherwise.

Case CN-1 : (CiNi%(Cil) (monotone and exclusively nonclassical) when
0 < Um <y and (p“(u,) < u, = go”(um).

The nonclassical shock is transformed into a crossing classical shock by combining
its strength with the one of the incoming classical shock. The latter is completely
cancelled.
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Case CN-2 : (CiN;)—(Ci,) (non-monotone and exclusively nonclassical) when

O (u) < um < 0 and u, = @’ (um).

The incoming classical and the nonclassical crossing shocks cancel each other, while
only a classical shock survives the interaction.

Case CN-3 : (CiNi)—(Nj:ICII) (monotone and exclusively nonclassical) when
0 < up < u and u, = gob(um) < o (uy).

The classical shock passes from the left side to the right side of a nonclassical shock.
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(iii) Interactions involving a nonclassical shock on the left-hand side:

Case NC : (NiChH~(C) (non-monotone and exclusively nonclassical) when
+
Um = gob(ul) and cpu(ul) <Ur < (,oﬁ(um) < uy.

There are two possibilities. Either the incoming waves are nonclassical and classical
crossing shocks, respectively, and cancel each other and a single classical shock leaves
out. Or else, the incoming nonclassical shock is transformed into a crossing classical
shock, while the incoming classical shock is completely cancelled. There are two-

subcases: (NiC’;)*(Cfrl) if u, > 0 and (NiCI)—(CiI) otherwise.

Case NN : (NiN;)—(CiI) (non-monotone and exclusively nonclassical) when

Uy, = cp"(ul) and u, = @b(um).

The two incoming nonclassical crossing shocks cancel each other, and generate a single
classical shock.
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Some general comments concerning the interaction patterns are in order. Observe
that Cases RC-1, CR-1, CR-2, CC-1, and CC-2 below involve classical waves only,
while Cases RC-2 and CR-3 may involve classical waves only. The other cases require
that there is one nonclassical shock, at least, in the incoming or outgoing wave pattern.
The uniform norm and the total variation are non-increasing in all of the classical or
monotone cases, at least. Actually, the uniform norm, as well as the total variation,
increase in Cases RC-3, CR-4, CC-3, and CN-3. Note that in Case RC-3 there are
two effects in competition: the decrease in total variation due to the cancellation of
the incoming rarefaction R; and the increase due to the outgoing nonclassical shock
N4. The total variation may decrease if the former effect is stronger than the latter.

Next, we introduce the notation

I, :=[-m,m], Jm =T, U (Im)- (3.7)

We denote by g!*! the k-th iterate of a function g and by Lip;(g) its Lipschitz constant
on some interval I. Clearly, from the property (3.2¢), for every interval I,

[2] (3]
¢ (Im) C Ly @™ (Im) C ¢°(In).

By (3.2d) the Lipschitz norm of ¢” on the interval I, is less than 1. We fix M > 0,
later on taken to be

M := max(||uo| L zm), ||<,0b(UO)||L°<’(IR))7

and we estimate the Lipschitz norms on the interval I, for iterates of ¢® of arbitrary
order. Note that, thanks to (3.2d), we can choose € > 0 so small that

1= Lipj_c (¢’ 0 ¢") < 1. (3.2d%)

LEMMA 3.4. (Estimates on the kinetic function.)
e There exists an integer p such that

wb[q](IM) c I, even q > 2p,
¢ (L) C (L), odd g > 2p, (3.8)
) C I, k> 2p.

e There exists a constant Cy; > 0 such that

Car, for all q,
Lips, (¢"™) <4 7@/ Lip,,, (™), for all even g 2 2, (3.9)
n(@=1=2P)/2Lip ;. (¢? [2p+ll), for all odd q > 2p.

o There exists a constant Cy; > 0 such that

S Lipy,, (¢*") < Ciy. (3.10)
k=0
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ProOF. Combining the condition (3.2d’) available near the origin with the global

assumption (3.2¢), we see that there exists a constant 79 € (0,1) (depending upon
M) such that

o) <molul, ul<M. (3.11)
Then, it follows that for even exponents
@) <M, Jul <M
and for odd exponents

[2p+1]
@) S|P (M)], |ul < M,

which establishes (3.8).

In view of (3.2d’) and using the first property in (3.8) inductively with ¢

<pb[2] o Lpb[q_Z], we obtain for any even integer ¢ > 2p

. la] . 2N ¢ lg—2]
Lips,, (¢"") < Lipr, (™) Lipy,, (¢*7)
< pla-2)/2 Lipy,, (wb [21’])
and similarly for any odd integer ¢ > 2p+1
. fa] —1- .
LlpJM ((Pb q ) < n(q 1-2p)/2 LlpJM ((pb
We conclude that (3.9) holds with

pla] _

[2P+1])

) k
Cuy = sup LlpJM(gob[]).
k=1,....2p

The statement (3.10) is obvious from (3.9) since < 1. This completes the proof
of Lemma 3.4. 0O

Relying on the technical estimates in Lemma 3.4, we arrive at the following:

LEMMA 3.5. (Basic properties of the wave front approximations.)
(i) The total number of fronts in ut(t) is less than or equal to the number of fronts
in ul. The total number of interaction points is ﬁmte
(ii) The range of the functions u® is uniformly bounded: There exists some con-
stant M > 0 depending only on ||ug| L~ r) and @’ such that

lut(z,t)| < M, zcIR,t>0. (3.12)

(iii) The strength of any rarefaction front is less than or equal to Car h where Ciy
was introduced in (3.10).

The statement (ii) establishes (3.3a) in Theorem 3.2.

Proor. The first property in (i) is obvious by construction since the interaction of two
waves generates two outgoing waves at most. To estimate the number of interactions
let us consider

Bh(t) = (AM(0) +1) A* (1) + ) AM(t) + ZAN e (D), (3.13)
CUR

where the sums are over all classical shocks and rarefaction fronts and over all non-
classical shocks respectively (a wave connecting a state u with ¢%(u) being counted as
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nonclassical.) Here, A"(t) is the total number of waves at the time ¢, and A?V,left(t)
is the total number of waves located on the right hand-side of the wave N. Clearly,
since A"(t) < A"(0), we see that B"(t) is uniformly bounded by (2 A"(0) + 1) A*(0).
On the other hand, the function B"(t) decreases by at least 1 across each interaction
having a single outgoing wave: the first term decreases by A"(t) + 1 while the sum
of the last two terms increases by at most A*(t). In all of the other cases a left-hand
outgoing nonclassical wave is generated: the first term remains constant since the
number of waves does not change, while the sum of the last two terms decreases by
at least 1. Hence, at each interaction time ¢, we have B"(t+) — B"(t—) < —1, which
implies that the number of interactions is finite.

The range of u”(t), denoted below by Range(u”(t)), may change only at inter-
action times. As is clear from the expression of the nonclassical Riemann solver, all
of the new states created after an interaction are of the type ¢°(v) where v is one of
the left- or right-hand values at the interaction point, which are also values assumed
before the interaction. Hence, a state v belongs to the range of the solution at time
t only if it is some iterate of a state belonging to the range at the time 0. Setting
My := ||lug|| o) We can write

400

Range (uh(t)) C U <pb[k] (Range (ug))
k=0

2p—1

+oo
c UMt ¢ U @™ tm) € [-M, M] = Iy
k=0 k=0

for some (sufficiently large) M, where we have used (3.8) for the latter. This estab-
lishes (3.12).

To derive (iii), observe that the only interactions in which an outgoing rarefaction
is produced are Cases RC-2, RN, and CR-3. In all of these cases, a rarefaction was
already present before the interaction. This property allows us to keep track of all
rarefaction fronts by starting at time ¢ = 0, and there is also no ambiguity at inter-
actions. Denote by (y(t),t) a rarefaction front, defined on a bounded or unbounded
time interval [0, T] (T depending on h). By considering each one of the possible cases
RC-2, RN, and CR-3, we see that at each interaction either the rarefaction strength
lim [ul (y(t),t) — u” (y(2), )]

t—to—

Rh(to—) :
decreases or else we have
RM"(to+) < | (ult) — 9" (u)],

where u? and u'j_ are the left- and right-hand limits at the incoming rarefaction front.
Iterating this argument we find

RM(t) < sup Lipy,, (¢"™) B (0)
k
< CM ha

where we have used (3.9) and the fact that the initial strength of rarefactions is at
most k. This completes the proof of Lemma 3.5. a
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Our goal is to control the total variation of the approximate solutions u". To
this end, we decompose the (z,t) plane using crossing discontinuities in «"* and
therefore obtain regions in which u keeps a constant sign. In view of the expression
of the nonclassical Riemann solver and thanks to the assumption (3.2e), the following
properties are obvious:

o If the incoming pattern contains no crossing shock, then the outgoing pattern

contains no crossing shocks.

o If the incoming pattern contains exactly one crossing shock, then the outgoing

pattern contains exactly one crossing shock.

o If the incoming pattern contains two crossing shocks, then the outgoing pattern

contains two crossing shocks or none.
New crossing shocks generated in principle in Case RC-3 (precisely, (R+C, )-(NLC%))
and in Case CC-3 (precisely, (C+C)-(NLCZ%.)) do not arise when the condition (3.2e)
is satisfied. We can then keep track of the crossing fronts ordering them from left to
right,
te2;(t), j=1,...,m, te(0,Tj)
with
ul (z(t), t) ul (2;(8),t) <0, wul(2(t),t) #0,
and
21(t) < 22(t) < ... < zp(2).
In particular, the initial line is decomposed into a finite family of intervals I; with

Ij = [2(0),241(0)], J=1,...,m,

and Iy := (—00,21(0)] and Iy := [2m(0), +0c). The initial data u} keep a constant
sign in each interval I;. A crossing path z; may be defined for all times (when
T; = +00) or only on a finite time interval (when T; < +oc). The latter case happens
when two crossing fronts meet and cancel each other; see Cases CC-2, CN-2, NC, and
NN listed above. Note that some segments of a crossing shock may be classical while
others are nonclassical. In Cases RC-2, RC-3, CC-3, CR-3, and CR-4, a classical
crossing shock is transformed into a nonclassical shock. The opposite happens in
Case CN-1.

Our analysis is also based on (generalized) characteristics, defined as follows.
Given a point (z,t) (which, for simplicity in the presentation, is not a point of jump
or interaction for u"), we consider the minimal backward characteristic issuing
from (z,t), i.e., by definition, a piecewise linear and continuous curve

s X(s) = X(s;z,t), se€l0,t (3.14)

constructed as follows. Locally near s = ¢ the function u” is constant and X coincides

with the standard characteristic line passing through (z, t) and with slope f* (uh(az, t)).
Continuing backward the construction we observe that the path X can meet only:
e a rarefaction front, by reaching it on its left- or right-hand side (since a rar-
efaction front propagates with the Rankine-Hugoniot speed by construction),
e or a nonclassical front, by reaching it on its right-hand side (since nonclassical
shocks are slow undercompressive).
By definition, when the path meets a rarefaction it then coincides with it, at least
until an interaction point is met. On the other hand, when the path meets a nonclas-
sical shock it passes through it and continues again as a standard characteristic line
propagating now on the left-hand side of the nonclassical shock.
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It may happen that a characteristic path coinciding locally with a rarefaction
front encounters an interaction point (xo,tp). Then, again by definition, the path
propagates from the point of interaction by using the upper-left characteristic line
exiting in a small backward neighborhood of (zo,%0). In this way, it is possible to
define the backward characteristic X (s;x,t) from the time s = t down to the time
s = 0 and encompass the whole interval [0, ¢]. Finally, our definition extends naturally
to the case that (z,t) is an a point of jump or interaction for u”.

LEMMA 3.6. (Properties of minimal backward characteristics.)
(1) Minimal backward characteristics cannot cross each other. Namely, given
T1 < T3, we have X(s;z1,t) < X(8;22,t) for all s € [0,t]. If two paths meet
at some time T, then they coincide for all s € [0,7].
(ii) Given (z,t) and the backward characteristic s — X(s) issuing from (z,t), we
have

ut (z,1) = ¢ (u_ (X)), (315)
where k is the number of nonclassical shocks encountered by X in the time
interval (0,t).

(iii) Given two points (x1,t) and (xg,t) with 1 < z2, suppose that the backward
characteristics X (.;x1,t) and X (.;xa,t) satisfy

X(0;z1,t), X(0;29,t) € I;  for some j,

then ky < ko, where the integer ki (i = 1,2) is such that (3.15) holds with
X()=X(;zi,t) and k= k;.

PROOF. The property (i) is clear: the backward characteristic may be non-unique at
interaction points only, but then we have selected the minimal characteristic, making
the construction unique.

Along a backward characteristic, u”* is piecewise constant and jumps only when
the characteristic passes a shock. But, by construction, a minimal backward charac-
teristic may pass through crossing fronts, only. Indeed, it is obvious that backward
characteristics cannot pass through classical shocks and does pass through nonclassi-
cal shocks from right to left. When the characteristic passes through a nonclassical
shock, say at (x(7),7), the kinetic function is “acting” and, for ¢ sufficiently small,
we find

u}i(:v('r—{-&),r—i—e) :cpl’(u}i(x(T—e),T—s)). (3.16)

Additionally, from the list of interaction patterns, we can also see that the path
may coincide locally with a rarefaction front emanating from an interaction point
(z0,t0). When the path is traced backward, it may (but not always) passes through
the nonclassical shock (if any), as happens in Cases RC-2, RN, and CR-3. In each of
these interactions it can be checked that again the property (3.16) holds. Finally, by
iterating the formula (3.16) we arrive at the statement (ii) of the theorem.

Since the interaction between crossing shocks and characteristic lines is always
transversal from right to left only, and since characteristics can never cross each other,
we obtain (iii). This completes the proof of Lemma 3.6. O

We are now ready to estimate the total variation of u*(t) at any given time t > 0.
Let

—00 =2y < T < T2 < ... <TN31 =400
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be the discontinuity points in u"(¢) and set also
ul(z,t) = ui, =€ (x5,2i41), 1=0,...,N.

By using backward characteristics from any fixed point in each interval (z;,z;41) and
relying on Lemma 3.6, we see that there exists an integer k; and a value v; assumed
by the initial data u} such that

()

up = (p"[ki](vi). (3.17a)

Precisely, for some interval j; we have

v = up(Xy), X;=X(0;y;,t) € I (3.17b)
where y; has been chosen arbitrarily in the interval (z;, z;1+1).
The total variation can be computed as follows:
N-1 N-1 oora] k]
i+1 1
TV (uh(®t) = Y Juigr —wl = Y | (i) =@ (1)
i=0 i=0
N-1 N-1 (3.18)
{kit1] [kita] (k] [kit1]
<Y T i) =T )|+ Y e () =" ()
i=0 i=0
= A1 + A
Estimating A; is easy by (3.10) in Lemma 3.4, indeed
” N-1
A; < sup(Li b F—
1 _Slip( IPJM(QO )) ; |Vig1 — v (3.19)

since Xg < X; <... < Xn.

To estimate the term As we consider the sets A~ and AT made of all indices 4
such that

lii=kig1 — ki

is strictly negative or strictly positive, respectively. (Obviously, there is nothing to
estimate when [; = 0.) In the expression of A; we can separate the summation over
AT and over A, calling them AF and A;, respectively. For each initial interval I;
consider the values of u"(t) that can be traced back to an initial state in the interval
I js that iS,

B;:={i/0<i<Nand X; € L;}.
By (iii) in Lemma 3.6 the map ¢ — k; is increasing on B; for every j. So, it is strictly

increasing on B; N A*.
Now, using that AT =, (B; N A™) is a partition we find

At = Z Z |(pb[ki](vi) _ @b[li](wb[ki](vi)”
j=0 iEBjﬁA+

m

< sgp(LipJM (id — gob[l])) Z Z |<Pb[ki](vi)|,

j=0 i€B; NA+
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where id is the identity mapping. So, since ¢ — k; is increasing on each subset under
consideration and using (3.10) we obtain

m -+oo

A+<sup(1+L1pJM I’H ZZsu})kob[ (ug(z))]

J=0k=0 (3.20)

<(1+Cum)Cy Z sup [ul(z)] < CTV (ud).

.__0 E

The latter inequality holds since sup,¢;, |uft(z)| is achieved at some value w; of the

initial data uf with w; w;;; < O since the intervals I; determine a decomposition of
the real line into disjoint intervals in which u! is alternatively positive and negative.
Hence, 3 |w;| is less than TV (ub).

Finally, we estimate A; for which /; < 0. In view of (iii) in Lemma 3.6 and
since characteristics cannot cross each other, those indices ¢ must be associated with
distinct intervals I/, and since the characteristics cannot cross each other, we must
have j; < ji+1. Hence, for every interval I’ there exists at most one index i € A~
such that X; € I'. It follows that

> il < TV (uf),

€A~
thus - o]

45 = Y010 ) - (W)
€A~
(3.21)
(k] Uy
— ") Z lvi| <20 TV (uf).
€A~

Finally, in view of (3.18)-(3.21) we conclude that there exists a constant C > 0
depending only on M and ¢® such that

TV (u"(t)) <CTV (uf), t>0.

< supLip(¢®
k.,

The derivation of the uniform bound on the total variation, (3.3b), is completed.
The estimate (3.3c) is a consequence of (3.3b), as was already checked in Section 2.
By Theorem A.3 in the appendix we conclude that a subsequence converges to a limit
u satisfying (3.4) and (3.5). Since the functions u” are exact solutions, it follows that
u is a weak solution of the Cauchy problem. Similarly, one can see that the solution
u satisfies the entropy inequality (3.6). This completes the proof of the properties (i)
and (ii) of Theorem 3.2.

REMARK 3.7. When attention is restricted to classical solutions, the calculation made
above simplifies drastically. Indeed, for classical solutions we have k; = 0 for all ¢ and,
therefore, A, = 0, whereas the estimate (3.19) for A; can be replaced with

N-1
=Y |vigr —vi| STV (uf), (3.19)

=0

which allows us to recover the total variation diminishing property (2.6b) in Theo-
rem 2.1. g
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4. Refined estimates

In this last section we derive some additional properties of classical entropy solutions.
In particular, we introduce the notion of interaction potential which will play a central
role later in Chapters VII and VIII in our study of systems. Define the interaction
potential of a function with bounded variation u = u(z) by

Qu) =Y |uy(z) — u_ ()| [us (y) — u_(y)l, (4.1)
<y )
where the sum is over the points of discontinuity of the function v and u4 denotes
its left- and right-hand traces. Observe that
Qu) < TV(u)? < oo.

Furthermore, restricting now attention to piecewise constant functions v = u{x) made
of classical shock and rarefaction fronts only, we denote by R(u) the maximal strength
of rarefaction fronts in u.

For convex flux-functions we obtain immediately the following result.

THEOREM 4.1. (Refined estimates I) Consider the Cauchy problem (2.1) and (2.2)
where the fluz f is either convex or concave. Let u* = uP(x,t) be a sequence of wave
front tracking approximations associated with the classical Riemann solver. Consider
an interaction taking place at some time ty and involving two incoming fronts con-
necting the states uy, Um, and u,.. Then, we have

[TV(uh(tg))] = up — tUr| — |y — U — |Um — ur| <0,
[R(u"(t0))] <0, (42)
[Qu"(t0))] < —|w = U] Jum — ur| <0,
where, for instance, we use the notation
[TV (u"(t0))] = lim TV (u"(to +¢)) — TV (u"(to — €))- (4.3)

We omit the proof which is easy. From the local estimates (4.2) we deduce the
global estimates (¢ > 0)

TV (uh(t)) < TV (u"(0+)) = TV (uf),
R(u"(t)) < R(u"(0+)) < 1/h,
QuMt) < Q"(04)) < TV(ug)”.
Recall that TV (u}) is uniformly bounded in view of (2.4).

We now discuss the interaction potential for concave-convex flux-functions, using
the standard notation ¢¥, ¢, etc. A technical inequality will be needed, which we
introduce first. Given two points u and v with v # u, ¢%(u) we denote by p(u,v) the

solution of
flow) = Fw) _ f@) =1 w
p(u,v) —u v—u
The function p is extended by continuity, so that, in particular, p(u, @i (u)) = @ (u).
Expanding the relation above, it is not difficult to see that, in the neighborhood of

the origin,

plu,v) ~ —u —v.
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In turn, we see that for some 6 € (0,1) and in the neighborhood of the origin,

Lip(¢") < 1,

4.5
lu — (W) [ — ()| < 6 min(Jul [v], [u — p(u,v)| v~ p(u, v)]) “9)

for all u > 0 and p(u,0) < v < ©¥(u), as well as an analogous property for u < 0. In
fact, (4.5) holds globally for all u and v if f(u) = u?, since then !(u) = —u/2 and
plu,v) = —u—v:

gu|v+ %) < 6 min(jul ol ]2+ ol [20 + ),

which holds in the range given above if, for instance, § = 3/4.

THEOREM 4.2. (Refined estimates II) Consider the Cauchy problem (2.1) and (2.2)
when the flux f is a concave-convez function and let us restrict attention to solutions
whose range is included in a small neighborhood of the origin (or, more precisely,
assume that the flux satisfies (4.5)). Let uP = uP(x,t) be a sequence of classical wave
front tracking approximations. Consider an interaction taking place at some time tg
and involving two incoming waves connecting the states uy, um, and u, and (at most)
two outgoing waves connecting wuy, u,,, and u, (with possibly ul, = u,). Then, we
have

[TV (u(t0))] = fur = upa] + |1, = ] = [t = tn]| = [t — ] <0,
[R(uh(t0)>] < 0,

[Qu" (t0)] < lw = upn| ugy, = wr| — Jur =t | [t — |

< —clup — Um| |Um — vy

(4.6)

for some uniform constant ¢ > 0.

Proor. We distinguish between several interactions, following the general classifi-
cation given in Section 3. Since only classical shocks are allowed here, only seven
different cases may arise. Note that the decreasing property of the interaction poten-
tial is obvious when the outgoing pattern contains a “single wave” since then

[Q(u"(t0))] = —|wt — um| [tm — ur| 0.

So, we omit this calculation in the single wave cases below. Additionally, in our
calculations of the maximal rarefaction strength and of the potential we focus on
those waves involved in the interaction, or in other words we assume that the solution
under consideration contains only two waves interacting and no other waves. It is
obvious that the contribution to the potential due to “other” waves would diminish
since the total variation diminishes at interactions.

Case RC-1 : That is, (R, C)—(C’) when 0 < u; < u,, and ¢¥(1;) < u, < u;. There
is only one outgoing wave, and the incoming pattern is non-monotone so some waves
strength is cancelled. We find

[TV(uh(to))] = |up — U] = |tUm — w| — U — Um| = —2|tm —w| <0

and
[R(uh(to))] = —|u; — um| < 0.
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Case RC-2 : That is, (R+C+)—(CLR_) when 0 < u; < Upm and ¢ (u,) < u, <
@“(ul). The outgoing pattern contains here two waves and some cancellation is taking
place. We have

[TV (u(t0))] = () — ]+ — (w0)] = s — ] — [ty —
=-2 |um ——ul| S 0,
and .
[R(u"(t0))] = I (™ (ur)) — " (w)| = [ttm — i
< —(1 - Lip(p")) Jum — -
Using u; < ¢ %(ty) < Uy, we find also that for every & € (0,1)
[Qu"(t0))]
< I‘Ph(ul) —wl fur = ‘Ph(“l” = Jum — wl [ur — tm|
< —(1 = K) [um — ] fur — ] + Lip(e") " (w) — w |~ ur) — w
— ko7 (ur) — il fur — 07 (uy)|
< =(1 = &) um — w| |y = um| = (5 = Lip(0%) 10" () — ul |7 (ur) — ]
< (1 = &) |um — w| |ur — um| <0,
since u, < ©*(u;) < u; < ¢ ¥(u,) and provided we choose x such that
1> k> Lip(¢%),
which is possible by the first assumption in (4.5).

Case CR-1: That is, (C+R_)-(C%) when ¢f(u;) < u, <ty < 0. There is only one
outgoing wave and the incoming solution is monotone. We find here

[TV (u"(%))] =0, [R(u"(t0))] = —|ur — um| < 0.

Case CR-2 : That is, (C;. R, )~(C%) when 0 < up < ur < u;. There is only one
outgoing wave and some cancellation is taking place. This case is analogous to (RC-1).

Case CR-3 : That is, (C+R_)—(CLR") when p(uj, um) < ur < @H(w;) < tupm < 0.
The outgoing pattern contains two waves and the incoming solution is monotone. We
obtain

[TV (" (t0))] =I¢" (w) — w| + [ur = " ()] = fum — w] = ur — | =0
and
[R(u" (t0))] = lur — &% (ur)| = lur — um| =~ (w) — um| < 0.
For every k € (0,1) we have
[QUA(t0))] < ) — wal e — 54 (u0)| = b = ] i —
= I () ~ g — ()| = = 1] e = ] = (1= )t = 1]t = .

The polynomial function %, — |[tum — wi| |4y — um| over the interval determined by
plug, ur) < upy, < 0 satisfies the inequality

[Ur, — W] [t — U] 2> min(]ull lurl, ur — p(ur, ur )| lur — plur, ur)l)
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Therefore, we conclude that

[Q(u" (t0))]

< [@h(w) — wl fur — M w)| — & min(jw| fur], lw — p(w, ur)| fur — p(ur, ur)])
— (1 = &) [t — ] [tr — U]

< —(1 = &) |um — w| [ur — U

by the assumption (4.5), provided  is chosen such that § < k < 1.

Case CC-1 : That is, (C1C)—(C") when 0 < u,, < u; and ¢ (tp,) < Uy < Up,. This
case is analogous to (CR-1).

Case CC-2 : That is, (C+C)—(C’) when ¢ (u;) < U < 0 and 4y, < up < @ tpy).
This case is similar to (RC-1).
This completes the proof of Theorem 4.2. O

Finally, we consider the weighted interaction potential
Qu) = Y~ g(u-(2), us (2)) [ut (@) — u(@)| [ut (y) — u_(y)], (4.7)
<y

where the weight g is determined so that a right-contact located at x is regarded as
non-interacting with all waves located at y > x. Precisely, setting uy := uy(z) we
define the function q(u_,u;) by
Uy — ,O(U_,’u,+), ‘ph(u—) < Ut <u_ and u_ > 0)
qlu_,uy) =19 plu_,uy) —uy, u_ <up <(u_)and u_ <0, (4.8)

1, otherwise.

Recall that p(u—,u+) was defined in (4.4).

THEOREM 4.3. (Refined estimates III) With the same assumptions and notation as
in Theorem 4.2, we have at each interaction time tg

C TV (u"(0)) |u; — Um| |tb, — ur| in Case CC-2,

4.9
—c|up — Um| |tm — ur] in all other cases, (49)

[0« (t0))] < {

for some uniform constants C,c > 0.

We observe that the rate of decrease in (4.9) is weaker than the one obtained in
Theorem 4.2 since the coefficient ¢ may vanish. Furthermore, in one case (Case CC-2)
the potential may increase whereas the total variation functional decreases:

[TV (u(t0))] = 2 ur — tm]| < 0.

In turn, for in a range of constants C, > 0 at least, the functional TV (u”(to)) +

C, Q(uM(ty)) decreases strictly in all interaction cases. The weighted potential will
be of particular interest in Chapter VIII to study nonclassical solutions.

ProoF. The jump of the interaction potential can be decomposed in three parts:

[Q(uh(to))] =P+ P+ Ps,
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where P; contains products between the waves involved in the interaction, P, between
waves which are not involved in the interaction, and P3 products between these two
sets of waves.
On one hand, we have immediately
Py = —q(w, um) [ui = ] [tim — ur],

since there is only one outgoing wave or else the two outgoing waves are regarded
as non-interacting in view of the definition (4.8). If u* would contain only the two
interacting waves and no other wave then (4.9) would follow by combining the above
result with (4.6). On the other hand, clearly, P, = 0 since the waves which are not
involved in the interaction are not modified.

We now concentrate on the contribution P; of “other waves”. Denote by W,
and W, the total strength of waves located on the left- and right-hand sides of the
interaction point, respectively. Let us decompose P3 accordingly, say Ps = P3; + Ps;,.
Waves located on the left-hand side are dealt with by relying on the decrease of the
total variation:

Pgl = Wz (I’UJT - ul| - |um - ’U.li - |um - ’U,r|) < 0.
To deal with waves located on the right-hand side of the interaction point we set
Py, = Q, W, with
Q= q(ul’u;n) lul_u;n|+Q(ulvu:n) !ul‘“u:nl—q(ulaum) [ul"um!—Q(umaur) |ur_uml7
and we now estimate (). by distinguishing between several cases, as in the proof of
Theorem 4.2.

Case RC-1:
Qr = (u'r - P(Ul,ur)) (ul - Ur) - (um - Ul) - (ur - p(um,ur)) (um - ur)

= —|p(w, ur) = p(ttm, ur)| [ur — tr| = (1 + |t — p(Um, ur)|) [um — w| < 0.

Case RC-2 :

Q= (¢"(w) — ur) — (Um —w) — (ur — P(tm, ur)) (Um — ur)

< 6" (w) — O (um)| — |tm —w| <0,
since Lip(¢") < 1 near the origin.
Case CR-1:
Q= (r — plat,ur)) (1 = ) = (2 — (it ) (1 — ) — (tn — )
= _(|um — up| + ]p(ul,u,p) - P(Ulaum)l) lw — tm|
= (L luy = plur, ur)]) ftom = ur| <0,

Case CR-2 : We have
Qr =(ur — pus, ur)) (wg — tp) = (tm — p(ur, Um)) (w1 = Um) — (Ur — Um)

lp(ut; um) — p(ul,ur)l)) Ity — U
|ur — tim]

=— (1 + ‘um - p(ul,um)l — = ur| (1+

<0

)
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provided the term |u; — u,| is sufficiently small.

Case CR-3 :

Q, :(SOh(Ul) = r) = (U — p(Us, Um)) (U1 — Um) — (U — Uy)
<~ fm — ()] < 0.

Case CC-1:
Qr = (ur — plur, ur)) (w — ur)
= (um — p(ur, um)) (= um) = (ur — p(tim, ur)) (tm — ur)
= —|p(ur, ur) — p(ur, tm)| |1 — U]
— um — | |ur = Um = p(thn, ur) + p(u, ur)| <0,
since the function p satisfies when u, < u,, < u;
0 < p(ur, ur) — p(ug, ) < (1 + 0(6)) |tm — ur,
|ul = Um, — P(Um, Ur) + p(ul,ur)! < Cdlu — tm)-
Indeed, when f(u) = u? these inequalities are obvious since p(u,v) = —u — v. For a

general concave-convex flux-function, it can be checked that they hold in a sufficiently
small neighborhood of 0.

Case CC-2 :
Q= (Ur - P(Ul,'ur)) (u —uy) — (um - P(Uhum)) (ur — um)
— (p(um,ur) — ur) (Ur — Um)
= O0(1) |ty — Um| |um — w.

This completes the proof of Theorem 4.3. O
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CHAPTER V

CONTINUOUS DEPENDENCE OF SOLUTIONS

In the present chapter, we investigate the continuous dependence of solutions to scalar
conservation laws. In Section 2, we study a class of hyperbolic equations with discon-
tinuous coefficient, and we establish a general stability result in L' when the coefficient
does not contain rarefaction-shocks; see Definition 1.1 and the main result in Theo-
rem 1.7. Next, in Section 2 we apply this setting to conservation laws with convex
flux; see Theorems 2.2 and 2.3. The proofs in Section 2 are based on the key obser-
vation that no rarefaction-shock (in the sense of Section 1) can arise from comparing
two entropy solutions. In Section 3, we derive a sharp estimate in a weighted L' norm,
which provides a quantitative bound on the decrease of the L' norm; see Theorem 3.1.
Finally, in Section 4 we state the generalization to nonclassical solutions.

1. A class of linear hyperbolic equations
Consider the Cauchy problem associated with the scalar conservation law
u+0,f(u)=0, u=u(z,t)eR, zeclR, t>0, (L.1)

in which the flux f : IR — IR is a given smooth function. We want to establish the
L' continuous dependence property

flu(t) —v®lLrar) < 1u0) —v(0)|lr@wr), t20, (1.2)

for solutions u and v of (1.1). Our general strategy can be sketched as follows.
After introducing the notation

vi=v—u, a(u,v)= /0 f(Bu+(1-6)v)de, (1.3)

where @(u,v) will be called the averaging speed, for any two solutions u = u(z,t)
and v = v(z,t) of (1.1) we have

By + 0z (@(u,v) ¢) = 0. (1.4)
Therefore, to establish (1.2) it is sufficient to establish the L! stability property
lo@llrry < IWOLrar), t20, (1.5)

for a class of equations and solutions covering the situation (1.3) and (1.4). In the
present section, we discuss precisely the derivation of (1.5) and leave for the following
section the applications to the situation (1.3) and (1.4).

Given a piecewise constant speed a : IR x IR, — IR we consider piecewise constant
solutions ¥ : IR x IR, — IR of the linear hyperbolic equation with discontinuous
coeflicient

O +0z(ay) =0, zelR,t>0, (1.6)
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and we aim at deriving the inequality (1.5). The set of points of continuity, where a
is locally constant, is denoted by C(a). The (finitely many) polygonal lines of jump
discontinuities in the function a determine a set of jump points J(a) C IR x IR, . The
finite set of interaction times when these lines intersect is denoted by Z(a) C IRy. To
each propagating discontinuity (z,t) € J(a) we associate a shock speed A\* = \%(z,t)
and left- and right-hand traces ay = ay(z,t) = a(zt,t). As we will see later, it will
be convenient to extend the definition of the shock speed by setting

A4z, t) = a(z,t), (=z,t) € C(a).

Finally, observe that if 9 is a solution of (1.6) (in the weak sense of distributions) and
admits a jump discontinuity at a point (z,t) propagating at the shock speed A%, then
the traces ¥+ = ¥ (z,t) and ax = a4 (z,t) satisfy the jump condition

“A (Y —¥-) +ar Yy —a_p- =0.

The geometric properties of the speed a will be critical in the forthcoming dis-
cussion, and it will be useful to adopt the following terminology (illustrated by Fig-
ure V-1).

DEFINITION 1.1. A point (z,t) € J(a) is called:
o A Lax discontinuity if

a_(z,t) > X (z,t) > ay(z,t).
¢ A slow undercompressive discontinuity if
A%(z,t) < min(a—(z,t),a4(z,1)).
e A fast undercompressive discontinuity if
X (z,t) > max(a_(z,t),a4(z,t)).
¢ A rarefaction-shock discontinuity if
a—(z,t) < A%(z,t) < ay(z,1).
Observe that the cases listed in Definition 1.1 are disjoint (since a_(z,t) #
a+(z,t) when (z,t) € J(a)). Introduce the partition
J(a) =: L(a) US(a) UF(a) UR(a),

where L(a),S(a), F(a), and R(a) are the sets of Lax, slow undercompressive, fast un-
dercompressive, and rarefaction-shock discontinuities, respectively. We first illustrate
a fundamental feature of the equation (1.6) with an example.

EXAMPLE 1.2. When
-1, <0,

a(m,t)_—_{ 1, >0

the Cauchy problem associated with (1.6) with the initial condition

¥(z,0)=0, zeRR,
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admits a large class of solutions (including the trivial one 9 = 0), namely
0, z < —t,
Yot +z), —-t<z<0,

-t —z), 0<z<t,
0, x>t

Yz, t) =

where the arbitrary function g is Lipschitz continuous or, more generally, of bounded
varjation. (See Figure V-2.) O

Example 1.2 shows that we cannot expect the uniqueness of weak solutions for
the Cauchy problem associated with (1.6). In the above example, the characteristics
happen to be moving away from the discontinuity at z = 0 from both sides, and
thus the discontinuity in the coefficient a is a rarefaction-shock in the sense of Defi-
nition 1.1. The fact that rarefaction-shocks are the only source of non-uniqueness is
a consequence of the following theorem. (Throughout this chapter, we always tacitly
restrict attention to solutions ¥ with compact support.)

THEOREM 1.3. (L! stability for linear hyperbolic equations.) Consider a coefficient
a = a(z,t) and a solution v = ¢(x,t) of (1.6), both being piecewise constant. Then,
for all t > 0 we have the identity
t
WOl + [ X 2@ - a ()| W-@o)dr

O (zmecL@)

:||¢(0)||L1(1R)+/ S 2Nz, 7) - as (@) [ (@) dr.

0 (z,7)eR(a)

(1.7)

At this juncture, observe that:
o Lax discontinuities contribute to the decrease of the L' norm.
e Rarefaction-shocks increase the L! norm.
e Undercompressive discontinuities keep constant the L' norm.
Hence, in the special case that a has no rarefaction shocks, Theorem 1.3 implies

L@l amy < 1YLy, ¢ 20, (1.8)

which is the desired estimate (1.5). In particular, if the coefficient a has no rarefaction-
shocks, then the Cauchy problem for (1.6) admits a unique solution (in the class of
piecewise constant solutions under consideration here, at least).

PrOOF. It is sufficient to check that for all t ¢ Z(a)

& aoie=- ¥ 2w -o@ilb- @)

(z,t)EL(a)
+ Z ZIAa(a:,t)—a_(z,t)llz/J_(a:,t)!.
(z,t)eR(a)

The estimate (1.7) then follows by using that the mapping t — |[¢(t)||z: () is Lip-
schitz continuous. So, in the rest of this proof, we restrict attention to any time
interval in which a contains no interaction point.
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Xz, t) Xz, t)

. o slow undercompressive discontinui
Lax discontinuity p ty

Xz, t) : Az, 1)

rarefaction-shock discontinuity

fast undercompressive discontinuity

Figure V-1 : Classification : £(a),S(a), F(a), and R(a).

z/t=0

Figure V-2 : Non-uniqueness of solutions.
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We denote by ¢ — z;(t) (0 < j < m + 1) the straight lines (or polygonal lines if
interaction times would be included) along which the function z — (x,t) changes
sign with the convention that, for 0 < j < m,

(-7 9(z,t) 20, @€ [z;(t), z;11(t)], (1.9)

zo(t) = —o00, and T 41(t) = +oo. For all 1 < j < m we set
Wi (1) o= P (e(0),8), a5 (8) = axlz(8),8),  Ag(8) = &5(t),

Am+1(t) = Xo(t) = 0, and ¢, ,1(t) = ¥g (t) = 0. Since 9 solves (1.6) we find (the
terms 0y1 and 0, (a ) being measures)

zj1(t)

d d & .
il a0l da = 3 31 [ o

i _ z;541(t)
=>(-1y (z;+1(t> Yo (@4a(8),8) — () o (25 0), ) + / . am(x,t))
j=0 xz;(t
m . z;+1(t)
=> (1Y ()\jﬂ(t) Ua® - X0+ [ ~ddalat w<x,t>>>
j=0 z;(t)
= (1) ((af () = M) ¥F (1) + (a7 (&) = M () 5 (1)),
j=1

The Rankine-Hugoniot relation associated with (1.6) reads
(aF (t) = X (1) %5 (1) = (a5 (£) = A;(0) %5 (1), (1.10)
therefore with (1.9)

% /m (2, )] do = ij;z (aZ(t) = (1)) [ (2)]. (1.11)

(In the right-hand side of (1.11), one can use either the + or the — sign.)
Consider any of the points z;(t):

e Suppose z;(t) € C(a), and thus a;(t) := a; (t) = a}“ (). Since 9; (t) and '(/)f (t)
have opposite signs, it follows from the Rankine-Hugoniot relation (1.10) that
either \;(t) — a;(t) = 0 or else ¢ (t) = ¥7 (t) = 0. In both cases, the terms
(a5 (t) — A\;(t)) [#7 (¢)| vanish and so the points ;(t) € C(a) do not contribute
to the right-hand side of (1.11).

e Suppose z;(t) € L(a), and thus X;(t) = A%(z;(t),t). Since, for a Lax discon-
tinuity, a; (t) > A;(¢) > af(t), we see that both coefficients j:(af ) —X;(0)
are negative. Therefore, the points z;(t) € L(a) contribute “favorably” to the
right-hand side of (1.11).

e Suppose z;(t) € R(a), and thus A;(t) = A%(z;(t),t). Since, for a rarefaction-
shock, a; () < A;(t) < aj+(t), we see that both coefficients ﬂ:(aji () — A;(t)
are positive. Therefore, the points z;(t) € R(a) contribute with a “wrong”
sign to the right-hand side of (1.11).
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o Suppose z;(t) € S(a) U F(a), and thus X;(t) = A%(z;(t),t). By definition of
an undercompressive discontinuity, the two sides of (1.10) have different signs
and, therefore,

(af (8) = X (0) %] (8) = (a5 (8) = X;(2)) 95 () = 0.

Hence, undercompressive discontinuities z;(t) € S(a)UF(a) do not contribute
to the right-hand side of (1.11).
This completes the derivation of (1.7). g

REMARK 1.4. Observe that at rarefaction shocks we have
|)\a(m’ T) - (1,_.(.1‘, T)| < ‘0,.{.(1}, T) - a_(x, T)I
and since 1 changes sign (see (1.10) above)

Y- (z,7)| < [P+ (2, 7) — P (2,7)].

This implies that the last terms in the right-hand side of (1.7) is bounded by the total
variation of ¥ and the maximum strength of rarefaction-shocks, namely

¢
2  sup la+(:r,7')—a_(a:,7')| / TV (y(7))dr.
0

This estimate will play an important role later, in Section 2. 0

REMARK 1.5. Of course, the left-hand traces appearing in (1.7) are chosen for the
sake of definiteness, only. It is obvious from (1.10) that

(2, 7) = a (2, 7)| - (2, 7)] = [A*(2,7) = ay(z, 7)| [ (2, 7).

By (1.10), the function % changes sign at Lax and rarefaction shocks only, and
keeps a constant sign at undercompressive discontinuities. Therefore, if a solution 1)
keeps a constant sign, the two sums in (1.7) vanish and we find

Y@l @ry = 1¥O)l1gry, t=0.

This implies that the Cauchy problem associated with (1.6) admits at most one so-
lution % of a given sign. O

We now discuss the properties of weighted norms of the form
[0y 1= [ (@l wleds, ¢

where w = w(z,t) > 0 is a piecewise constant function. We search for conditions
on the weight w guaranteeing that ||4(t)||w () is non-increasing in time when ¢ is
a solution of (1.6). Our goal is to quantify the rate of decrease of these weighted
L' norms. Following the notation introduced for the speed a, we use the obvious
notation AV, C(w), J(w), and Z(w). It is convenient also to denote by Z(a,w) the set
consisting of all interaction times for a or w (that is, Z(a) UZ(w)) as well as all times
when two polygonal lines of discontinuity for a and for w intersect in the (z, t)-plane.
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We will impose that the discontinuity lines of w coincide with discontinuity lines
of a or with characteristic lines associated with a, in other words, with the exception
of all times ¢t € Z(a, w),

APz, t) = X%z, 1), (z,t) € T(w). (1.12)

Recall that we extended the definition of the shock speed A® by setting A*(z,t) =
a{z,t) when (z,t) € C{a). Attempting to generalize the calculation made in the proof
of Theorem 1.3, we arrive at the following identity for the weighted norm.

LEMMA 1.6. Consider a coefficient a = a(z,t), a solution ¢ = ¥(z,t) of (1.6), and
a weight w = w(z,t), all of them being piecewise constant. If the weight satisfies the
constraint (1.12), then for allt > 0 we have

Oty = WO loo+ [ S w- +7 ) P = o[-z, ), (1.19)

% (zm)eT(a)
where
1-(@,7) = sgn(X(e, ) - a- (3,7), 110
’7’+($,’I‘) = Sgn(“’%@’} T) - )\a(w, T))’ ‘
and
-1, £<0,
sgn(§) = 0, £=0,
1, £>0.

Observe that the contribution in the right-hand side of (1.13) vanishes when the
argument of the sign function vanishes. So, in practice, the specific value of sgn(€) at
& = 0 does not matter. In the forthcoming statements (for instance in (1.16), below)
we will restrict attention to points (z,t) where A%(z,t) — ax(z,t) # 0.

PRrOOF. Denote by ¢ — z;(t) (1 < j < m) the polygonal lines of discontinuity for any
of the functions a, 1, or w. That is, include all of the points in J(a) U J{¥) U T (w).
Let us exclude the set Z(a,1,w) of all of the interaction times when two lines of
discontinuity for either ones of the functions @, ¥, or w intersect in the (z,¢)-plane.
To derive (1.13) it is sufficient to consider any time interval disjoint from Z(a, %, w).
In such a time interval the discontinuity lines are straight lines and the following
calculation makes sense.

In each interval (z;(t), z;+1(t)) all of the functions are constant and we can write,
with completely similar notations as in the proof of Theorem 1.3,

zj+1(t)
/ (e, 1) w(e, £) d

5 (t

= (2741(8) — 25(8)) 0] w
= (2701(8) — 651 (O ) W5 O] w5y (8) + (aF (O£ — 258 1T (B)] w (0),

by observing for instance that

a;(t) = a’+($j(t)’t) =0 ($j+1(t)5t) = a;§-1 (t)
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After a summation over the index j and a re-ordering of the terms obtained by
collecting two contributions at each discontinuity, we arrive at

m

@)l = Y (25(8) = a5 () 8) W5 @) wy (1) + (af (8) ¢ —2;()) W ()] (2)-

=1

Differentiating the above identity with respect to ¢t and noting that all terms but
z;(t) are constant, we find

S ot
m (1.15)
= 3 (@400 - a5 () 195 w7 () + (65 () — 50) T (O] w3 ).

We now rely on the jump relation (1.10) and distinguish between the following pos-
sibilities:
e Case (z;(t),t) € J(a): Here, z;(t) is a jump point for the function a we have
&;(t) = A%(z;(t), t)-
e Case (z;(t),t) € C{a) N J(¢): The function a is locally constant near z;(t)
but 7 has a jump, and, therefore from (1.10), &;(t) = a(z;(t),t) = aji(t).
o Case (z;(t),t) € C(a) NC(y) N T (w): Both a and ¢ are continuous but w is
discontinuous and, thanks to the constraint (1.12), £;(t) = a(z;(t),t) = a;t(t).
Clearly, in the last two cases above, the contribution in the right-hand side of (1.15)
vanishes. Therefore, only the points (z,t) € J(a) are relevant, and using once more
(1.10) we obtain

%“"ﬁb(t)“w(t) = Z (Sgn(/\“(x, t)—a_(z,t)) w_(z,t)
(z,t)eT(a)
+sgn(a (2.1) = Nz, 0) wy(z,1)) [W(,1) ~ a_ (@, 0)] W_ (2.0,

which establishes (1.13). O

In view of Definition 1.1, the coefficient introduced in (1.14) depend whether the
discontinuity is of type Lax, undercompressive, or rarefaction:

-1, (=,t) € L(a),
Yi(z,t) = ig i (( )) (1.16)
1, (x,t) € R{a),

(provided \%(z,t) — ay(z,t) # 0). Consider one pair of terms

(7= wo + v wi) A —a| -]

in the right-hand side of (1.13). By (1.16), for each Lax or rarefaction-shock dis-
continuity the two terms are both non-positive or both non-negative, respectively,
while for each undercompressive discontinuity there is exactly one non-positive and
one non-negative terms.
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To take advantage of the property (1.16) within the identity (1.13) it is natural
to determine the weight w in order that

<0, (x,t) € S(a),

>0, (a1) € Fa), (L17)

wy(z,t) —w-(z,t) {
while no condition need be imposed at Lax or rarefaction-shock discontinuities. In

conclusion, the following “weighted” version of Theorem 1.3 follows immediately from
Lemma 1.6.

THEOREM 1.7. (Weighted L' stability for linear hyperbolic equations.) Consider
a coefficient a = a(x,t) and a solution ¥ = (z,t) of (1.6), both being piecewise
constant. Suppose that there exists a weight-function w > 0 satisfying the conditions
(1.12) and (1.17). Then, for all t > 0 we have the identity

[6Ouco + [ (Da(s) +Dafe)) ds = O + [ Rls)ds, (139

where
Do(s)i= Y. (w-(r,5) +wsle,5)) |ac(z, ) ~ Xz, 9)| Wo— (2, )],
(z,8)€L(a) (119)
D3(3) = Z |w+($’s) - w_(m, 5)| |a_(:1:, S) - /\a(mvs)l li/)—(m73)|,
(z,8)€S(a)UF(a)
and
R(s) := Z (w-(z, 5) + wi(, s)) |a—(x,s) — A*(z, s)| [v—(, 5)|.
(z,8)ER(a)
O

The dissipation terms D; and D3 are quadratic and cubic in nature, respec-
tively. To apply Theorem 1.7, we need construct a weight w fulfilling the constraints
(1.12) and (1.17). We will rely on certain geometrical conditions of the coefficient a
related to the distribution of slow and fast undercompressive shocks. On the other
hand, in the applications the remainder R either will vanish identically or will tend
to zero together with some approximation parameter.

2. L! continuous dependence estimate

The framework in Section 1 is now applied to approximate classical entropy solutions
of the conservation law (1.1), which, by construction, satisfy Oleinik entropy inequal-
ities up to some approximation error. In the rest of this chapter, the coefficient a
and the solution 1 have the form (1.3). We begin in Theorem 2.2 by deriving the L
contraction estimate for conservation laws with general flux, relying here on Theo-
rem 1.3. Next in Theorem 2.3 we derive a weighted L! estimate when the flux-function
is convex.

The theory in Section 1 unveiled the fact that rarefaction shocks are the source
of non-uniqueness in linear hyperbolic equations. So, we start by pointing out the
following key property.
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THEOREM 2.1. (Fundamental property of the averaging coefficient.) If u and v are
two piecewise constant, classical entropy solutions of the conservation law (1.1) defined
in some region of the (x,t) plane, then the averaging speed

a = a(z,t) = a(u(z, ), v(z, t))
contains no rarefaction shocks.

ProoF. The discontinuity lines in @(u,v) are determined by superimposing the dis-
continuity lines in u and v. At a jump point (z,t) € J(a(u,v)) we have

(i) either (z,t) € J(u) while v is locally constant,

(ii) either (z,t) € J(v) while u is locally constant,
(iii) or else (z,t) € J(u)NJ(v) and A*(x,t) = A(x,t). (If the latter would not
hold, (z,t) would be an interaction point of @(u,v).)

Case (iii) above is not “generic” and can be avoided by an arbitrary small per-
turbation of one of the solution. Alternatively we can decompose the discontinuity
in Case (iii) into two discontinuities, one in Case (i), and one in Case (ii). On the
other hand, Case (ii) being completely similar to Case (i). So we only consider Case
(i), when u has a discontinuity connecting some states v~ and u* satisfying Oleinik
entropy inequalities. Recall that the graph of the flux f on the interval limited by
v~ and u* remains below (above, respectively) the chord connecting the two points
with coordinates v~ and u™, when ut < u™ (u~ < u™, respectively).

Consider for definiteness the case u™ < u~. By extending to the real line the
chord connecting u~ to ™ on the graph of f, we determine finitely many points of
intersection

uf <uf ) <...o<uf <uf =ut<uT =g <up <.o<ug <y,

such that f is above the line connecting u,; to u,;,; and the one connecting ujj 4 to
u’{j, while it below the line connecting uy;; t0 us;,, and the one connecting ugj 42
tou;"j+1 for j=0,1,...

Observe that the nature of a discontinuity in @ depends on the location of the
constant value (say v) taken by the function v. Precisely, in view of Definition 1.1 it
is clear geometrically that the discontinuity is

e a Lax shock when v € (u™,u™),

e slow undercompressive when v € (ug;,uz;,,) and when v € (u3, 5, u3;,,),

e or fast undercompressive when v € (ug;,;,u3;,,) and when v € (ug;, {,ud;).
In particular, there are no rarefaction-shocks. This completes the proof of Theo-
rem 2.1. g

Combining Theorems 2.1 and 1.3 we arrive at the following important property
for scalar conservation laws.

THEOREM 2.2. (L! contraction property for general flux.) Let f : IR — IR be a
smooth fluz-function. Then, the classical entropy solutions of (1.1) satisfy the L'
contraction property

lu(t) —v@®lLrgry < lu@) —v(O)Ligr), t>0. (2.1)

For definiteness, we restrict attention in the present chapter to solutions of (1.1)
arising as limits of the (piecewise constant) approximate solutions described earlier (in
Chapter IV). A general uniqueness theory will be developed later on (in Chapter X).
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PROOF. Starting from some initial values u(0) and v(0), we construct piecewise ap-
proximate solutions u® = u”(z,t) and v* = v*(z,t) by wave front tracking, as de-
scribed in Section IV-2. Recall that u"(0) — u(0) and u” — u almost everywhere
with
lu* @)L @my < Nw(0)l|zogmy, t>0, (22)
and
TV (u"(t)) < TV (u(0)), t>0. (2.3)
Similar statements hold for v» — v. The functions u® and v" are actually exact
solutions of (1.1) but do not fulfill exactly Oleinik entropy inequalities. The rarefaction
fronts in the solution u” have small strength:

[u® (z,t) — u" (z,1)] < h. (2.4)

Furthermore, by slightly modifying the initial data u"(0) or v"(0) if necessary, we
can always guarantee that the discontinuity lines of 4”® and v” cross at finitely many
points (z,t) only. Furthermore, we can assume that within a compact region in space
we always have u”(z,t) # v"(z,t) (so that 9" does not vanish) while u"(x,t) =
v*(z,t) = 0 outside this region. As the analysis is completely trivial in the latter we
only treat the former region. These conditions will be tacitly assumed in the rest of
this chapter.

Following the general strategy sketched in the beginning of Section 1, we set
Yh := v* — u* and @" := @(u",v"). Since both u* and v" are solutions of (1.1) we
have

A" + 8, (@ Y*) = 0. (2.5)

In view of Theorem 1.3 and Remark 1.4 and using the total variation bound (2.3) we
get

1™ @)l ary <IW™(0) L2y
+2t (TV(u(0)) + TV (v(0))) sup (a?(z,7) —a(z,7)),

(z,7)eR(@h)
T€(0,t)
thus
|loh(t) - uh(t)”LI(IR) < ||Uh(0) — uh(0)||L1(1R) +Cit sup h(a_’f_(a:,T) — a}i(x,r)).
(x,7)ER(aN)
T€(0,t)

Since u”(0) — u(0) and v"(0) — v(0), by lower semi-continuity of the L' norm it
follows that

lo(t) — u(®)llz ) < liminf |lo* () — u* (O)ll )

< lv(0) = w(0)|| L1y + C1 t liminf sup (a’(z,7) - a(z,7)).
h— (e r)eR @)
T€(0,t

To conclude we show that

sup (al(z,7) —a"(z,7)) < Cah. (2.6)
(z,7)ER(N)
T€(0,t)
Suppose that v"(t) is continuous at some point z, i.e., is identically equal to some
constant v, while u® has a shock connecting 4~ to u™, say. If the front in u” is an
entropy-satisfying shock, then by Theorem 2.1 the discontinuity in @ cannot be a
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rarefaction shock. If the front in »”

of a” as follows

is a rarefaction-shock, then we estimate the jump

1

1
B -t @r) = [ Flur+00-u))d- [ flu+0w-u)ds
0 0
< "o s = u-] < Ca,

where we used the uniform bound (2.4). This completes the proof of Theorem 2.2.
a

We now rely on Theorem 1.7 and derive a weighted L' estimate when the flux-
function is convex. This new estimate provides us with additional information beyond
the L! contraction property (2.1), specifically a lower bound on the decrease of the
L' distance between two solutions of (1.1). Later on in Chapter IX in the context
of systems, it will be essential to work with a weighted norm in order to cope with
“wave interaction” error terms and derive a generalization of (2.1) for systems.

THEOREM 2.3. (Weighted L' estimates.) Consider the scalar conservation law (1.1)
where the flux f is a convexr function. Given sequences of front tracking approrima-
tions u® and v" and a constant K > 0 satisfying

2K (TV(uh(O)) + TV(vh(O))> <1, (2.7)

there exists a (piecewise constant) weight w* = wh(x,t) satisfying for all (z,t) the
uniform bounds wh, < wh(z,t) < wh,, with

wh. :=1-2KTV(u"(0)) — 2K TV (v"(0)),
wh =14 2K TV (u"(0)) + 2K TV (v(0)),

such that the weighted L! continuous dependence estimate

/IR loh(t) — uh ()| wh(t) de + /Ot (Dg(s) + DQ(s)) ds

. (2.8)
=/ |v"(0) —uh(0)|wh(0)da:+/ R"(s)ds
R 0
holds for all t > 0, where @* := a(u",v") and
Di(s):= > (vl +uwh)d - Nl — ul],
(z,5)€L(@M)
_ (2.9a)
DA(s) := Z K (Juh — | + o = o)) ‘a'ﬁ—-)\“hllvf—uﬂ,
(z,5)€8(@h)UF(ar)
and X
Rh(s) := Z (wh +wh)|a® — AT | P —ul ). (2.9b)

(z,s)€R(@")

Interestingly, by letting K — 0 in (2.8) and neglecting the (non-negative) term
D! we recover the L! contraction estimate (2.1) derived in Theorem 2.2. Of course,
when K > 0 the statement (2.8) is much stronger than (2.1). The passage to the limit
h — 0 in (2.8) and (2.9) is discussed in Section 3 below. Of course, as was already
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observed (Remark 1.4 and the proof of Theorem 2.2), the last term in (2.8) vanishes
when h — 0.

It will be convenient to denote by S(@*;u") and F(a";u") the slow and the fast
undercompressive discontinuities in " associated with jumps of u*. A similar notation
is used for v". Recall that the difference between two solutions, 9" := v* —u”, keeps a
constant sign at each undercompressive discontinuity. (See for instance Remark 1.5.)

Using that f is convex it is not difficult to check that:

LEMMA 2.4. The nature of the fronts is determined in each region where " = v —uP
keeps a constant sign, as follows:
>0 if and only if (z,t) € S(@";u") U F(a"; o),
Yl (z,1) (2.10)
<0, if and only if (z,t) € F(@;u") uS@"; o).

PrROOF OF THEOREM 2.3. Step 1 : Preliminaries. To simplify the notation we
omit the upper index h. In view of (2.10) we can rewrite the required conditions
(1.17) on the weight, in the following strengthened form:

—Kiu-i-(x’t) - u—(a"?t)l’ ($7t) € j(u)v d&(x,t) > 0,

(o) —w_ (o) =1 K@) -u-@ol @)eTw), vxed <0,
e UV Kl t) —v-(zt), (2,t) € TW), vi(z,t) >0,
—K v (z,t) —v_(z,t)], (z,t) e T@), v(z,t)<O0.
(2.11)

When such a weight exists, Theorem 1.7 provides us immediately with the desired
identity (2.8).

Let us also point out the following property associated with convex-flux functions.
Suppose that two fronts in the solution u interact at some point (z,t), and generate
a (single) front. Call u;, um, u, the constant states achieved before the interaction, so
that u; and u, are the left- and right-hand states after the interaction. The strength
of the outgoing front in u is less than or equal to the total sum of the strengths
before the interaction, and the corresponding decrease is measured by the amount
of cancellation at the point (z,t):

6% (z,t) := |uy — Um| + |ur — Um| — |ur —w| > 0. (2.12)

Suppose that §“(z,t) > 0 and, for definiteness, that u,, < u, < u;. Then, we will say
that the solution u contains, from the interaction time on, a past (or cancelled)
wave front with strength 2 |u, —uy,|. For clarity, we will sometime refer to the fronts
in the solution u as present wave fronts. The same notation and terminology apply
also to the solution v.

Step 2 : Main argument of proof. By setting (away from interaction times and
discontinuities)
w(z,t) =1+ Y [w](y1),
y<z

the (piecewise constant) weight w is uniquely determined if we prescribe its derivative
wy in the form of finitely many Dirac masses propagating along polygonal lines and
referred to as particles or anti-particles (see below for the precise definition) which
may propagate along characteristic lines or discontinuity lines of a in agreement with
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the earlier requirement (1.12). By convention the (signed) mass of a particle may
be positive or negative. Particles and anti-particles will be generated from the same
location and the sum of their masses be zero. The jump [w] (y,t) is the total mass
of all of the particles and anti-particles located at (y,t).

Our construction will associate a train of particles and anti-particles with every
front in the solutions u and v as well as with every cancelled front. To proceed we
will decompose the (z,t)-plane in finitely many regions in which the function ¢ keeps
a constant sign. We will ensure that the following property holds:

(P): With every present wave front with strength ¢ and within every region 2 in
which 1 keeps a constant sign, we can associate a set of particles and a set of
anti-particles located within the region {2 such that the total mass of particles
is equal to +e while the total mass of anti-particles is equal to Fe (the sign
depending on the region).

An analogous property will hold for past waves. Based on (P) we conclude the proof
as follows.

Denoting by F1(t) the set of locations of particles and anti-particles associated
with present fronts, we find (21 < z2)

—KTV(u(t) - KTV@®) < > [w]y,t) < KTV(u(t) + K TV(u(t). (2.13)
e

On the other hand, observe that the total amount of cancellation can be bounded by
the initial total variation

oo 0@, t) +6%(x,)

interactions (z,t)

= Y TV@t-)-TV@itt)+ Y. TV((-) - TV(v(t+))

interactions t interactions £

< TV (u(0)) + TV (v(0)).

So, calling Es(t) the set of locations of particles and anti-particles associated with
past fronts, we find now

—KTV(u(0)-KTV(®0) < Y. [w](yt) <KTV(u(0)+KTV(v(0)). (2.14)
z;:};/:(tz)z

Finally, collecting the terms in (2.13) and (2.14) we arrive at
—2KTV(u(0)) —2KTV(0(0) < Y [w](y,t) < 2K TV (u(0)) + 2K TV (v(0)),

r1<y<ws

which leads us to the conclusion of the theorem.

Step 3 : Constructing the weight. It remains to explain how particles and anti-
particles are generated and propagate in time. Recall first that the interaction of two
incoming fronts in u (v, respectively) generates a single outgoing front in u (v, respec-
tively), while the crossing of two fronts in u and v can be regarded as an interaction
point with two outgoing fronts. The former are referred to as u/u interactions and
v/v interactions, respectively. The latter are referred to as u/v interactions if
the front in u travels faster than the front in v, and as v/u interactions otherwise.
Let us decompose the (z,t)-plane in finitely many regions in which the function
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keeps a constant sign. According to (2.10), the waves within these regions can only
be slow or fast undercompressive, while the boundaries are made of Lax shocks or
rarefaction-shocks.

In each region where 1 keeps a constant sign, say a region denoted by 0, where
¥ > 0, the weight is defined locally near the initial line t = 0, as follows. With each
front leaving from a point (z,0) we associate a particle with strength +e determined by
(2.11) and propagating along with the wave front, that is with the speed A®. We also
introduce a corresponding anti-particle with opposite strength Fe propagating with
the local characteristic speed associated with the speed a. Then, (2.11) is satisfied
for small times.

Next, the dynamics of anti-particles within Q is straightforward: Any jump in
the speed a is slow or fast undercompressive and, therefore, all characteristic lines
cross these jumps transversally. A characteristic can never exit 1 since its bound-
ary is made of Lax and rarefaction-shock fronts, only. Hence, the anti-particles simply
propagate within €2, passing through fronts of a until they possibly reach the bound-
ary Q4 and stick with it. At this juncture observe that, within 0., all of the waves
in the function a associated with jumps in u are slow undercompressive, while the
waves associated with v are fast undercompressive.

For small times we have associated with each wave one particle and one anti-
particle. More generally, for arbitrary times and to each wave front it is necessary
to associate a train made of several pairs of particles and anti-particles, in agreement
with the property (P) above. Furthermore, waves may be cancelled and to each
cancelled front we also associate a train of particles and anti-particles satisfying (P).
So, to complete the definition of the weight w we now distinguish between several
interaction cases, depending whether the waves under consideration interact within,
enter, or leave the region Q:

e u/v or v/u Interactions within Q1 : Suppose, for instance, that a line of
discontinuity in the solution u crosses a line of discontinuity in the solution v,
at some point (z,t). Since the two fronts cross each other without changing
their respective strengths we impose that the particles associated with the
incoming fronts propagate forward without change.

o u/u or v/v Interactions within Q4 : Suppose, for instance, that two fronts
in the solution u interact at some point (z,t) and generate a (single) front
in the solution w. Call u;, um,, and u, the constant states achieved before
the interaction. Here, we replace the two incoming particles (propagating
together with the incoming fronts) with masses —K |y, — ;| and —K |ty — Up,|
respectively with a single particle (propagating together with the outgoing
front) with mass — K |u, —u;|. The discrepancy in taken care of by introducing
a new particle associated with the cancelled front (propagating at the local
characteristic speed and) carrying the mass — K 6%(z,t). When 6%(z,t) = 0, all
particles and anti-particles associated with the incoming fronts are naturally
associated with the outgoing front. When 6%(z,t) # 0, the incoming front
which is completely cancelled is refer to a past front and remains associated
with its anti-particles, while the mass of the anti-particles associated with the
surviving front is decomposed in such a way that the property (P) holds.

o Leaving/entering fronts : Consider first a front in the solution u leaving 4
on the right-hand side. Calling u;, u, and v, v, the corresponding left- and
right-hand states, we have here v, < min(u,u,) < max(u;,u,) < v;. It is an
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interaction of the type (Sy L, )—-(L, F}), that is, a slow undercompressive front
in v meeting with a Lax front in v and generating a Lax front in v and a fast
compressive front in u. We impose here that the particle associated with the
front S, sticks with the boundary L, of ;. (In fact, here it cancels together
with its corresponding anti-particle.) On the other hand, with the outgoing
wave F) (within a new region where now ¢ < 0) we associate a new pair
of particle and anti-particle, in agreement with the constraints (2.11): The
particle with mass K |u, — u;| propagates along with the front F, while the
anti-particle sticks with the boundary L.

Consider next a front in the solution u leaving {2, on the left-hand side.
We now have v; < min(uy, u,) < max(u;,ur) < v, and an interaction of the
type (RS, )~(F.R.). We impose that the particle associated with S, sticks
with the boundary R of the region €2,. On the other hand, with the wave
F! and in a region where now 9 < 0, we associate a particle along F,, and an
anti-particle along R, in agreement with the constraints (2.11).

e u/v orv/u Interactions closing the region Q. : At an interaction involving two
boundaries of the region €}, it turns out that all particles and anti-particles
within that region cancel each other.

This completes the construction of the weight and, therefore, the proof of Theo-

rem 2.3. i

REMARK 2.5. It is also possible to initialize the weight near ¢ = 0 without introducing
anti-particles. Then, all anti-particles (which, anyway, must be introduced when
waves pass from a region ¥ > 0 to a region ¥ < 0 and vice-versa) remain “stuck”
along the boundaries ¥_ 1. < 0. Only particles generated by cancellation propagate
along characteristics in the interior of the regions. 0

3. Sharp version of the continuous dependence estimate

Our next purpose is to pass to the limit (b — 0) in the statement established in
Theorem 2.3 for piecewise constant approximate solutions. The proofs are omitted
here as they will be given in Section IX-3 for systems of equations.

For each function with bounded variation u = u(z) we denote by C(u) and J(u)
its points of continuity and jump discontinuity, respectively, and by uy(z) its left-
and right-hand limits at = € J(u). Let V* denote the total variation function z —
TVZ  (u(t)) associated with u(t).

To any three functions of bounded variation u,v,w in £ we associate the non-
conservative product

(@(u,v) = f'(u)) (v—u)dw:=p

which is defined as the unique measure on IR characterized by the following two
conditions:
e If B is a Borel set included in the set C(w) of continuity points of w

u(B) = [ (@) = £/w) (0 wdw, (3.1a)

where the integral is defined in a classical sense;
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o If z € J(w) is a jump point of w, then
| _
p({z}) =5 ((@us,v4) = a(u-,04) (01 — )
(3.1b)
+ (@u-,0-) — aun,uy) (0 = us)) oy = v

with uy = u(zt), etc.
The following theorem provides a sharp estimate for the decrease of the weighted
distance between two solutions at time ¢:

I9(0) = )ty = [ [o(art) = u(e. ) w(e ) da,

THEOREM 3.1. Let f be a strictly convex function and u and v be two entropy solu-
tions of bounded variation of the conservation law (1.1). Then, for each K satisfying

3K (TV(u) + TV(v)) <1,

there ezists a function w = w(z,t) which is bounded and remains bounded away from
zero such that the sharp L! continuous dependence estimate

J9(8) = (Ol + | (Datu(s)0(s) + Da(o(s),u(s)
+ D3 (u(s),v(s)) + Ds(v(s), u(s))) ds
< [v(0) — u(0)lw(o)
holds for all t > 0, where the dissipation terms are defined for each given time by

Dy (u,v) = 2T(w,0) Y [a(u-(z),v-(2)) — a(u-(2), us(2))] o-(2) — u-(2)],

z€L(u,v)

D3(u,v) = K/IR(EZ(u, v) — f'(u)) (v —u)dV*.

(3.2)

(3.3)

with
T(u,0) :=1— 2K (TV(u) + TV(’U)), (3.4)
and the set of Lax discontinuities £{u,v) C IR in the function u is the set of points x
satisfying (v-(z) — u—(z)) (v_(z) — us(z)) <0. O

The terms Dy and D3 are quadratic and cubic in nature, respectively. Observe
that the integral term in the left-hand side of (3.2) is positive and, therefore, do
contribute to the decrease of weighted distance between the two solutions. To see
this, let us decompose the cubic dissipation term in continuous and atomic parts:

Da(u,0) =K [ (alu,v) - £(w) (v = 0V
R
+K Z (@(u—yv-) —a(ug,u)) (- —u) Jug —u-],

z€J (u)

(3.5)

where V* denotes the continuous part of the total variation measure V*. The set of
jump points in u can be decomposed as follows:

J(u) = L(u,v) US(u,v) U Flu,v), (3.6)
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where L(u,v), S(u,v), F(u,v) are the subsets of Lax, slow undercompressive, and
fast undercompressive discontinuities in the solution u, respectively, with

(v-(z) —u-(2)) (v-(z) —us(z)) <O when z € L(u,v),
(v-(z) —u-(z)) >0 and (v_(z) —us(z)) >0 when z € S(u,v), (3.7
(v—(z) —u—(z)) <0 and (v_(z) —ut(z)) <O when z € F(u,v).

(Note that exact entropy solutions cannot have rarefaction-shock discontinuities.)
Then the sharp L' estimate (3.2) implies

[0 = u®luty + | (Batu(s) v(e)) + Dafu(s) u(s)

+ Dy (u(s), u(s)) + Da(v(s), u(s)) ) ds
< [[0(0) = u(O)llu(o)

(3.8)

where

Ds(u,v) == T(u,v) Z la(u—,v-) —a(u,uy) | vo —u_|,
z€L(u,v)

Ds(u,v) =K Z [a(u_,v-) ~ @(u—,uyg )| o= — v |uy —u
€S (u,v)UF(u,v)

+K /IRIE(U, v) = f'(w)] jv — u|dV;".
with
T(u,v) =1~ 3K (TV(u) + TV('U)).

The following is a s,i\mpliﬁed version of Theorem 3.1 in which the weight equals
w =1 with K =0 and T(u,v) = 1.

THEOREM 3.2. Under the assumptions in Theorem 3.1, for all t > 0 we have

lv(t) = u®llLrar) + /0 (ﬁz(u(s), v(s)) + Da(v(s), U(S))> ds
< w(0) = v(0)|| 2 m)>

(3.9)

where

Dy(u,v):= Y 2(@(u-(z),v-(2)) - A(u-(2),us(2))) v-(z) — u(z)|.

z€L(u,v)

4. Generalizations

By taking v = 0 in the continuous dependence results derived in Sections 2 and 3,
for instance in Theorem 2.2, we find immediately that the norm ||u(t)||11(®) is non-
increasing in time for every classical entropy solution u. In fact, this result holds also
for nonclassical entropy solutions, as shown now.
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THEOREM 4.1. (L! stability of nonclassical solutions.) Let f : IR — IR be a concave-
convez fluz-function and ¢° be a kinetic function satisfying the conditions (Iv-3.2).
Then, any nonclassical entropy solution u = u(z,t) (generated by wave front tracking
and) based on the corresponding kinetic relation satisfies the L' stability property

el @y < w0l @), ¢ 0. (4.1)

Theorem 4.1 applies, for instance, to the cubic flux-function and kinetic functions
determined by diffusive-dispersive limits (Section II1-2).

ProoF. Given a sequence of piecewise constant approximations u” converging to the

nonclassical solution u (see Section IV-3), we can follow the approach developed in
Section 1 (Theorem 1.3) with now the function

Pt =yl (4.2)
Thanks to (IV-3.2e), all of the discontinuities of the averaging coefficient
b= h f") - £(0)
a = a(u ,O) = T

are Lazx or undercompressive discontinuities except for those associated with rarefac-
tion fronts in u”, that is, an analogue of Theorem 2.1 holds true ! Therefore, the last
term in the right-hand side of (1.7) tends to zero with h. Neglecting the last term in
the left-hand side we obtain

lu"®)llz2@ry < Iu™(O)l| 2y + o), (4.3)
which yields (4.1). O

In fact, nonclassical entropy solutions should satisfy an analogue of the L! con-
tinuous dependence results obtained in Sections 2 and 3. We conjecture the following
stability result, which supplements the existence result in Theorem IV-3.2.

THEOREM 4.2. (L! continuous dependence of nonclassical solutions.) Under the no-
tations and assumptions in Theorem IV-3.2, any two nonclassical entropy solutions
u = u(x,t) and v = v(z,t) generated by wave front tracking and based on a given
kinetic relation satisfy the L' continuous dependence property

lu(®) = v(®)lizr @) < Culu(0) —v(0)|L1m), t20. (4.4)

where the constant C, > 0 depends on the kinetic function and the L*® norm of the
solutions under consideration.
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CHAPTER VI

THE RIEMANN PROBLEM

In this first chapter on systems we explicitly construct the classical and the nonclas-
sical entropy solutions to the Riemann problem associated with a strictly hyperbolic
system of conservation laws. The initial data consist of single jump discontinuities
of sufficiently small strength. As was already observed with scalar conservation laws
(Chapter II), solutions can be obtained by combining shock waves and rarefaction
waves together. Motivated by the applications (Sections I-3 and I-4) we are primarily
interested in systems endowed with a strictly convex entropy pair and in solutions
satisfying a single entropy inequality.

In Section 1 we discuss general properties of shock and rarefaction waves. In the
(comparatively easier) case of systems whose all characteristic fields are genuinely
nonlinear or linearly degenerate, a single entropy inequality is sufficient to select a
unique solution to the Riemann problem; see Theorem 1.6. Then, in the following
sections we focus on characteristic fields that are not globally genuinely nonlinear.
In Section 2 we prove that Lax shock inequalities select a unique (classical) entropy
solution when the characteristic fields of the system are concave-conver or convez-
concave {or genuinely nonlinear or linearly degenerate); see (2.2) and Theorem 2.1.
On the other hand, in Sections 3 and 4 we show that a single entropy inequality leads
to undercompressive shock waves and to a multi-parameter family of solutions (one
for each concave-convex or convex-concave characteristic field) and imposing a kinetic
relation we arrive at a unique nonclassical entropy solution to the Riemann problem,;

see Theorems 3.4, 3.5, and 4.3.
1. Shock and rarefaction waves

We consider the Riemann problem for a system of conservation laws
Ou+0:f(u) =0, u=u(z,t)eld, (1.1)

u, x<0,
: (1.2)

u(z,0) = {
where U C IRY is an open set, the function f : 4 — IRY is a smooth mapping, and u;,
u,- are constant states in Y. Since this problem is invariant under the transformation
(z,t) — (0z,0t) (for any 8 > 0), it is natural to search for a self-similar solution
u = u(f), with £ = z/t. In view of (1.1) and (1.2) the solution must satisfy the
ordinary differential equation

-£ u' + f(u)/ =0, u= ’U,({), (13)

and the boundary conditions

Ur, x>0,

u(—00) =u;, u(+00) = up. (1.4)
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Throughout, we restrict attention to values v in a neighborhood of a constant
state normalized to be 0 € IRY and, so, we set U := B(dp), the ball with center 0
and radius §p > 0. Moreover, the flux-function f is assumed to be strictly hyperbolic,
that is, the Jacobian matrix A(u) := Df(u) has N real and distinct eigenvalues,

)\1(11;) <. L < )\N(u),

and basis of left- and right-eigenvectors [;(u) and r;(u), 1 < ¢ < N, respectively.
Recall that [;(u)7;(u) =0 if ¢ # j and, after normalization, we can always assume
that I;(u) 7;(u) = 1. Finally, we assume that o is sufficiently small so that the wave
speeds are separated, in the sense that

sup Aj_1(u) < inf A;j(u) (j=2,...,N).
u€U uel

Here, we are primarily interested in a system of conservation laws (1.1) endowed
with a strictly convex, mathematical entropy pair (U,F):U — IR%. Following the
discussion in Section I-3 we constrain the weak solutions to satisfy the single entropy
inequality

0:U(u) + 0, F(u) <0, (1.5)
which, for self-similar solutions, reads
—¢U(u) + F(u) <0. (1.6)

Shock waves and Hugoniot curves.
The so-called shock waves provide an important family of elementary solutions of
(1.1). Those solutions take only two constant values, u_ and uy € U, and have the

form
u_, <At

b)) =
U(m ) {u.,., T > At,

where ) is called the shock speed. We know from Theorem I-2.3 that (1.7) is a weak
solution of (1.1) if and only if the states u_, u+ and the speed X satisfy the Rankine-
Hugoniot relation

(1.7)

=X (uy —u) + fluy) = flu) =0. (1.8)
To study (1.8), we fix the left-hand state u_ and we study the local structure of the
Hugoniot set consisting of all right-hand states u. satisfying (1.8) for some A.

THEOREM 1.1. (Hugoniot curves.) There exist 61 < &g and € > 0 such that for each
u— € B(81) the following holds. The Hugoniot set can be decomposed into N curves
s — v(s;u) (1 <i < N) defined for s € (—¢,¢€) and depending smoothly on s and
u_. Moreover, we have

2
vi(s;u_) =u_ +sri(u)+ % (Drir;)(u-) + O(s*) (1.9)
and the corresponding shock speed A = X;(s;u_) satisfies
Xi(syu) =X(u-) + % (Vi ri)(u-)

Vi m (1.10)

2

+ % ((V(VM 1) ri) + l;(Dr; ’I‘i)) (u_) + O(s%).

We will use the notation

Hi(u-) = {vi(s;u_)/s € (—5,5)}
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and refer to H;(u—) as the -Hugoniot curve issuing from u_. Note in passing
that, by (1.10), when the genuine nonlinearity condition (Definition I-1.4)

Vi(u-) -ri(u) >0

holds, the shock speed );(s;u_) is an increasing function of s. (If necessary, replace
here £ with a smaller value.)

Since the matrix Df(u_) is strictly hyperbolic for all u_ € B(dp), so is the
averaging matrix

Alu_,uy) = /01 Df(0u_+ (1 —6)uy)dd (1.11)

for all u_,uy € B(dy), where §; < &y is sufficiently small. We denote by A;(u_,u,),

Filu—,uy), li(u_,uy) its eigenvalues and eigenvectors which we normalize so that
Li(u—,uy)Ti(u_,uy) = 1. Observe that A\j(u_,u-) = \;i(u_), etc.

PrROOF. The Rankine-Hugoniot relation (1.8) is equivalent to
(A= A(u—,uy)) (uy —u_) =0, (1.12)
which shows that, for some indexi =1,... , N, the vector (uq—u_) is an i-eigenvector
and A = Aj(u—,u4). In particular, we get
Li(uyug) (uy —u)=0, j#4, j=1,...,N,

which is a nonlinear algebraic system of N — 1 equations for the unknown N-vector
u4. Let us apply the implicit function theorem to the mapping

Uy € U G(U+) = (Zj(u—au+) (U+ - u—))j¢i € IRN—l

in a neighborhood of w4 = u_, which is a trivial solution of
Since the Jacobian matrix at uy = u_,

DG(u-) = (I (U—))j;ei’

has maximal rank, N — 1, there exists a smooth curve of solutions u; of (1.12),
depending smoothly also upon the base value v_. By continuity, when v, — u_ we
have A = A (u—,ug) — Ai(u).

Regarding u, and X as functions of some parameter s, say

uy = vi(s;u_) =v(s), A=N(s;u_)=A(s),
let us differentiate (1.8) with respect to s:
X (8) (v(s) —u) = (A(v(s)) = X(s)) V' (s). (1.13)

Differentiating (1.13) once more we obtain

N(s) (0(s) = u) +2X()v/(s)

= (DA(v(s)) -v'(s)) v'(s) + (A(v(s)) — A(s)) v (s).
Letting first s — 0 in (1.13) we find

(A(0) = A(u-)) v'(0) = 0.

(1.14)
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We already observed that A\(0) = A;(u_), so the above relation shows that v/(0) is a
multiple of the eigenvector ;(u_). Moreover, one can check that v'(0) # 0 so that,
by modifying the parametrization if necessary (replacing s with a s for some constant
a) we obtain

v’ (0) = 7(u-).
Next, letting s — 0 in (1.14) we find
27(0) ri(u) = (DA(u=) - ri(u=)) ri(u-) + (A(v(0)) — Ag(u-)) v"(0).
On the other hand, by differentiating the relation Ar; = A; r; we have
(DA . 7‘,‘)7‘1' = —(A - )\1) D’f‘i i + (V)\1 - 'f‘i) Ti,
S0 )
(2X (0) — VA;(u-)- r,-(u_)) ri(u-)

= (A(v(0)) — Ai(u-)) (v"(0) — Dri(u—)ri(u-)).
Multiplying (1.15) by the left-eigenvector [;(u_), we deduce that

(1.15)

-/

¥ (0) = %V)\i(u_) re(u).

Returning to (1.15) we see that v”/(0) — Dr;(u_)7;(u_) must be an eigenvector. In
other words, for some scalar b we have

v"(0) = Dry(u_)ri(u_) + bri(u-).

By modifying again the parametrization if necessary (replacing s with s+ bs?/2) the
term br;(u_) can be absorbed in the first term of the expansion (1.9).
Differentiating (1.14) once more we obtain

X' (0)ri(u) + 3 (VA -re)(u) (Drari)(u-)
= ((D2A i) ri)ri(u-) + (DA(Dr; 7)) ri(u-)
+2(DAr;)(u") (Drirs) (u=) + (A(u-) = Ai(u-)) v™(0).
On the other hand, by differentiating the relation Ar; = A; r; twice we have
((D?Ary)r)ri(u) + (DA(Drir;)) ri(us) + 2 (DAr)(u_) (Driri) (u-)
= — (A(u=) — Ai(u=)) D(Dri7i) rs(u_) + 2 (Vs - 73)(u_) (Dry i) (u_)
+ (V(VA; 1) - 1) (us) ri(us).
It follows that
(3 X'(0) — (V(Vi-7s) -ri)(u_)) ri(u_)

Vi - 7i)(u-
= (_% (Drir)(u_) + (A(u=) — Ai(u-)) ('U”’(O) — D(Dr;my) ri(u_)).
It suffices to multiply this identity by the left-eigenvector /; to complete the derivation

of (1.10) and, therefore, the proof of Theorem 1.1. O
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Rarefaction waves and integral curves.
We now turn to the discussion of the rarefaction waves. They are constructed from
smooth and self-similar solutions of the equation (1.3), i.e., by solving the equation

(—€+ A(w))u' =0. (1.16)

If (1.16) holds and u'(£) # 0 there must exist ¢ € {1,... ,N} and a scalar ¢(£) such
that (for all relevant values &)

w'(€) = c(€) ri(u(€)), &= Ni(u(€)).

By differentiating the second relation above we obtain 1 = ¢(€) VA;(u(€))-ri(u(€)),
which determines ¢(£) when the genuine nonlinearity condition VA;(u)-r;(u) # 0
holds. When the latter vanishes the corresponding coefficient c(§) becomes infinite.

The range of a rarefaction wave describes the integral curve associated with the
vector field r;. For each given u_ satisfying VA;(u_) - r;(u_) # 0 let us denote by
&€ u{&;u_) the solution of the following ordinary differential equation with pre-
scribed data at £_ := X\;(u_),

’ rl(u)

u = m, U/(g_) =Uu_. (117)

The solution exists and is smooth, as long as the term VA;(u) - 7;(u) does not vanish.
Importantly, the condition € = A;(u(§)) is a consequence of (1.17).

The i-rarefaction waves issuing from u_ are parametrized by their right-hand
speed £, and are defined as follows. For any £, > £_, the i-rarefaction wave
connecting u_ to uy = u(€y;u_) is defined by

u_, Tz <€t
u(z,t) = w(z/tius), _t<z<Ept, (1.18)
U, T2 &4t

which is a self-similar and Lipschitz continuous solution of (1.1). Since £ = X;(u(€))
by construction, we have £, = X\;(u4). We emphasize that £, must be greater than
&_. Indeed, the part £, < £_ of the integral curve cannot be used since it would lead
to a multivalued function in (1.18).

Often, we will be interested only in the range {u(é; u_) /£_ <€< §+} c RV,
for which the parametrization is irrelevant.

THEOREM 1.2. (Integral curves.) There exist §; < &y and € > 0 such that for each
u_ € B(d1) the following holds. For each i € {1, ...,N } the integral curve O;(u-)
defined by

wi =ri(w;), wi(0ju_)=u_, (1.19)

is a curve s — w;(s;u_) defined for s € (—¢,€) and depending smoothly upon u_ and
s, which satisfies

wi(s;u) =u_ +sri(u_)+ % Dri(u_)ri(u_) + O(s%) (1.20)
and

2
Xi{wi(s;u)) = Ai(u-)+s V)\i(u_)-ri(u_)+% (V(VAim3)-7:) (u) +O(s%). (1.21[_—)]



144 CHAPTER V1. THE RIEMANN PROBLEM

Cormparing (1.19) with (1.17), we note that the singularity in (1.17) is due to the
choice of the parameter £ imposed along the integral curve inside the rarefaction fan.
Note also that, later on, it will be convenient to describe the (range of the) integral
curve via a different parameter § and so to replace (1.19) with

w; = (&) ri(wi), wi0ju-) = u-, (1.19°)

where «(3) is a smooth function bounded away from zero. (See also Remark 1.7
below.)

Finally, rarefaction waves of the form (1.18) are constructed as follows. Assuming
that the genuine nonlinearity condition VA;(u~) - 7;(u-) > 0 holds at the point u_,
the wave speed s — \;(w;(s;u-)) is an increasing function, at least near s = 0. It
follows that s — A;(w;(s;u-)) is a one-to-one mapping from (—¢, €) onto a neighbor-
hood of A;(u_). So, the function s — & = A;(w;(s;u—)) admits an inverse denoted
by £ — 0(€). Choosing any value s > 0 and setting vy = w;(s4+;u—) we define the
corresponding rarefaction wave connecting u_ to u; by

U, x <tA(u-),
u(z,t) = wi(o(z/t)us),  th(us) <z <tA(ug), (1.22)
U, z >t A(ug).

Observe that, when VA;(u-) - r;(u—~) > 0, only the part s > 0 of the integral curve
can be used to construct rarefactions. (The formula (1.22) would give a multivalued
function for s < 0.)

Contact discontinuities.
Shock waves associated with a linearly degenerate field are called contact disconti-
nuities and satisfy the following property.

THEOREM 1.3. (Contact discontinuities.) There exist 61 < & and € > 0 such that for
each u.. € B(81) the following holds. Suppose that the i-characteristic field is linearly
degenerate, that is,

V)\i = 0.

Then, the integral curve O;(u—-) and the Hugoniot curve H;(u_) coincide. Moreover,
the characteristic speed along the integral curve and the shock speed along the Hugoniot
curve are constant and coincide.

PRrROOF. Note that along the integral curve s — w(s) = w;(s;u_) the wave speed is
constant since A;(w(s)) = VA;(w(s)) - r;(w(s)) = 0. Then, consider

h(s) = —=Ai(w(s)) (w(s) — u-) + f(w(s)) - f(u-).
Using that w'(s) = r;(w(s)) we obtain
K (s) = —Ai(w(s)) w'(s) + A(w(s)) w'(s) = 0.

Since h(0) = 0 we have h(s) = 0 for all relevant values of s. This proves that the
Rankine-Hugoniot relation (1.8) holds along the integral curve and that the two curves

under consideration do coincide with, furthermore, A;(w(s)) = A;(u—, w(s)). O
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Genuinely nonlinear and linearly degenerate fields.

We now assume that each field associated with (1.1) is either genuinely nonlinear,
that is, Vg - ¢ > 0 after normalization, or linearly degenerate, that is, VAg - r, = 0.
Combining shock and rarefaction waves together, we are able to solve the Riemann
problem (1.1) and (1.2). To ensure the uniqueness of the weak solution, we impose
the entropy inequality (1.5), where (U, F) is a given entropy pair. For a shock wave
of the form (1.7), the entropy inequality (see (1.6)) precisely imposes that the rate of
entropy dissipation be non-positive, that is,

E(u_,uy) :=-X(U(uy) = U(u-)) + Fuy) — F(u_) <0. (1.23)
The following lemma provides the sign of the entropy dissipation
E(s;u-) = E(u_,v;(s;u-))
along the i-Hugoniot curve issuing from u_. (For the notation, see Theorem 1.1.)

LEMMA 1.4. (Entropy dissipation.) Along the i-Hugoniot curve issuing from u_, we
have 5

B(s;u_) = % (rT DU r) (u_) VAs(us) - rs(u_) + O(s%). (1.24)
PrRoOOF. We use the same notation as in the proof of Theorem 1.1. The entropy
dissipation rate is expressed as a function of s:

E(s;u-) == —X(s) (U(v(s)) — U(u-)) + F(v(s)) — F(u-).

On one hand, we have immediately E(0;u_) = F’(O; u-) = 0 and, with some tedious

calculation, one may also get EH(O; u.) = 0 and E’”ﬁ]; u-) # 0. The latter follows
also conveniently from the following integral form of E(s;u_):

E(su_) = /OS VU (v(m))T <_X(s) + A(v(m))) o' (m) dm
- /03 o' (m)T DU (v(m)) (—A(s)(v(m) —u_) + f(v(m)) — f(u_))dm  (1.25)
- /05 o'(m)T D*U(v(m)) (X(m) — X(s)) (v(m) — u_) dm,

where we used the compatibility condition on the entropy pair, i.e., VFT = VUT Df,
and the Rankine-Hugoniot relation (1.8). In view of the Taylor expansions (1.9) and
(1.10) in Theorem 1.1 we deduce from (1.25) that

E(s;u_) = ——% (r] D*Ur;) (u=) (VA -13) (u=) /Os m(m — s) dm + O(s*).

O

‘We now discuss another approach for the selection of shock waves. Consider again
a shock wave connecting u_ to uy at the speed A. Lax shock inequalities

Mlus) 2 A > Miug) (1.26)

can be regarded as a generalization to the system of conservation laws (1.1) of the
inequalities discussed earlier for scalar equations. The following result shows that,
based on (1.26), the part s < 0 of the Hugoniot curve again should be retained. The
proof is straightforward in view of (1.10).
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LEMMA 1.5. Consider the i-Hugoniot curve s + v;(s;u_) issuing from a state u_
and associated with a genuinely nonlinear family. Then, the shock speed s — A;(s;u_)
is an increasing function of s and, for all s < 0, the inequalities

i(us) > X(s5u) > Ni(vi(s;us)) (1.27)
hold, while both inequalities are violated for s > 0. O

In view of (1.24) and relying on the genuine nonlinearity assumption, the entropy
inequality (1.23) holds along the Hugoniot curve if and only if s < 0. On the other
hand, recall that this is consistent with the fact that only the part s > 0 of the
integral curve can be used in that case. (See the discussion after Theorem 1.2.) By
definition, the i-shock curve S;{u.) is the part s < 0 of the Hugoniot curve H;(u_).
We call i-rarefaction curve, R;(u_), is the part s > 0 of the integral curve O;(u_).
We refer to Wi(u-) := S;(u—) UR;(u_) as the i-wave curve issuing from u_. (See
Figure VI-1.)

Combining Theorems 1.1 to 1.3 and Lemmas 1.4 and 1.5 we arrive at the following
important existence result. For clarity in the presentation, we say that a function
u = u(z,t) belongs to the class P if it is self-similar (that is, u = u(z/t)), piecewise
smooth, and made of constant states separated by shock waves or rarefaction fans.
All the existence and uniqueness results in the present chapter are stated in this class,
while a general uniqueness theory is postponed to Chapter X. (See Figure VI-2.)

THEOREM 1.6. (Riemann solver for genuinely nonlinear and linearly degenerate fields.)
Suppose that, in B(d), the system (1.1) is strictly hyperbolic and admits only gen-
uinely nonlinear or linearly degenerate fields. Then, there exist 01 < dg and € > 0
with the following property. To any u— € B(4) and i € {1, ..., N } we can associate
the i-wave curve issuing from u_

Wi(u-) = Si(u-) URi(u_) =: {¥i(s;u_) /s € (—&,8)},
. _ ’l}i(S;U_), s € (_an]a (128)
Vilsiu-) = { wi(s;u-), s€/[0,¢).

The mapping ¥; : (—€,€) x B(61) — IRY admits continuous derivatives up to second-
order and bounded third-order derivatives in s and u—, and satisfies

2
Yi(s;u_) =u_ +sri(u_) + 5 Dri(u_)ri(u_) +O(s). (1.29)

Given any u; and u, € B(d;) the Riemann problem (1.1) and (1.2) admits a unique
self-similar solution (in the class P) made up of N + 1 constant states

w=u u,... ,u =u,

separated by elementary waves. The intermediate constant states satisfy

W e WY, Wl =;(s5w Y,
for some s; € (—¢,£). The states w=' and u? are connected with either a contact
discontinuity (if the j-field is linearly degenerate) or else, when s; > 0, a rarefaction

wave and, when s; < 0, a shock wave satisfying the entropy inequality (1.23) and Lax
shock inequalities (1.26).
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Figure VI-1 : The i-wave curve W;(u_).

ProOOF. The mapping

s=(s1,-.. ,5n) € (=&,6)" = U(s) = Pw(sn) 0. o 9hr(s1)(wr)

is locally invertible. This follows from the implicit function theorem since the differ-
ential at s =0

D¥(0) = (Tk(“l))1gk§N

is an invertible N x N matrix. It follows from the monotonicity property of the
shock speed and characteristic speed along the wave curves that a wave cannot follow
another wave of the same family. This ensures that the Riemann problem cannot be
solved with another combination of elementary waves. Each wave curve is smooth for
s < 0 and s > 0. Furthermore, the first- and second-order derivatives (with respect

to both variables s and u) of the shock and rarefaction curves coincide at s = 0, as
follows from (1.9) and (1.20). a

REMARK 1.7. In Section 2 below, we will use a globally defined parameter u > p;(u)
satisfying Vu;(u) - r;(u) # 0, and we will re-parametrize all the wave curves accord-
ingly, for instance the Hugoniot curve m — v;(m;u_) (keeping here the same nota-
tion), in such a way that

pi(vi(m;u_)) = m.
In this situation, by setting § = m — u;(u_) the expansions (1.9) and (1.10) become

a2

wlmiu-) == a(j-) ri(u-) + oy ((Drir) +bm:) (u-) + OG- (130)
and
Ai(mius) =Xi(u-) + 2—@»—(2—_) (Vi - 73) (u-)
5 (1.31)
- g(sm ((V(V)\i ) 1) F eV - n)(u-) + 0@,

where a, b, and ¢ are smooth and real-valued functions of u_ with, in particular,
a:= Vu; -r; # 0. The formula (1.20) takes the same form as (1.30) while, with the
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same function a as above and for some function d, (1.21) becomes

Xaaws(m; u)) =Xi(u-) + = (2_) (Vs 72 (us)

g2 (1.32)
+ 2a(u_)? ((V(VN' crg) i) +d VX -n-) (u_) + O(3%).

a

Figure VI-2 : The Riemann solution.

2. Classical Riemann solver

In this section we solve the Riemann problem (1.1) and (1.2) when the characteristic
fields are not globally genuinely nonlinear. We restrict attention to systems for which
the genuine nonlinearity condition may fail at one point (at most) along each wave
curve. For scalar conservation laws Lax shock inequalities were found to be sufficiently
discriminating to select a unique solution to the Riemann problem (Chapter II). This
motivates us to proving here, for systems, that Lax shock inequalities (1.26) single
out a unique Riemann solution, even for non-genuinely nonlinear fields. As observed
already with scalar equation, a more discriminating condition (Liu entropy condition
(2.6), below) is necessary only when the genuine nonlinearity fails at two or more
points (along the wave curves). Note finally that for technical reasons we use a
parameter (see (2.3) and (2.4), below) which is globally defined for all wave curves
and does not coincide with the one in Section 1.

We assume that (1.1) is a strictly hyperbolic system of conservation laws and that
there exists a partition {1,... ,N} = JoU J; U J; such that

e j € Jy if the j-characteristic field is linearly degenerate,

e j € Jy if it is genuinely nonlinear,

e j € J, if it is concave-convex or convex-concave, in a sense explained now.
In the latter case, the scalar-valued function

mj(u) == VA;(u) - rj(u)
does not keep a constant sign and we assume that

M; = {u el |m;(u) =0} (2.1)
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is a smooth affine manifold with dimension N — 1 such that the vector field r; is
transverse to the manifold M; and that one of the following two conditions holds:

concave-convex field : Vm;(u)-rj(u) >0, wel, 2.2)
convex-concave field : Vm;(u)-r;j(u) <0, uwel. '
This terminology generalizes the one introduced earlier for scalar equations in Chap-
ter II. The notion is intrinsic, i.e., does not depend on the choice of the eigenvectors,
since changing r; into —r; does not change the sign of Vm; -r;. For scalar equations,
(2.2) constraints the third derivative of the flux-function "’ to be positive or negative,
respectively, and we recover a stronger version of the notions of concave-convex and
convex-concave functions introduced in Chapter II. Observe that for concave-convex
fields m;(u) increases when u describes a wave curve in the direction of the right
eigenvector r; (while we have the opposite behavior in the convex-concave case). The
transversality assumption (2.2) implies that for j € J; the wave speed has exactly
one critical point along each wave curve, that is, VA;(u) - r;(u) = 0 if and only if
m;(u) = 0. In the concave-convex case the root of m;(u) = 0 is associated with a
manimum value of the wave speed (while in the convex-concave case it is associated
with a mazimum value.)

We are interested in solving the Riemann problem with data u; and u, in B(é)
where 0; is small enough. Still, we assume that M; N B(41) # 0 for all j € Jp
so that the problem does not reduce to the genuinely nonlinear case. Furthermore,
to parametrize the wave curves it is convenient to have (for all §) a globally defined
parameter p;(u) € IR which should depend smoothly upon u and be strictly monotone
along the wave curves. Specifically, we assume that a parameter p; is given such that

Vp(u)-ri(u) #0, veld (2.3)

and for all j € Jy

pi(u) =0 ifand only if m;(u)=0. (2.4)
In view of the conditions (2.2), when j € J, there is an obvious choice of p; which
satisfies both requirements (2.3) and (2.4). When j € J; a natural choice is the wave
speed A;, while there is no canonical choice for j € Jy. In summary, from now on, we
assume that the wave curves are parametrized by (u € U)

. /\j(u), ] € Jl.
u](U) o { V)\J(’U,) . 'rj(u), _7 € J2.

Given u_ € Y and j = 1,2,...,N, we recall from Theorems 1.1 to 1.3 that the
Hugoniot curve and the integral curve issuing from u_ are denoted by H,(u-) =
{vj(m;u-)} and O;(u-) = {w;(m; u_)}, respectively. The parameter m along these
curves can be chosen to coincide with the parameter u;, that is,

(v (msu)) =m, g (s (miu_)) = m (2.5)

for all relevant values m. Since p; is strictly monotone along the wave curves thanks
to (2.2), the conditions (2.5) can be achieved by modifying the parameter s intro-
duced earlier in Section 1. Recall that the local behavior of these curves is given by
Remark 1.7.

Theorem 2.1 below establishes a generalization of Theorem 1.6, which was con-
cerned with genuinely nonlinear or linearly degenerate fields only. In both the concave-
convex and the convex-concave cases, we now prove that Lax shock inequalities (1.26)
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select a unique solution to the Riemann problem. For more general fields Liu en-
tropy criterion is necessary and imposes that, along the Hugoniot curve H;(u_),
the inequality

X (un,vymius)) > Xy(us,uy) (26)
holds for all m between p;(u_) and p;(uy). In other words, the shock speed for m
in the above range achieves its minimum value at the point u,. This condition is a
natural extension to systems of Oleinik entropy inequalities (see (II-1.6)).

We can now state the main existence result in this section.

THEOREM 2.1. (Classical Riemann solver.) Suppose that (1.1) is strictly hyperbolic
in B(d) and each j-field is either linearly degenerate (j € Jy), genuinely nonlinear
(j € Jv), or else is concave-convex or convex-concave (j € Jp). Then, there exist
01 < g and € > 0 with the following property. For u_ € B(8;) and j € Jo the j-wave
curve of right-hand states connected to u_ by a combination of j-elementary
waves,
Wi (u-) = {dh;(m;u_)}
(m describing some open interval), is continuously differentiable with bounded second-
order derivatives in m and u_, at least, and satisfies
m = p(u) )
Yi(myus) = um + ——=——rj(u-) + O(m — p;(u-))". (2.7)
) (Vﬂj "l"j)(’l_t_) J ( J )
Given any u; and u, € B(01), the Riemann problem (1.1) and (1.2) admits a
unique piecewise smooth solution (in the class P) made of N + 1 constant states

w=ul ul,.. . N =u,

separated by j-wave packets. The state u’ is connected to u’~' by either a contact
discontinuity (if 7 € Jy), or a shock or rarefaction wave (if j € Ji), or else (if
§ € Jo) by (at most) two waves: either a shock from vi ™1 to some intermediate state
w12 followed by a rarefaction connecting to u!, or a rarefaction from w/~1 to some
state ui—Y/2 followed by a shock connecting to u’. Each shock wave satisfies Liu
entropy criterion and Lax shock inequalities, any of these being sufficient to uniquely
characterize the solution. Furthermore, the Riemann solution depends continuously
upon its initial data in the sense that all of the states w/~'/% and uw/ converge to u;
when u, tends to u;.

The second-order derivatives of wave curves for non-genuinely nonlinear fields are
not continuous, in general. In the course of the proof of Theorem 2.1 we will explicitly
construct the wave curves Wj(u—) for j € Jo. From now on, we fix a left-hand state
u_ satisfying (for definiteness) p;(u—) > 0. Concerning the integral curves O;(u_) it
follows from the expansion (1.32) and the assumption (2.2) that:

LEMMA 2.2. (Characteristic speed along the integral curve.) Let j € Jp and u_ be
given with pj(u_) >0 and consider the integral curve O;(u_) parametrized by the
map m — w;(m;u-).
e In the concave-convez case, the j-characteristic speed along the integral
curve
m s Ay (s (miu_))
is a strictly convex function of m achieving its minimum value at m = 0. In
particular, it is decreasing for m < 0 and increasing for m > 0.
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o In the convez-concave case, the characteristic speed \j(w;(m;u-)) is a strictly
concave function of m achieving its maximum value aft m = 0. In particular,
it is increasing for m < 0 and decreasing for m > 0.

Proor. With (1.32) in Remark 1.7 we have at m = p;(u_)

5 _ 1 (V2 -75) (u-)
—B—n_"ﬁ)\j(wj (m; u—))lm=uj(U—) - W (1 +du-) Wj)

which is positive, since V; - r; vanishes on the manifold M; and
Vi -y =V (VA r;)-r;

keeps a constant sign. (]

In view of Lemma 2.2 we can define the part of the curve W¢(u_) associated with
rarefaction waves, as follows. Given a point uy € O;(u_), in order to construct a
corresponding Lipschitz continuous, rarefaction wave u = u(§) of the form (1.22) it is
necessary that the wave speed £ — \;(u(§)) be monotone increasing throughout the
rarefaction fan. In the concave-convex case, this condition selects the part m > p;(u..)
of Oj(u_). In the convex-concave case it is necessary that m < p;(u_) but the desired
monotonicity property is violated as one reaches M; along the integral curve. Thus,
this geometric restriction selects the part 0 < m < p;(u—) of the integral curve.

Now, to pursue the construction of the wave curve ch(u_) we rely on the Hugo-
niot curve H;(u—). The qualitative properties of the characteristic speed along
H;(u-) are identical to those stated in Lemma 2.2 for O;(u_). The new features
are concerned with the shock speed. (See Figure VI-3 for a graphical representation.)

LEMMA 2.3. (Characteristic speed and shock speed along the Hugoniot curve.) Let
j € Ja and u_ be given with p;j(u_) > 0, and consider the Hugoniot curve H;(u_)
parameterized by m — v;(m;u_). In the concave-convexr case the j-characteristic
speed along the Hugoniot curve

. Ay (v (ms )
is a strictly convex function. On the other hand, the j-shock speed along the
Hugoniot curve
m o Ny(mu_) == X (us, vy (ms u_))

is a strictly convex function, which either is globally increasing or else achieves a
minimum value at a point

i (u-).
Moreover, at this critical value the characteristic speed and the shock speed coincide:

N(mius) = Ni(vs(mius)) et m=pi(us) (2.8)
and, for some smooth function e = e(u_) > 0,
Bt (L (Y5 u) = ey (v (W (us )y u)) (2.9)

When p(u-) = 0, the same properties hold with now p,; (u-) =0. In the convez-

concave case, all the signs and monotonicity properties are reversed.
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1) 1) 0 ()

Figure VI-3 : Characteristic speed and shock speed.

In the following, we assume that the shock speed admits a minimum value. (The
case of a globally increasing shock speed is simpler and can be easily deduced from the
present discussion.) The proof of Lemma 2.3 (cf. the key formula (2.11), below) will
imply that in the concave-convex case the characteristic speed and the shock speed

satisfy
Aj(msus) — X\ (vi(m;u- m Tz, pi(ue
ij( ’ ) AJ(’UJ(ma ))>O’ € (/.:J(’U, ))/‘Lj( ))> (210)
Aj(mius) = Aj(v(myu-)) <0, m < pi(u-) or m > pj(u-).

PrROOF. As in Lemma 2.2, the statement concerning the characteristic speed is a
direct consequence of (2.2). With (1.32) (which also holds along the Hugoniot curve)
in Remark 1.7 we have at m = p;(u_)

9? 1

V)\j ‘T U_—
W)‘j(“i(m? U )iy () = m ( g___ﬂg)’

(Vs - 75)(u-)
which is positive since V; - r; vanishes on the manifold M; and Vy; - r; keeps a
constant sign. B 3

Similarly, using the notation v(m) := v;(m;u-) and A(m) := Aj(m;u-), the for-
mula (1.31) in Remark 1.7 gives

L m _ el (V1) (u-)
6m2>‘( im=py(u_) = Vo)) (1/3+ (u-) (Vi 'Tj)(u'-))’

which gives the first statement for the shock speed. On the other hand, returning to
(1.13) and multiplying this identity by [;(v(m)) we obtain

X (m) 1 (v(m)) (v(m) — u_) = (A;(v(m)) = X(m)) ;(v(m)) v'(m).
By relying on the expansion (1.9) it follows that
mX (m) = d(m) (\;(v(m)) — X(m)), (2.11)

where d = d(m) is a positive function bounded away from 0. Clearly, (2.8) follows
from (2.11). Finally, (1.13) at m = ,ug-(u_) yields us

0= (A(w(p(u-))) — Mpd(u-))) o' (1 (u-)),

1+ c(u-)
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which yields (2.9). This completes the proof of Lemma 2.3. O

PrROOF OF THEOREM 2.1. Based on Lemmas 2.2 and 2.3 we can now construct
the wave curves explicitly. We treat first the concave-convex case (represented in
Figure VI-4). Given u_ with p;(u—) > 0, we already pointed out that the part
m > p;(u_) of the wave curve coincides with the integral curve O;(u_) and that the
corresponding solutions are rarefaction waves. On the other hand, for m decreasing
from p;(u—), the wave curve coincides locally with the Hugoniot curve H;(u_) and
the corresponding solutions are shock waves. This is correct as long as the entropy
condition is satisfied. Relying on the property (2.10) which compares the character-
istic speed and the shock speed along the Hugoniot curve, we see that Lax entropy
inequalities (1.26) hold until we reach the value m = /4?- (u—) only, at which point the
equality holds in the right-hand side of (1.26). Furthermore, since the shock speed
increases as m decreases from H?- (u-), Liu entropy criterion (2.6) is also violated ex-
actly for m < ,u?- (u_). We conclude that the wave curve Wf(u_) coincides with the
part m € (u? (u-), p;j(u-)) of the Hugoniot curve, and no other point on this curve is

admissible.
To extend the wave curve from the point u! := v; (ug(u_);u_), we consider

the integral curve (’)j(uh_). Any point uy € O;(ul), with p;(uy) < ,ug.(u_), can
from " to uy. Note that the rarefaction is aftached to the shock since the shock
speed \; (HE (u-);u-) coincides with the lowest speed of the rarefaction fan, A; Wh).
(See (2.8).) Note also that the shock connecting u_ to u!_is a right-contact in the

sense that the propagation speed of the shock coincides with the characteristic speed

of its right side. Finally, the wave curve is continuously differentiable at the point u?
as follows from (2.9).

be connected to u_ by a shock wave from u_ to u? followed by a rarefaction wave

We now turn to the convex-concave case. For m increasing away from p;(u_), the
shock speed is decreasing and both Lax shock inequalities and Liu entropy criterion
hold. Therefore, the wave curve contains the part H;(u_) for all m > p;(u—). On
the other hand, for m decreasing from p;(u_) the wave curve coincides with the
integral curve until m reaches the manifold, that is, m = 0. Values m < 0 cannot
be attained using only a rarefaction wave since the characteristic speed is increasing
for m decreasing from m = 0. This would violate the geometric requirement that the
wave speed be increasing inside a rarefaction fan. To reach points m < 0 we proceed
as follows. Take any point u4. € O;(u_) having 0 < p;(u4) < p;(u-) and define u'_‘,r
by the two conditions

€ Hi(uy), ph(ul) = psuy). (2.12)

Then, we connect u_ to ui using first a rarefaction from u.. to u, followed by a shock

wave connecting to uﬂ_ By construction, the shock is attached to the rarefaction on
the left and is called a left-contact.

This completes the construction of the waves curves. The existence and unique-
ness of the Riemann solution follow from the implicit function theorem, as was dis-
cussed in the proof of Theorem 1.6. The proof of Theorem 2.1 is completed. O
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Figure VI-4 : The j-wave curve in the concave-convex case.
Finally, we prove some technical lemmas, say for concave-convex fields, which will
be useful later on in this course.

LEMMA 2.4. (Regularity of the function u?) The function u depends smoothly upon
its argument and

Vuh-

1
i Ti~ T Vuj-r; near the manifold M;. (2.13)

In particular, (2.13) implies that HE’ <0.

Proor. The regularity property follows from the implicit function theorem applied
to the mapping (see the condition (2.8))

Aj(m; u) = Xj(v(m; u))
m — i (u)

H(m;u) = ;
Indeed, H(m;u) is smooth for m # p;(u) and, relying on the expansions in Re-
mark 1.7, we see that H(m;u) extends continuously at m = p;(u). We have also

H (,ug (u);u) = 0 by definition and

) — (VA -75)(w)
H(m’u)—*2V(V>\J ;) -7 (w)
1
+ (m - ps(w) - sme T oW (V7))
+O(m — pi(w)>.

Hence at m = p;(u) we find

o (o)) = - +O(1) (V- 73) (W) 0.

(V(V/\ ;)" TJ) (u)

To derive (2.13) along the critical manifold we use the expansion of the shock
speed (1.31) and the expansion of the characteristic speed (similar to (1.32)) along
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the Rankine-Hugoniot curve. The critical value 5(u) = ug- (u) — p;(u) satisfies

=)+ % (VA -rs) (w) + ;a(zg)z ((V(W\j +r5) ) (u) +) +o.,

where we neglected high-order terms. Computing the second-order derivative in the
direction r; and letting the state u approach the manifold M;, we obtain

3-r:\u §-15)(u)?
Qﬁg() (V(VX; - r5) - r5) (w) + (_v“@(—%é_)— (V(VA; - 15) - 5) (w)
_ (V8-ry)(w) (V(VA; rj) ri)(w) + (—w (VYA - 15) - 15) (w),

a(u)
which yields

2a(u)

(V5 rj)(u) = —(3/2) (Vs - 75) ()
and, therefore, the identity (2.13) since V§.r; = V,ug -1 — Vi - ;. This completes
the proof of Lemma 2.4. O

To any two states u_ and uy with uy = vj(m;u_) € H;(u—) we will associate a
third state

o3 (uyus) = us 1= vy (3 u_) € Hy(u_)
where the component y = pf(m;u_) is determined so that the speed of the shock

connecting u.-. to u, coincides with the speed of the shock connecting u_ to uy, that
is,

A (u—, uy) = Xj(u—, uy).
LEMMA 2.5. The function pj depends smoothly upon its arguments and

wi(m;u) ~ —pji(u) —m  near the manifold M;. (2.14)

ProOOF. The arguments are similar the the one in the proof of Lemma 2.4, so we only
sketch the proof. Using the expansion of the shock speed we have

m — pj(u m — pg(u))?

,\j(u)+#;§)(vxj.rj)(u)+£—67’(‘;§zl((V(v,\j.rj)-rj)(u)Jr...)+...

g (m; u) — g (w) (
2a(u)

1 LB (W) 1))+ )

= )\j (U) + V/\] . rj)(u)

which, since u;;(u) = (VA -75)(u), yields

W_—% ((1/2) i) + (1/6) (m — ) + 53 (ms ) = 1)) ++.. =0,
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3. Entropy dissipation and wave sets

In the following two sections we study the Riemann problem (1.1) and (1.2) for non-
genuinely nonlinear systems endowed with a strictly convex entropy pair (U, F). In
order to encompass all possible diffusive-dispersive limits compatible with this entropy
(see the discussion in Chapter I), we investigate the consequences of a single entropy
inequality for the solutions of the Riemann problem. Not surprisingly, the class of
admissible solutions will turn out to be larger than the one selected in Section 2 by
Lax entropy inequalities or Liu entropy criterion. In particular, the solutions of the
Riemann problem may now contain “nonclassical” shocks.

Nonclassical shocks and entropy dissipation.
Generalizing a notion introduced in Chapter II for scalar equations we set:

DEFINITION 3.1. A shock wave (1.7) is called a nonclassical shock if it satisfies the
single entropy inequality (1.23) but not Lax shock inequalities (1.26). It is called a
classical shock if (1.23) holds but (1.26) is violated. O

For shocks with sufficiently small amplitude, the wave speeds associated with
different wave families are totally separated. Therefore, our analysis can focus on
each wave family separately. It will be useful to introduce the following terminology
before imposing any entropy condition at this stage. A j-shock wave connecting a
left-hand state u_ to a right-hand state w4 can be:

o a Lax shock, satisfying

M) 2 X (unyup) 2 Ayus), (3.1)
¢ a slow undercompressive shock :
Xj(u_,u+) < min()\j(uﬁ),/\j(uﬂL)), (32)
¢ 3 fast undercompressive shock :
Aj(u—,ug) > max(Aj(u), Aj(uq)), (3.3)

e or a rarefaction shock :
A=) < Xy ) < Ag(us). (3.4)

Let u_ such that p;(u_) > 0. Recalling Lemma 2.3 which describes the properties
of the shock speed along the Hugoniot curve H;(u—), we denote by ,uj—h(uJ the point
of H;(u_) such that

N7 um)yun) = Ai(us), oy (un) < p(us), (35)

whenever such a point exists. For simplicity in the presentation we assume that both
points ME (u—) and u;h(u_) exist, since the present discussion would be much simpler

otherwise. Note in passing that
- _ -l b
GloG' =G oGl =1id,
where Gi(u_) i= v (u_)yu-),  G7Huo) 1= y(u5 uo )y o).

(3.6)

This is easily checked using the (symmetric) form of the Rankine-Hugoniot relation.
(With the notation introduced in Chapter II the property (3.6) represents a extension
to systems of the property o o= 8o ¢ = id satisfied by scalar equations.)
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B

Note also that the shock wave connecting u_ to u
b

is a right-contact, while the shock

connecting u_ to u_" is a left-contact.

LEMMA 3.2. (Classification of shock waves.) Let u_ be given with p;(u-) > 0 and
consider a point uy on the Hugoniot curve H;(u-), say uy = vj(m;u-) with m =

pj (u4).
e In the concave-convez case, the shock connecting u_ to uy is

e a rarefaction shock if m > pj(u-) orm < ,uj_h(u_),
e a Laz shock if m € [ug (u_), pj(us)], (3.71)

e an undercompressive shock if m € [u;h(u_), p,g (u-)).

In the second instance, the shock also satisfies Liu entropy criterion.
o In the convex-concave case, the shock connecting u_ to uy is

o a Lazx shock if m > p;j(u_) orm < ;uj"h(u_),
o q rarefaction shock if m € (/1,5 (u_), i (u_)), (3.7ii)

e an undercompressive shock if m € (,uj—h(u_), ,ug (u-)].
In the first instance, the shock also satisfies Liu entropy criterion.

Proor. Consider for instance the concave-convex case, the other case being similar.
According to Lemma 2.3 the function m — X;(m;u_) — Aj(v;{m;u-)) is positive
g»(u_) <m < pi(u) and~negative for m < ug(u-) or m > pj(u—). On the
other hand the function m — X;j(m;u_) — Aj(u_) is positive for m < uj_h(u_) or

for

m > p;(u—), and negative for m € (uj—h(u_),uj(u_)). The classification follows
immediately from these two properties. a

Next, we investigate the sign of the entropy dissipation E (see (1.23)) along the
Hugoniot curve. (See Figure VI-5.)

LEMMA 3.3. (Entropy dissipation.) Let u_ be given with u;(u—) > 0 and consider the
Hugoniot curve H;j(u_). Consider the concave-convex case (respectively the convez-
concave case). _
(i) The entropy dissipation s — E(m;u_) := E(u_,vj(m;u_)) vanishes at p;(u_)
and at @ point
b —
Hio(u-) € (g "(u-), pi(us).
The entropy dissipation is decreasing (resp. increasing) for m < ,ug. (u-), in-

creasing (resp. decreasing) for m > u? (u_), and achieves a negative mazimum
value (resp. a positive mazimum value) at the critical point of the wave speed
p(us).

(il) A shock satisfying the entropy inequality (1.23) cannot be a rarefaction shock.
A nonclassical shock is undercompressive and satisfies

me (o(u-) Wi(u-))  (resp. m € (7" (u), wo(u-))).

(iii) Any shock satisfying Liu entropy criterion (2.6) also satisfies the entropy in-
equality (1.23).
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We refer tou_ +— ugo(u_) as the zero-entropy dissipation function associated
with the j-characteristic field. In view of Lemma 2.3 we can also define the companion
function Ng'o by

Wio(u-) < ph(u-) < pho(uo), N(ubo(u-)sus) =X (Hho(u-)iu-).  (38)

It can be checked using the implicit function theorem (along the same lines as in
Remark II-4.4 and Lemma 2.4) that Ng'o and Ng'o are smooth mappings.

Proor. By (1.25) in the proof of Lemma 1.4 the entropy dissipation has the explicit
form

Blmus) = [ {ylmsu) =K} g5(6u-)ds (39)
()
where
dv? .
gi(tiu-) = — () DU (v; (5 u-)) (05 (k) —u-). (3.10)

Using the expansion (1.30) along the Hugoniot curve and the strict convexity of U
(implying that 77 D2Ur; > 0), we see that

(= pi(u-)) gs(tus) >0, t# py(u).

When Liu entropy criterion (2.6) holds, A;(m;u_) — A;(t; u-) is non-positive and
it follows that the entropy dissipation is non-positive. This proves the property (iii)
of the lemma.

When, instead, the shock is a rarefaction shock (see (3.4)), the properties stated
in Lemma 2.3 show that

Ai(msus) = N(tus) >0, ¢ € [u;(us),m]. (3.11)

Combining (3.9)-(3.11) shows that the entropy dissipation is positive for rarefaction
shocks. This proves the property (ii).
Finally, we establish the property (i) by differentiating (3.9):

0 = m 0 ~
%—E(m,u_) = /W(u_) %Aj(m,u_)gj(t,u_)dt,

which relates the entropy dissipation and the shock speed:

D Bmiu-) = Gmiu) o= Xymius), Glmiu) = [ "Z) giltu_)dt, (3.12)
with
C1|m — pj(u-)]? < G(m;u-) < Calm — py(u-)? (3.13)

for some positive constants C; and Cs.

In view of (3.12), the entropy dissipation reaches a critical value when the shock
speed has a critical point and at the point u_. From the properties of the shock speed
(Lemma 2.3), it follows that E(m;u_) is decreasing for m < pg.(u_) and increasing
for m > ME-(TL)- On the other hand, from its definition it is clear that E(m;u_)
vanishes at m = p;(u_), the values m < u}h(u_) correspond to rarefaction shocks
for which we already checked that the entropy dissipation is negative. Therefore there

exists a unique value y%o(u_) in the interval (,uj"h(u_), ug-(u_ )) where the dissipation
vanishes. This completes the proof of Lemma 3.3. O



3. ENTROPY DISSIPATION AND WAVE SETS 159

x
()
Figure VI-5 : Entropy dissipation in the concave-convex case.

Nonclassical wave sets for general characteristic fields.

We now construct a multi-parameter family of solutions to the Riemann problem (1.1)
and (1.2), based on the single entropy inequality (1.5). For each j-wave family we
define here a “wave set” consisting of all states reachable from a given left-hand state
using only admissible j-waves.

Consider a j-wave fan with left-hand state u_ and right-hand state u with
pi(u—) > 0 and j € J. (Recall that the wave curve was already constructed in
Section 1 when j € Jy U J;.) We consider first a concave-convex field. Recall (Sec-
tion 2) that the j-wave fan using only classical waves contains

(a) a rarefaction from u_ to u € Oj(u_) if p;(u) > p;(u_),
(b) or a classical shock from u_ to u € H;(u_) if p;(u) € (u? (u_), pj(us)),

(c) or else a classical shock from u_ to u? := vj(,ug-(u_);u_) followed by an

attached rarefaction connecting to u € (’)j(ub_) if pj(u) < ,LLE.(u_).
In the special case that p;(u_) = 0, the j-wave curve is the j-integral curve issuing
from u_. This completes the description of the classical j-wave curve Wy (u_).
Given a left-hand state u_, the set of all states that can be reached using only

j-waves is called the nonclassical j-wave set issuing from wu_ and denoted by
X;j(u_). (See Figure VI-6.)

THEOREM 3.4. (Nonclassical j-wave set — Concave-convex field.) In addition to the
classical one, the j-wave fan may contain a nonclassical j-shock connecting u_ to
some intermediate state uy € H;(u-) with p;(us) € [ug-o(u_),ug-(u_)) followed by
(a) either a non-attached rarefaction conmecting uy to u € O;(uy) if pj(u) <
Hj (u+)7
(b) or by a classical shock connecting uy to u € H;(uy) if pi(u) > pj(ug).
This defines a two-parameter family of right-hand states u which can be reached from
u_ by nonclassical solutions.
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We now consider a convez-concave characteristic field. Recall from Section 2 that
the j-wave fan using only classical waves contains

(a) a classical shock connecting u_ to u € H;(u_) if either p;(u) > p;(u_) or
wi(w) < gy (uo),

(b) or a rarefaction connecting u_ to u € O;(u-) if p;(u) € [0, p;(u)],

(c) or a rarefaction wave connecting u_ to a point u,, followed by an attached
classical shock connecting to u € H;(u4) with ug.(u) = pi(ug), if pi(u) €
(p;n(u_), 0). (In this latter case, the set of u does not describe a rarefaction
or shock curve.)

This completes the description of the classical j-wave curve W7 (u_).

THEOREM 3.5. (Nonclassical j-wave set — Convex-concave field.) The j-wave fan
may also contain
(a) a rarefaction to uy € O;(u_) with pj(us) € (0, pu;(u-)), possibly followed by
a non-attached nonclassical shock which connects the intermediate state uy to
u, if pj(u) € (u;h(u+),ug~0(u+)]; (in this case, the set of u does not describe
a rarefaction or shock curve);
(b) or a classical shock to uy € Hj(u_) with p;(uy) > p;(u-), followed by a
nonclassical shock connecting to u € H;(uy), if pj(u) € (u}h(u+), ugo(u+)].
This defines a two-parameter wave set Xj(u-) of right-hand states u which can be
reached from u_ by nonclassical solutions.

ProOOF oF THEOREM 3.4. To construct the wave set X;(u_) for u- € Y and j € J,
in the concave-convex case and we proceed as follows. Consider a point u_ away from
the manifold with p;(u_) > 0. The construction of the wave curve will depend on
the values u';o(u_) < ,uE. (u-) < ugo(u_) introduced earlier.

Recall first the construction of the classical part of the wave set. Considering first
the region p;(u) > p;(u_), we see that the state u_ can be connected to any point
on O;(u_) by a rarefaction, since the wave speed ); is increasing for y1;(u) increasing
(Lemma 2.2). Therefore, the wave set X;(u_) coincides with the rarefaction curve
0;(u-) for py(u) > py(u_).

For p;(u) decreasing from p;(u_) the shock speed is decreasing as long as p;(u)
remains larger than the critical value ,ug (u-) (Lemma 2.3). Therefore, all of the points

in the Hugoniot curve H;(u_) with p;(u) € [N;(U—),Mj (u_)] can be reached from
u.. by a classical shock satisfying Lax shock inequalities and Liu entropy criterion.
According to Lemma 3.3, the entropy dissipation remains non-positive in the whole
range p;(u) € [,u;O(u_),uj (u-)], thus the points of the Hugoniot curve H;(u_) with
pi(u) € [/L;O(u_), ,ug- (u—)) can also be reached from u_ but, now, using a nonclassical
shock. These are the only admissible solutions with a single j-wave issuing from u_.
Consider now an admissible solution containing a single wave joining u_ to a
state uy. It is not difficult to see that if p;(uy) > ,ug-(u_) no further j-wave can
be constructed from u4 which would travel faster than the first wave. So, consider a
nonclassical shock joining u_ to a state u4. with p;(u) € [ugo(u_), pg(u_)) Accord-
ing to Lemma 2.3, the wave speed is increasing when p; decreases from pj(uy) <0,
so uy can be connected to any point u = us in the rarefaction curve O;(uy) with
pi(uz) < pj(uy). Observe that the nonclassical shock is not attached to the rarefac-

tion fan, i.e., B
X (s up) < Aglus). (3.14)



3. ENTROPY DISSIPATION AND WAVE SETS 161

This describes all of the solutions containing a nonclassical shock followed by a rar-
efaction. It is not difficult to check that no further j-wave may follow the rarefaction.

Figure VI-6 : Wave set in the concave-convex case.

Consider again a nonclassical shock joining u_ to u4 with

wi(ug) € [Wio(uc), pd(us)).

The shocks with small strength issuing from u, have a larger speed than that of the
nonclassical shock, i.e., A\j(ut,ug) & Aj(uy) > Xj(u_,uy), for all states uy close to
u4. Hence, the speeds have the proper ordering and uy may be connected to any
ug € H;(ug), at least in the small. Such a shock is also admissible when p; increases
(according to Lax shock inequalities and Liu entropy criterion) since the wave speed
is decreasing when p; increases (Lemma 2.3). This construction can be continued,
for u4 given, until ug violates either of the two conditions:

XJ‘('u'+7u2) > Xj(u—au-f-)a (3.15)

E(ut,ug) < 0. (3.16)

Actually, as p1;(ug) increases from p1;(u4) one reaches a maximum value, in which

equality holds in (3.15) while the shock is still classical (and therefore (3.16) still

holds). To check this property, consider the graphs of the two functions h(m) :=

Aj(u—,vi(m;u_)) and k(m) = X;(us,v;(m;uy)). By symmetry of the Rankine-
Hugoniot relation one has Aj(u4,u-) = X;j(u_,uy), so

o = (s () = k(s (u-)). (3.17)

In view of Lemma 2.3 and (2.10), the two graphs must intersect at exactly one point

ml in the interval (1j(uq), mj(u_)). We define u} by the conditions pi(ub) = md

and u} € H;(uy).
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On the other hand, let us consider the point ug € H;(uy) satisfying A;j(uy, ug) =
Aj(u—,u4) = 0. From the Rankine-Hugoniot relations

o (ug —us) + fus) = flus) =0
and

—o (uf —uy) + f(u) - f(uy) =0,
we deduce that

which proves that ; (u_,ug) = ¢ and ug € H(u-

—o (uf —u-) + f(uf) - f(u2) =0,
)-
From the above discussion we conclude that ug =

u} and
h(mb) = k(mb) =0, ub e H;(u_). (3.18)

Then, it follows also that (3.15) holds for all p;(ug) < mg, and the equality holds

in (3.15) at the critical value ug. Moreover, since mg < ,u,g.(u_), the shock speed is

decreasing on the interval (u;(u4), mg) and any shock from uy to ug (with p;(ug) <
mg) satisfies Liu entropy criterion.

We have the inequalities p;(u4) < p,?. (u-) < mg < pj(u—). As p;(uy) increases,
both p;(u4) and mg approach the limiting value ME‘ (u—). As p;(uy) decreases, both
pi(uy) and mg approach the limiting value ,u';-o(u_), while mg approaches a limiting

value which we denote by ugo(u_). Finally, one can also check from the properties of
the wave speeds, that no third wave can follow a two-wave fan. This completes the
proof of Theorem 3.4. a

ProOOF OF THEOREM 3.5. For u_ € M; it is not hard to see, using the properties
(3.7ii), that W;(u_) coincides with the Hugoniot curve H;(u_). This is because
the wave speed is decreasing when moving away from u_ in either direction. The
construction is complete for u_ € M;.

Consider the case pj(u—) > 0 and recall first the construction of the classical
part of the wave set. For pu; > p;(u_) the state u_ can be connected to any point
on H;(u—_) since the wave speed is decreasing for u; increasing. For p; < pj(u-),
the wave speed is, locally, increasing for p; decreasing. So u_ can be connected to a
point on O;(u_) by a rarefaction. This remains possible until y; reaches the value 0.
It is also possible to connect any point uy € O;(u_) satisfying p;(us) € [0, pj(u-)]
to a point ug € H;(u4) provided

Aj(ug, ug) = Aj(uy). (3.19)

This construction covers the range u; € [,uj_h(u_), O]. It is also possible to connect u_
directly to a point u € H;(u—) with p;(u) < ,uj'h(u_), since the shock speed in this
range satisfies Liu entropy criterion. This completes the construction of the classical
wave curve We(u.).

We now describe all nonclassical solutions with two j-waves. Consider an admis-
sible one-wave solution from u_ to u4. Suppose first that p;(us) € (0, pj(u-)) and
u4+ € Oj(u-). Then, one can connect uy to up € H;(u;) by a shock provided both
conditions

Aj(usg,u2) 2 Aj(uq), (3:20)
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E(uy,u3) <0 (3.21)

hold. From the properties of the entropy dissipation (Lemma 3.3) we know that (3.21)
is equivalent to

pi(ug) < pho(uy)  (or p(uz) > py(uy)).
In view of the graph of the shock speed, (3.20) reads
1y () < pag(ua) < payuy)-
Since we always have ug-o(u+) € [p;h(u+),ug (u4)], it follows that the admissible
interval in the case under consideration is p;(ug) € [uj_b(qu), ugo(uJ,)]. Moreover
such a shock is classical only when p;(ug) < uj_h(u+), that is, only when p;(u2) =
py b (uy).

Suppose now that p;(uy) > p;(u—) with uy € H;(u—). The, one can connect u,
to a point uy € H;(u4) provided

X u2) 2 X (uc,u) (3.22)

and

E(ug,ug) < 0. (3.23)
The condition (3.23) is equivalent to saying that p;(ug) < ugo(u+) (or p;(ug) >
pi(uy)). As p;(ug) decreases from ,ugo(qu), the speed \;(uy,usz) satisfies (3.22)
initially, decreases, and eventually reaches the value A;(u—,u4). Since uy € H;(u_)
and up € H;(uy) the same argument as in the concave-convex case shows that for
that value of p; one has up € H;(u_).

This completes the description of the two wave patterns and, therefore, the proof
of Theorem 3.5. a

4. Kinetic relations and nonclassical Riemann solver

In view of Theorems 3.4 and 3.5 the nonclassical wave set X;(u_) is a two-dimensional
manifold when 7 € J,. It is our objective now to select the nonclassical wave curve
Wi¢(u-) within the wave set X;j(u—). In view of Theorems 3.4 and 3.5 one parameter
should be prescribed for each non-genuinely nonlinear wave family. Generalizing the
approach in Chapter II for scalar conservation laws, we postulate that for all u.
and j € Jy a single right-hand state vy can be reached from u_ with a nonclassical
shock. As already pointed out for scalar conservation laws, the kinetic function to be
introduced now is a given “constitutive function” which represents certain small-scale
effects neglected at the hyperbolic level of modeling. For definiteness, we restrict
now attention to concave-convez fields. (The results in this section extend to convex-
concave fields by relying on Theorem 3.5 instead of Theorem 3.4).

DEFINITION 4.1. For each j € J; a kinetic function for the j-characteristic field is
a Lipschitz continuous mapping ,u’;- : B(61) — IR satisfying
Who(u) < p(u) < ph(w),  pi(w) >0,

4.1
i (u) < p(u) < pho(u),  pi(u) <O )
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We shall say that a solution u = u(z,t) (in the class P) satisfies the kinetic relation
associated with the kinetic function ug- if for every j-nonclassical shock the right-hand
state uy is determined from the left-hand state u_ by

uy =vj(myu_) withm = u';- (u-). (4.2)
O

To the kinetic function we shall associate its companion function ug(u) by

Ni(uo,uh) = X (uz, ),

b #

4.3
where v’ := vj(,u';-(u_);u_), ufy = vj(ug.(u_);u_). (43)

It can be checked, by the implicit function theorem for Lipschitz continuous mappings,
that M§~ (u) exists and depends Lipschitz continuously upon its argument. From the
discussion in Chapter II we know that an additional constraint is needed to avoid
selecting the classical solution.

DEFINITION 4.2. We shall say that a weak solution u satisfies the nucleation cri-
terion associated with the kinetic function u‘]’- if for every classical shock connecting
u— to uy we have

ph(us) < pi(uy) < pj(u)  when py(u) >

0 (4.4)
i(u) < py(ug) < pbus)  when py(u_) < 0.

O

THEOREM 4.3. (Nonclassical Riemann solver.) Suppose the system (1.1) admits lin-
early degenerate, genuinely nonlinear, and concave-convex fields.

(a) For j € Jo consider a (Lipschitz continuous) kinetic function le’- (satisfying
(4.1)). Then, for each u_ € B(d1) the kinetic relation (4.2) and the nucleation
criterion (4.4) select a unique nonclassical j-wave curve Wi¢(u_) within
the wave set Xj(u-). When pj(u_) > 0 it is composed of the following four

pieces:
O;i(u-), p;(u) 2 pj(u-),
s e (us) < plu) < py(us),
Wre(u_) = Hj(u b) ui( ) < pj(u) u;(u )
Hi(uh), wj(u-) < pi(u) < piu-),
O;(u),  n(w) < ph(us),

where uz_ = vj (u;(u_);u_). The Riemann solution is a single rarefaction
shock, or a single classical shock, or a nonclassical shock followed by a classical
shock, or finally a nonclassical shock followed by a rarefaction, respectively.
The curve W}*“(u_) is continuous and monotone in the parameter m = ju;(u).
1t is of continuously differentiable with bounded second-order derivatives for
all m # ug (u—) and Lipschitz continuous (at least) at m = ug-(u_).

(b) For allu; and u, in B(d1) the Riemann problem (1.1) and (1.2) admits a unique
solution determined by combining together the (classical) wave curves Wj(u_)
for j € JoU J1 and the (nonclassical) wave curves Wi*(u_) for j € J,.
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PROOF. Let u_ € U and j € J; be given. In view of the assumption (4.1) the criterion
(4.2) selects a unique nonclassical shock along the Hugoniot curve H;(u_), which we
denote by v, = v; (,u,; (u-);u-). Once this state is selected the construction in The-
orem 3.4 determines a unique wave curve W2°(u._) having the form described in the
theorem. Furthermore, without the nucleation criterion (4.4) the classical wave curve
Ws(u_) is admissible, since the kinetic relation does not prevent one from solving the
Riemann problem by using classical waves only. The nucleation criterion precisely
excludes the single shock solution when the nonclassical construction is available.
The nonclassical wave curve is continuous in the parameter p; which, by con-
struction, is monotone increasing along it. Finally, having constructed the (possibly
only Lipschitz continuous) wave curves W}'© for j € Jz and the (smooth) wave curves

Wy for j ¢ Jo, and using the condition that {rk} is a basis of IRY, we can solve
the Riemann problem with data in B(d;) by combining together the wave curves and
relying on the implicit function theorem for Lipschitz continuous mappings. g

In Theorem 4.3, for j € J> we can also recover the classical wave curve Wi (u_)

with the trivial choice ,ug(u) = NE (u) for all w. With this choice, the nonclassical
shock have the maximal negative entropy dissipation while another particular choice,
u; (u) = ugo(u), leads to nonclassical shocks with vanishing entropy dissipation.

As was already pointed out for scalar conservation laws (in Section II-4), the non-
classical Riemann solution depends continuously in the L! norm upon its initial data,
but not in a pointwise sense. In the classical solution, the value of the intermediate
state (if any) in the Riemann solution varies continuously as uy € Wi(u-.) describes
the wave curve; the solution in the (z,t) plane varies continuously in the L! norm
and its total variation is a continuous function of the end points.

Along a nonclassical wave curve, the speeds of the (rarefaction or shock) waves
change continuously. We simply observe that at the point ug. (u—) one has to compare,
on one hand, the shock speed of the nonclassical shock and, on the other hand, the
shock speeds of the nonclassical and the classical shocks. All three terms coincide at

/‘Lg' (u-), ie.,

lir% Xi(u—,vi(msu_)) = li%l X (ul;,vj(m; ui)) =X (u_,ub )
m—’,“j(u—) m"’,uj(u—)
m > udu) m < )
(4.5)

The continuous dependence of the wave speeds implies the L' continuous dependence
of the solution. For the nonclassical wave curve the wave speeds (only) are continu-
ous and the total variation of the nonclassical Riemann solution is not a continuous
function of its end points. This lack of continuity makes it delicate to control the
strengths of waves at interactions; see Chapter VIII which is concerned with the
Cauchy problem.

REMARK 4.4.
e We may also constrain the entropy dissipation E(u—,u4) of nonclassical shocks
through a kinetic relation of the general form

E(U_,U+) = ¢j(u—,u+)' (46)
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e A special class of such kinetic functions of particular interest is based on the

entropy dissipation function and depends solely on the shock speed Xj (u—,uq),
ie.,

E(u-,ut) = ¢(Aj(u-,uy)). (4.7)
A left-hand state u._ being fixed, one observes that the entropy dissipation
along the Hugoniot curve (when re-written as a function of the shock speed)
is increasing from its maximal negative value

E'(u_)= min E(u_,uy),

]( ) wr €Hy(u ) ( +)
achieved at A\’ := ); (uﬁ,wj(u; (u—);u-)), to the value O which is achieved
at the speed A = Aj(u—,w;(uf(u-);u-)). Provided the function ¢(s) is
decreasing and that ¢ (X;(u—,u4)) lies in the interval

E;(u—) < QO(Xj(u_,U+)) <0,

there exists a unique point m = p(u_) such that the kinetic relation (4.7) is
satisfied.
In the applications concerning scalar conservation laws and the 2 x 2 system
of nonlinear elastodynamics, it turns out that the kinetic function can always
be expressed as a function of the shock speed, i.e., in the form (4.7). In many
physical systems, the entropy dissipation is related to the mechanical energy
and regarded as a force driving the propagation of discontinuities. The ki-
netic relation (4.7) imposes a one-to-one relationship between the propagation
speed and the driving force.

O
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CHAPTER VII

CLASSICAL ENTROPY SOLUTIONS
OF
THE CAUCHY PROBLEM

In this chapter we establish the existence of a classical entropy solution to the
Cauchy problem associated with a strictly hyperbolic system of conservation laws
when the initial data have small total variation. We cover here the general class
of systems whose each characteristic field is either genuinely nonlinear or concave-
convex. With minor changes, the results in this chapter extend to linearly degenerate
and convex-concave fields. In Section 1 we discuss fundamental properties of (exact
and approximate) classical entropy solutions to the Riemann problem, studied earlier
in Sections VI-1 and VI-2. The key property is given by the interactions estimates
in Theorem 1.1: at each interaction, the wave strengths may increase by an amount
which is bounded by the product of the strengths of the two incoming waves. In
Section 2 we describe the approximation scheme which generalizes the one given in
Section IV-2 for scalar conservation laws, and we state the main existence result; see
Theorem 2.1. Technical aspects of the proof are postponed to Section 3. Finally, in
Section 4 we briefly discuss pointwise regularity properties of the solutions.

1. Glimm interaction estimates

Consider the system
Ou+0,f(u)=0, u=ulz,t)eU,z€lR,t>0. (1.1)

The set U := B(Jp) is a ball with center 0 € IR" and radius &y, and the flux f : I« — RN
is assumed to be strictly hyperbolic. For each u we denote by A1(u) < ... < An(u)
the eigenvalues of the matrix D f(u) and by /;(u) and 7;(u), 1 < j < N corresponding
basis of left- and right-eigenvectors. For &g sufficiently small the averaging matriz

Alu—,uy) = /: Df(fu—+(1—06)uy)do

is also strictly hyperbolic for all u_,u; € B(dp). We denote by X;(u_,uy), li(u_,uy),
and 7;(u_,uy ) its eigenvalues and left- and right-eigenvectors, respectively, normal-
ized so that

Litum,uy)Ti(u_,uy) = 1.

Exact Riemann solver.
The Riemann problem associated with (1.1) and

u(z,0) = { w, @<0, (1.2)

Up, x>0,
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where u; and u, € B(62) and 8, < &, was solved in Sections VI-1 and VI-2, in the
class of classical entropy solutions. Let us summarize the main results as follows. It is
convenient to introduce, for each wave family, a global parameter y; = p;(u) such that
Vi -1 # 0. For é; < §p sufficiently small and for all u_ € B(6;) and 1 < i < N the
i-wave curve W;(u_) issuing from u_ is parameterized by a mapping m — ;(m;u_)
with
pi(Pi(m;u-)) = m

for all m varying in some open and bounded interval containing p;(u-). Each state
¥i(m;u_) can be connected to u_ on the right by elementary i-waves. For genuinely
nonlinear fields one obtains a i-rarefaction wave when m > u;(u_) and a i-shock wave
when m < p;(u_). (See Section VI-1.) For concave-convex fields the wave curves are
made of three different parts: a single rarefaction wave, a single shock wave, or else a
right-contact plus a rarefaction wave. (See Section VI-2.) Moreover, the mapping v
has bounded second-order derivatives in (m;u_) with

) _ m — pi(u-) , ,
Yi(msu_) =u_ + V) ri(u_) + O(m — pi(u_))2. (1.3)

The solution of the Riemann problem contains (at most) N wave fans associated
with each of the characteristic families. Since {ri} is a basis of IRY and in view of
(1.3), for any fixed u; € B(d2) (with d2 < 4, sufficiently small) the mapping

(317~" aSN) = \I/(Sl,... aSN;ul) =up,
uo = 1wy, Ui i= Yi(pi(ui-1) + si5ui-1), 1 <i <N,

is one-to-one from a neighborhood of 0 in IR™ onto a subset of B(Jy) containing B(J2).
For u; and u, in B(d2) the wave strengths o; = 0;(u, u,) of the Riemann solution
of (1.1) and (1.2) are defined implicitly by

U(o1,... ,ON;U) = Ur.

They have second-order bounded derivatives, and they are equivalent to the usual
distance in IR" in the sense that for some constant C > 1

N
1
5 lur — <Y loi(w,up)| < Clup — wl. (1.4)

i=1
It will be convenient to introduce the general notation
or(u, ur) = ok(u, ur)® + ox(u,un)®, 1<E<N,

where oy (u;, ur)® and o (ug, u,)F represent the strengths of the k-shock wave and of
the k-rarefaction wave in the corresponding Riemann solution, respectively. Observe
in passing that o (u;,u,)® and o (u;,u.) always have the same sign so that, for
instance,

max (|0 (ur, ur)®|, ok (u, ur) B|) < |ow(ur,ur).

In this section our main objective is to derive “wave interaction estimates”. That
is, we consider the solution of the Cauchy problem associated with (1.1) when the
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initial data take three constant values:

U, Tz < -1,
w(z,0) =< Um, —-1<z<I1, (1.5)
Up, z>1,

where uy, U, and u, € B(ds). By combining the two Riemann solutions associated
with the left- and right-hand data u;, u,, and u.,, u,, respectively, it is easy to con-
struct the solution of (1.1) and (1.5) for small time. Waves originating from the initial
discontinuities located at x = —1 and x = 1 propagate until their trajectories meet
eventually. After all possible interactions have taken place, the solution has reached
an asymptotic state which is determined by the Riemann solution connecting wu; to u,.
The wave interaction estimates relate the wave strengths of the two incoming
Riemann solutions with the ones of the outgoing Riemann solution. For instance, if
the flux f were linear we would simply write

or(u, ur) = ok(up, Upm) + 0k (Um, ur), 1<k<N. (1.6)

The formula (1.6) extends to nonlinear flux-functions up to a quadratic error term.
Since this is sufficient for our purpose we assume that each incoming Riemann solu-
tions contains a single wave fan.

THEOREM 1.1. (Glimm interaction estimates — Exact Riemann solver.) For all
Uty Um, ond u,. € B(d2) we have the following property. Suppose that u; is connected
to um, by ani-wave fan and that u,, is connected to u, by a j-wave fan (1 <i,5 < N).
Then, the wave strengths oy (u, ur) of the outgoing Riemann solution satisfy

or(ur, ur) = ok (U, Um) + 0k (Um, Ur) + O(1) Qin(ur, Um, ur), 1<k <N,

(U, Um) + O(1) Qin (U, U, Uy ), k=i+#j,
) o3 (um, ur) + O(1) Qin(ui, tm, ur), k=j+#4, (1.7)
B oi(u, Um) + 0 (Um, ur) + O(1) Qin (Ut Um, ur), k=j=1,

O(1) Qin (w1, U, ur), otherwise,

where the interaction potential between the two incoming waves is defined as
Qin(ut, Um, ur) = |03 (U1, Um) 05 (Um, Uy )]
and the symbol O(1) denotes some uniformly bounded functions.

With the notation of the theorem note that, when either ¢ < j or else ¢ = j and
both incoming waves are rarefaction waves, the waves do not truly interact and the
formula (1.6) holds (without error term).

PrOOF. We can describe the set of solutions under consideration by fixing the left-
hand state u; and using the wave strengths

81 = O'i(Ul,um), Sp 1= Uj(umyur)
as parameters. The state u, is regarded as a function of s; and s,., that is,

Up 1= wj(/"ﬂ(um) + Sr;um), Um = d}t(u’l(ul) + 815 ’LL[)~
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We set
Si, k=1 7& ja
5, k=j#1,
Hi(si, ) = on(up,ur) —{ L
S + Sry k= J=1,
0, otherwise,
and
K(si, sr) = |81 8¢

Obviously, if K (s, s,) = 0, then either s; = 0 or s, = 0 and one of the incoming
wave is trivial. In both cases we have Hi(s;,s,) = 0. This motivates us to show that

|Hk(sl>s‘r‘)| < CK(SI’ST) (18)
for all relevant values s, s, and for some constant C > 0. Indeed, we have
Sy H
Hy(s1,s;) = Hg(s1,0) + 88 £ (s1,0") do”
0
OHy, st 92H;,
— H O ! ' ! 1
k(st, )+/O (83 ")+ A 831(‘93,(0’0 )da> do”,
which gives (1.8) with
2Hk
¢ _SUP’(’)SZ(‘)ST
since Hy(s;,0) = Hi(0,s,) = 0 and the functions o4 and 9 have bounded second-
order derivatives. O

Approximate interaction solvers.
We now generalize Theorem 1.1 to “approximate” wave fronts, since for techni-
cal reasons we will need to solve the Riemann problem approximately. Fix some
(small) parameter h > 0. By definition, a (classical) approximate i-wave front
(1 <i< N +1)is a propagating discontinuity connecting two constant states u_ and
u4 at some speed A, with

(a) either i < N+1, A = X(u_,uy) + O(h), and uy € W;(u_);

(b) ori= N +1, the states u_ and u, are arbitrary, and the speed A := Ay4 is

a fixed constant satisfying

AN+1 > sup An(u).
u€B(do)
In Case (a) the strength of the wave is the usual length o;(u_,u4) measured along
the wave curve W;(u_). The propagating jump is a (classical approximate) shock
front if u, belongs to the Hugoniot curve starting from u_, or an (approximate)
rarefaction front if v belongs to the integral curve starting from u_. (We will not
use the remaining part of concave-convex i-wave curves involving two-wave patterns.)
In Case (b) we refer to the front as an artificial front or (N + 1)-wave front and
its strength is defined by

on+1(u-,ut) = |uy —u-|. (1.9)

Observe that a shock front need not propagate with the Rankine-Hugoniot speed
as an error of order O(h) is allowed (and specified later in Section 2) provided Lax
shock inequalities are kept. Similarly, a rarefaction front travels with an averaged of
the associated speed of the rarefaction fan, up to an error of order O(h).
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Relying on the above terminology, we consider an approximate i-wave front con-
necting u; to u,,, followed with an approximate j-wave front connecting ., to u.
We suppose that they collide at some point, which implies that

i>j, 1<i<N+1, 1<j<N.

In particular, two (N + 1)-fronts cannot meet since they travel at the same (constant)
speed. To extend the solution beyond the interaction time we will introduce suitable
approximations of the Riemann solution connecting u; to w,.. More precisely, we
distinguish between an “accurate” wave interaction solver (to be used in Section 2 for
waves with “large” strength) and a “rough” solver (for waves with “small” strength).
Here, we call wave interaction solver a mapping which, to the incoming fronts
connecting u; to u, and u,, to u,, respectively, associates a (piecewise constant)
approximate solution to the Riemann problem with data u; and u,. Note that the
interaction solvers introduced now depend on the middle state u,,, as well as on the
given parameter h > 0.

The accurate interaction solver is defined when 4,7 < N 4+ 1. We consider
the Riemann solution associated with u; and u,, and we decompose any existing
rarefaction fan into several propagating jumps with small strength < h.

More precisely, suppose that the Riemann solution contains a k-rarefaction fan
connecting a state u_ to a state uy = Yp(m;u_) for some m. Let p be the largest
integer such that

ph < |m — pr(u-)| (1.10)
and set &€ = sgn(m — px(u—)). Then, we replace the rarefaction fan by a k-rarefaction
front connecting u_ to

v1 = Yr(pr(u-) + €hju-)
and propagating at the speed Ax(u_, vy ), followed by another k-rarefaction connecting
v1 to

v2 = Pi(pe(v1) + € hyv1)
and propagating at the speed Ag(v1,vs), etc., and finally followed by k-rarefaction
front connecting v, to

Y (pk(vp) +m — pi(u—) —eph;vp) = uy

and propagating at the speed Ai(vp,u;). However, we have also the freedom of
changing the above wave speeds by adding small terms of order O(h) (while always
keeping the ordering of wave fronts).

The following terminology will be useful. All outgoing k-waves with k # i, j are
called secondary waves. When ¢ # j, all i- and j-waves are called primary waves.
If { = j, then the shock and the “first” (left-hand) rarefaction front —if any— are called
primary waves, while all other i-waves are called secondary waves. With this
terminology, the interaction estimates (1.7) (see also (1.13), below) ensure that all
secondary waves are quadratic in the incoming wave strengths.

On the other hand, in the rough interaction solver we neglect the nonlinear
interaction between incoming waves and we treat them as linear waves. This is done
at the expense of introducing an artificial wave front.

If : < N and ¢ > j, then the rough Riemann solution contains a j-wave fan
with strength § := 0;(um,u,) connecting to @ := 9;{u;(uw) + & w), followed by an
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i-wave fan with strength § = 0;(u;, um) connecting to @ := 9;(u; (@) + 5; @), plus an
artificial front connecting to the right-hand state u,. Here, we also decompose each
of the two wave fans into a shock front plus rarefaction fronts with strength < h, as
already explained above. All of the i- and j-waves are called primary waves, while
the artificial front is called a secondary wave.

Finally, if i < N and ¢ = j, then the Riemann solution contains an i-shock
front with strength § connecting to @ := ¥;(ui(w) + S wi), an i-rarefaction front
with strength § connecting to @ := t;(u;(%) + 5;w), followed by an artificial front
connecting to u,. The strengths 3 and 3 are determined so that

§+5= i (up, Um) + 0 (U, ur) + OQ) |os(up, U ) 05 (U, 1 )],

and |3| < h. This is indeed possible, thanks to the estimate (1.13) in Theorem 1.3
below which shows that the strength of a rarefaction essentially diminishes at in-
teractions and since incoming rarefactions are kept of strength < A throughout our
construction. The i-wave fronts are called primary waves, while the artificial front is
called a secondary wave. Again, all secondary waves are quadratic in the incoming
wave strengths.

This completes the description of the interaction solvers. It remains to define the
wave strengths of the approximate Riemann solutions. This is obvious for the accurate
interaction solver, since we are always using states lying on some wave curves and
we can therefore measure the strengths from the parametrization given along the
wave curves. The same is true for the rough solver, except for the artificial fronts
for which we simply use the definition (1.9). The wave strengths of the accurate
interaction solver are identical with the wave strengths oy (u,u,) (1 <k < N) of the
exact Riemann solver. With some abuse of notation, the wave strengths of the rough
interaction solver will still be denoted by o (ui, ur) (1 < k < N+1). For the accurate
solver it is convenient to set on41(ur, u-) = 0. It is easy to extend Theorem 1.1 to
approximate wave fronts, as follows.

THEOREM 1.2. (Wave interaction estimates — Approximate interaction solvers.) For
all uy, um, and u, € B(d1), we have the following property. Suppose that u; is con-
nected to Uy, by an approzimate i-wave front (1 < ¢ < N+1) and that u,, is connected
to u, by an approzimate j-wave front (1 < j < N). Then, the wave strengths of the
accurate interaction solver satisfy the estimates (1.7) and

on+1(ur, Ur) = oN1 (Ul Um) + O(1) Qin(Uis Um, ur)- (1.11)

In the rest of this section we will estimate the outgoing interaction potential
defined by

Qout (Up, Um, ur) = ¥ _|o0’],
in terms of the incoming interaction potential Qin(ui, Um,u,). Here, the summation

is over all pairs (o, ') of waves of the same family within the corresponding accurate
or rough interaction solvers.

THEOREM 1.3. (Refined interaction estimates.) Considering u;, um, and u, € B(61),
suppose that u; is connected to u,, by an approrimate i-wave front, that u., is con-
nected to u, by an approzimate j-wave front (1 < j <i < N), and that the left-hand
front travels faster than the right-hand front. If i > j, then for some C' > 0 we have

Qout(ul,umaur) < CQin(ul’um’uT)' (1'12)



1. GLIMM INTERACTION ESTIMATES 173

If i = j, then for some constants C > 0 and c € (0,1) we have

loi (ur, ur) ®| < max(joi (wr, tm) ¥, 103 (U, wr) ¥ + C Qin(ur, U, ue)  (1.13)

and
Qout(ul,umvur) < (1 - C) Qin(ula um>u7‘)‘ (114)

Proor. For genuinely nonlinear fields the estimate (1.13) follows immediately from
the standard interaction estimates (1.7). A wave is either a shock or a rarefaction,
therefore (1.12) and (1.14) are trivial in this case.

Consider the case 7 > j and a concave-convex characteristic field. The crossing of
two waves of different families corresponds to a “shifting” of the waves in the phase
space: for instance, roughly speaking, the wave connecting u; to uy, is shifted by the
distance 0 (tm, u,). Consider the outgoing i-wave fan together with decomposition

oi(ur, ur) = 05 (up, up)¥ + os(u, ur) R

If the incoming i-wave is a shock, then the outgoing rarefaction part ai(u;,uT)R
depends at most linearly upon the incoming strength. Precisely, since o;(uy,u,)®
depends (at least) Lipschitz continuously upon o;(u;, Um) and 0 (Um, u,) and vanishes
when one of the latter vanishes, it follows that

s (ug, ur) | < C min(|oi (g, um)l, |05 (tm, ur)])-

Of course, in the accurate and rough solvers the new rarefaction fan may need to
be decomposed into small rarefaction fans with strength < h. The “self” interaction
potential between these waves is at most |o;(u;, u,)|?. In turn, we can estimate the

terms in Qoy concerned with i-waves, say QF ,;, as follows:

Qe (ut, Um, ur) < o (g, ur)® i (g, ue) ®| + |oi(ur, ur) B2
< CQin(uhum,ur)~

Next, if the incoming i-wave is a rarefaction, then both the outgoing shock
strength Ui(ul,ur)s and the change in the rarefaction strength depend at most lin-
early upon the incoming strengths, since they depend (at least) Lipschitz continuously
upon o;{u, Up,) and o;(Um,u,) and vanish when one of the latter vanishes:

s (ugy ur) S| + |0 (g, ur) B — 03 (ut, um )| < C min(|o (wg, um )|y |05 (U, ur)])-

Here, by construction we always have |o;(ui, ur,)| < h and we only may need to de-
compose the part o;(u, ur)F — 0;(uy, up,) of the rarefaction fan. We estimate Q¢ , as
follows:

Qfmt(ul: Um, s ur)

<(1s(u, ) S| + 03wt ) B = 05, ) |) 070, 1) B
+ |oi(ur, ur) | |oi(wr, ur)
SCjc?in(ul, Uy U/r).

This establishes the estimate (1.12).

Consider the case i = j of a concave-convex characteristic field. We use here the
notation introduced in Chapter VI where we constructed the i-wave curve. Following
the general classification given in the proof of Theorem IV-4.1, we distinguish between
several interaction patterns depending on the relative positions of p;(u;), t;(um), and
pi(u,). We restrict attention to the cases with p;(u;) > 0, the other cases being

— oi(ugy )| + |oi(ur, ur)E — 03 (wr, um) |2
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completely similar. The argument below strongly uses the monotonicity properties
of the shock speed and characteristic speed determined in Section VI-3, which imply,
for instance, that two rarefaction fronts cannot meet. We emphasize that all the
calculations and inequalities below should include error terms of quadratic order in
the incoming wave strengths which, for simplicity in the presentation, we neglect in
the rest of this discussion. (Strictly speaking, there are more interaction cases for
systems than for scalar conservation laws, but the “new” cases can be regarded as
quadratic perturbations of the cases listed below.) We use the notation

[R] = |Ui(ul7ur)R| - ma‘x(|0i(ul7um)R|a |gi(um)u'r)R|)'
and

Q) := los(wr, ur)®|oa(uwt, wr) *| = |os(ut, wm)| |03 (um, ur)|-
Recall from Lemma VI-2.4 that Vug -1 ~ —(1/2)Vp;-r; near the critical manifold
M; which implies that, for states u and " taken along any i-wave curve and for some
constant 6 € (0,1), we have

() — ()] < 0]pmi() — ()] (1.15a)
and
() — )] < 0 |1y (w) = pua(w)]. (1.15b)

Case RC-1 : That is, (R+C)—(C") when 0 < p;(w) < pi(um) and u?(ul) < pi(ur) <
wi(w) (up to a quadratic error O(1) |0 (uy, Um)| |oi (Um, ur)|). There is only one out-
going i-wave, and the incoming pattern is non-monotone in the variable u;. We find

[R] = —|pi(w) — pi(um)| < 0.

Case RC-2 : That is, (R+C+)—(C.R.) when 0 < p;(u;) < p;(um) and ,ug(um) <
wilur) < uE (ur). The exact outgoing pattern contains a shock wave and a rarefaction
wave. We have '
[R] = ma(ur) — g (ui)] — [ium) — pa(ua)]
< 01 () — priCur)] — | (um) = i )|
< —(1 = 0) pium) — pa(w)]-
Using p;(u) < ,ui—h(ur) < pi(um) and (1.16), we find that for every « € (0,1)
Q1 = I () — poa )| L) — ol )| = Vot (o) = )| |1t () = s ()|
< —(1 = ) |pi(um) — pa(wn)] | (r) — pi ()|
o+ 6 ) — i) L )~ prsCan)| = L () = ()] ) = o ()|
< = (1= &) i (um) = pi(u)] i (ur) — o (um )|
= (% = 6) sl () — poa o) 11" () — pos )|
< —(1 = &) [pa(um) = piu)] |ps(ur) — pi(um)| <0,
since p;i(ur) < u?(ul) < pi(ug) < py “(u,) and provided we choose & such that
1>k>40.
Case CR-1 : That is, (C+R_)-(C’.) when ,ug(ul) < pi(ur) < pi(um) < 0. There is

only one outgoing wave and the incoming solution is monotone. We find here

[R) = —|u; " (ur) — g (um)] < 0.
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Case CR-2 : That is, (C1R4)—(C%) when 0 < pi(um) < ps(ur) < ps(w;). There is
only one outgoing wave and some cancellation is taking place. This case is similar to
Case RC-1.

Case CR-3 : That is, (C+R_)(C,R.) when pf(uj,um) < pi(ur) < pi(u) <
pi(um) < 0. Here the value p = pf{u;, uy,) is defined by the conditions (v; denoting
the parametrization of the Hugoniot curve)

e = (5 u),  As(ug, ua) = Ni(u, up).

Let us first observe that, possibly using a larger value 6 € (0, 1) if necessary, it follows
from Lemma VI-2.5 (see also the proof of Theorem IV-4.2 for scalar equation) that

a8 ) = g Caa)] s () = )|

. (1.16)
< 6 min (Jpq ()| i () s (wr) = 3 (s )| i Cur) = 3 (e )).

The outgoing pattern contains two waves and the incoming solution is monotone.
We have

[R] = [mi(ur) — g (ur)] = lpa(ur) — pri(tm)|
= —|uf(w) — ps(um)| <0,
and for every k € (0,1)

[Q) =lsa3 (ur) — poa ()| Iaa (uar) — gl ()| = [psi(tom) — pai ()| |11 () = pts ()|
=t (wa) — s )| |pssCr) = ()| = & | (tam) = s )| 1 () — pos (tm)|
— (1= 6) pilum) — piwd)| |pi(ur) — ps(m)].
The polynomial function p;(um) — |pi(Um ) —pi(wr)] |pi (ur) — pi (um )| over the interval
determined by g} (ur, ur) < pi(um) < 0 satisfies the inequality
|pium ) — pi(wa)| | () — pi(um)]
> min (| (un)] s (un)|, s () = g Cury ue)| |ps(ur) = 05 (ur, ur)]).

Therefore, by (1.16) we conclude that

Q) <lpsf(ur) = prC) s () = )|
— s mmin (| (wn)| | () o) = o Cugy we)| i (r) = a2 (i, wr)1)
— (1= #) i (um) — s ()| | i () — p2i(umn)|
<= (1= ) |pa(um) — ps(w)] |ps(ur) — pi(um)l,

provided & is chosen such that § < k < 1.
Case CC-1: That is, (C1C)—(C’) when 0 < p;(um) < pi(w;) and uf(um) < pi(uy) <
; (). This case is similar to Case CR-1.
Case CC-2 : That is, (C+C)~(C") when p(w) < s (tm) < 0 and i (um) < pi(ur) <
,uE (). This case is similar to Case RC-1.

This completes the proof of (1.13) and (1.14) and, therefore, the proof of Theo-
rem 1.3. O
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2. Existence theory

We will now construct a sequence of piecewise constant approximate solutions u” :
IR x IRy — U of the Cauchy problem

Ou+ 0. f(u)=0, u=ul(z,t)elU,z€IR,t>0, (2.1)

u(z,0) = up(z), =z€IR. (2.2)
The solutions will be made of a large number of approximate wave fronts of the type
introduced in the previous section. We assume that the given function ug : IR — U
in (2.2) has bounded total variation, denoted by TV (up). Given a sequence h — 0,
it is easy to construct a piecewise constant approximation ug : IR — U with compact
support which has only finitely many jump discontinuities (say, 1/h at most) and
satisfies
ul — uy almost everywhere, TV (ul) < TV (up). (2.3)

Then, the Cauchy problem associated with the initial data u(’)‘ can be solved explic-
itly for small time £. One simply solves a Riemann problem at each jump discontinuity
of uf, each problem being treated independently from each other. Each (approximate)
Riemann solution may contain one or several (approximate) wave fronts. When two
of these wave fronts collide, we can again solve a Riemann problem and continue the
solution beyond the interaction time. If the algorithm does not break down (we return
to this issue shortly), we continue this construction globally in time by resolving all
interactions one by one.
Our main objective is to show that the approximate solutions are globally defined
in time and to derive the uniform bound on the total variation of the approximate
solutions,
TV (u"(t)) < CTV(ug), t>0. (2.4)
By Helly’s compactness theorem (see the appendix) (2.4) implies that the limit u =
limp,_,o u® exists almost everywhere and, in turn, satisfies (2.1) and (2.2). In contrast
with scalar conservation laws (in Chapter IV), the total variation TV (u"(t)) may well
increase in time, and to establish (2.4) it will be necessary to rely on the interactions
estimates derived in Section 1.
Several important obstacles must be overcome in order to implement the above
strategy:
e The Riemann problem is known to be solvable for data in B(ds), only, and
therefore we must ensure that the values u”(z,t) remain in this neighborhood
of 0.

¢ A Riemann solution may contain centered rarefaction fans, and we will replace
them with several propagating jumps with small strength h (with the minor
drawback that such fronts violate the entropy condition).

¢ When two wave fronts interact, the number of outgoing fronts may be greater

than the number of incoming ones so that the number of waves could become
infinite in finite time. To prevent this from happening, we will neglect waves
with “small” strength.

e Additionally, we will check that the number of interactions between these

waves is finite so that the scheme does not break down in finite time.

e Finally, in order to implement this strategy artificial wave fronts will be needed

and will propagate “very small” error terms away, with the fixed large speed
AN+1-
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By slightly changing the wave speeds and introducing an error term of order O(h)
if necessary, one can assume that, at each time, at most one interaction is taking place
and that this interaction involves ezactly two wave fronts.

The wave front tracking approximations v are defined as follows, based
on the two approximate interaction solvers proposed in Section 1 and on a threshold
function £ = E£(h) satisfying

E(h
}1%—}%):0, n=0,1,2,... (2.5)
First of all, at the initial time £ = 0, one solves a Riemann problem at each jump
discontinuity of u} using the accurate interaction solver. (All rarefaction fans at time
t = 0+ are replaced with several propagating jumps with strength less than h.) Next,
at each interaction involving two incoming waves of families 7 and j and with strengths
s; and s,., respectively, we proceed as follows:

1. If |s; 8] > E(h) and i < N, we resolve the interaction by using the accurate

interaction solver.

2. If |sy ] < E(h) or if i = N + 1, we use the rough interaction solver.

The main result in this chapter is the following one.

THEOREM 2.1. (Existence of classical entropy solutions.) Consider the system of
conservation laws (2.1) with a smooth flux f defined in the ball U = B(dp). Assume
that each characteristic field of (2.1) is either genuinely nonlinear or concave-convez.
Then, there exist 63 < 8y, cx, Cx > 0 such that the following property holds for all
initial data ug : IR — B(d3) satisfying TV (u) < cx.

Consider a sequence of approximate initial data ul : IR — B(d3) satisfying (2.3)
and a threshold function £ satisfying (2.5). Then, the above algorithm generates
a sequence of approzimate solutions u® which are globally defined in time, contain
finitely many lines of discontinuity and finitely many points of interaction, and satisfy
the uniform estimates

ul(x,t) € B(dy), z€IR,t>0,
TV(u"(t)) < C.TV(w), t>0, (2.6)
l|uh(t2) — uh(tl)llp(ﬂq) S (0(1) + C* ATV(U())) !tQ — tl], tl,tz Z 0,

where o(1) — 0 as h — 0, and
A:= sup |X(u)l

uw€B(81)
1<i<N

After extracting a subsequence if necessary, u" converges (almost everywhere in (z,t)
and in L}, in z for allt) to a weak solution u of the Cauchy problem (2.1) and (2.2)
with

u(z,t) € B(dp), z€lR,t>0,

TV (u(t)) < C. TV (ug), t=>0, (2.7

“U(tQ) — u(tl)”Ll(lR) S C* ATV(U()) itQ — tll, tl,tQ Z 0.
If the system (2.1) admits a convex entropy pair (U, F), then the limit u satisfies the
entropy inequality

AU (u) + 0 F(u) <0 (2.8)

in the weak sense.
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Note that the solution satisfies also Lax shock inequalities; see Section 4 below.
The rest of this section is devoted to a proof of Theorem 2.1, assuming the uniform
bounds (2.6) together with an estimate for the strength of artificial waves (Lemma 2.2
below). Proving these two technical estimates is postponed to Section 3.

We will use the following notation. For each time ¢ which is not an interaction
tile, we denote by J(u"(t)) the set of the points of jump of the piecewise constant
function x — u"(z,t). At each point z € J(u"(t)) the approximate solution contains
a wave with strength o"(z,t) of the family i"(x,t) < N + 1, propagating at the speed
Mr(z,t). Recall that, if the front is associated with a wave family i"(z,t) < N, the
(signed) strength is measured along the wave curve:

ul (2,8) = Yin (o) (i o, (W2 (2, 1)) + 0" (2, )02 (2, 1))
If this is an artificial front, we have i"(z,t) = N + 1 and the (non-negative) strength
° oMz, 1) = |ul (z,t) — u (z,1)].
Additionally, when i*(z,t) < N it will be convenient to use the notation
o"(z,t) = o"(z,t)% + o (z,t)F, (2.9)
where, for instance,

R
o' B(z,t) = O (z,t) (u'l (z, t),u’i(m,t)) .

The total sum of wave strengths in u” is controlled by the total variation estimate
in (2.6). Indeed thanks to (1.4) and (2.3) we have

Yo et <Cr Y |uh(at) - ul(z,t)|
zETh(t) TETH(t)
= Cy TV (u"(t)) < Co C. TV (ug) < +00.

LEMMA 2.2. (Strengths of rarefaction and artificial fronts.) Under the assumptions
of Theorem 2.1 we have

loh(z,t)®| < h, 1<it(z,t) <N,z e Th), (2.10)
and
lim (sup 0" (2, t)|) =0. (2.11)
h=0 tZO z&;(t)
Mz, )=N+1

Of course, (2.10) is obvious by construction since all rarefaction fronts have
strength < h at the initial time, and that the accurate and rough interaction solvers
do not increase the size of existing rarefactions and create only new ones with strength
< h.

PROOF OF THEOREM 2.1. In view of the uniform estimates (2.6) we can apply Helly’s
compactness theorem as explained in the appendix. For each time ¢ > 0 there exists
a converging subsequence u"(t) and a limiting function u(t). By a standard diagonal
argument we can find a subsequence so that for all rational ¢

u"(x,t) — u(z,t) for almost every z. (2.12)

The uniform Lipschitz bound in (2.6) then implies that u(t) is well defined for all ¢
and that, in fact, u"(t) converges to u(t) in Li, . for all t. The inequalities (2.7) follow
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immediately from (2.6) by using the lower semi-continuity property of the L! norm
and total variation.

We claim that the limit u is a weak solution. Given a smooth scalar-valued
function § with compact support in IR x [0, +00), we consider

gy .— h h h
E"(9) = /mO(O) ug dm+//le(0)+oo) (u" 0,0 + f(u")8,0) dzdt.

h

Since u" — u almost everywhere,

h —
E"™(6) /IR 6(0) ug dz + //1;2x(0,+oo) (w86 + f(u) 8,0) dzdt,

thus we simply have to prove E*(§) — 0.
Recall that u” is piecewise constant. Defining

[u")(z,t) := ul (2,t) — u" (z,1),
and similarly for [f(u")](z,t) and using Green’s formula, we find
E"6) = / Z (A=, 1) [uM](z, 1) — [f(M)(z,t)) O(z, 1) dt.
B+ e

By construction if the front located at x is a shock, the left- and right-hand states
satisfy the Rankine-Hugoniot relation but an error of order O(h) is allowed on the
speed, therefore the Rankine-Hugoniot relation holds approximately:

IN'(2, 1) [uM)(z, 1) = [f(u")](2,8)] < Chlo™(z,1)]. (2.13)
If the front is a rarefaction, its speed is of the form
)‘h(l‘at) = Xi"(ac,t) (’U,’i (.’L‘, t),ui(w,t)) + O(h‘)

And, since u” (z,t) lies on the integral curve issuing from u” (z,t), it is easy to check
that

|\ (@, 8) [W)(z, 1) — [f(u")](2,8)] < Clo"(2,8)* + Cho"(z,1)]. (2.14)
Finally, if the front is an artificial wave, we use the simple estimate
V(2 1) [uP](2,8) - [f(u")](2,8)] < Cla(z,1)]. (2.15)

By assumption, the support of the function @ is contained in IR x [0,T] for some
T > 0. Combining (2.13)—(2.15) we obtain

h T h h R|? h
E (9)130/0 ( Y k@) + et @t Y e (m,t)|)dt.

1<ih(z,t)<N ih(z,t)=N+1
In view of Lemma 2.2 we deduce that

|E*6)] <TCCsh sup Y |o"(z,t)|+C sup > |o"(z,1)|
tef0,T] 7 tE0.T) iy ymN+1

<C'h sup TV(u"(t))+C sup Z lo"(z,t)] — 0.
te[0,T] t€10.T] jn (g =N+1

Hence, the limiting function u is a weak solution of (2.1) and (2.2).
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Since the underlying exact Riemann solution satisfies the entropy inequality (2.8),
the accurate and rough Riemann solutions satisfy (2.8) up to error terms which are
completely analogous to those studied above. So, proving that u satisfies the entropy
inequality is similar, provided equalities are replaced with inequalities throughout.
This completes the proof of Theorem 2.1 (when the uniform estimates (2.6) and
(2.11) hold). g

3. Uniform estimates

This section provides a proof of the technical estimates in Theorem 2.1 and Lemma 2.2.
We use the notation given after the statement of Theorem 1.1. To simplify the nota-
tion we often suppress the explicit dependence in h and in t.

Total variation bound.
The total strength of waves is controlled by the linear functional

Vi)=Y o=,
0

while the potential increase due to wave interactions will be measured by the qua-
dratic functional

Qty=M > |t@twnl+ Y, oM@ttt

(z.y)eAl(t) (zw)eAL ()

where M > 1 is a sufficiently large constant. We count in Q(¢) all the quadratic
products of strengths between: (i) all waves of different families, provided the wave
on the left-hand side is faster than the wave on the right-hand side, (ii) and all waves
of the same family except artificial waves. In other words, the set A"(¢) (“different
families”) contain pairs (z,y) of approaching waves having z < y and 1 < i*(y,t) <
i"(z,t) < N+1, while the set A" (t) (“same family”) is defined as z < y and i*(z, t) =
i*(y,t) < N +1.
Recall (from (1.4)) that

-é- [t (z,2) — P (2, 1)] < |o"(@, 1)) < Cu (2, 8) — P (z,1)], (3.1)
so that the functional V is equivalent to the usual total variation functional,
%TV(uh(t)) <V(H) < CTV(Wh(), t>0. (3.2)
On the other hand, the interaction potential is dominated by the linear functional:

QM) < M (V()”.

Estimating V' and @ is based on the wave interaction estimates derived in Sec-
tion 1. On one hand, the wave strengths are increased by a small quadratic term at
interactions, at most. On the other hand, the function @ decreases at interactions by
the same quadratic amount. To take advantage of these facts, consider the functional

V(t) + Cy Q(t).

By choosing a sufficiently large constant Cj, the increase of V() can be compensated
by the decrease of Q(t).
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LEMMA 3.1. (Decreasing functional.) For Cq > 0 sufficiently large the (piecewise
constant) function

t— V(t) + Cy Q(t)
decreases at each interaction time.

PROOF. Let t be an interaction time and consider two waves meeting at some point z:
an i®-wave with strength s* located on the left-hand side of an i®-wave with strength
sP. Let s” be the strengths of the outgoing waves, where 7 describes a finite set of
indices.

First of all, since V is the sum of all wave strengths which possibly increase at
the time ¢ but by (at most) the product of the strengths of the two incoming waves
(Theorem 1.2), we have

C
D171 < 157+ 187+ 5 157 o).
Y

Thus the total increase is
C. . 3
V] =V(i+) - V(t-) < 7 |s* 5. (3.3)

Consider an interaction between waves of different families. The term M |s* s°| is
counted in Q(t—), but no longer in Q(t+) since the two waves are no longer approach-
ing after the interaction. (See the definition of the set .A%(t) above.) Additionally,
the estimate (1.12) in Theorem 1.3 shows that the self-interaction between outgoing
waves of the same family is less than C|s*s?|. Hence, by choosing M (arising in
the expression of Q(t)) sufficiently large, we see that the latter is dominated by the
former. Moreover, by Theorem 1.2 the waves in the other families are of quadratic
order.

Consider next an interactions involving two waves of the same family. The esti-
mate (1.14) derived in Theorem 1.3 shows that the self-interaction between outgoing
waves of the same family is at most (1 — c)|s®s?| for some ¢ € (0,1), while by
Theorem 1.2 the waves in the other families are of quadratic order.

Therefore, in all cases we find for some ¢ € (0,1)

Q) < Q) —els™ s + S V(E-) 7 7).
If we assume that V(t—) < ¢/C it follows that
Q)] = Q(t+) — Q) < —3 s &7 (3.4)
and, then, by summation we have for any Cy > C/c

V(O] +Ca[Q@)] <0. (3.5)
It remains to observe that

V(t+) S V(t-) + C4Qt—) < V(0) + C1 Q(0)
< Oy TV(UQ) + 0403 TV('U.())2 (3.6)

< —.
- C
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The latter inequality holds as soon as TV (ug) is less than a numerical constant c,
which depends upon the constants Cz and C4, only. (Take ¢, := 1/(2C2C4), for
instance.)

By induction, we conclude that V(t—) < ¢/C and that the functional is decreas-
ing. This completes the proof that the total variation of u"(t) is uniformly bounded,
that is, the proof of the second property in (2.6). O

Moreover, since the approximations have compact support and the scheme sat-
isfies the property of propagation with finite speed, the approximate solutions are
bounded in amplitude:

sup |u” (t+)] < sup [ug| + TV (u"(t)) < sup ug| + C. TV (uo). (3.7)

The Lipschitz estimate is a consequence of the total variation estimate and the prop-
erty of propagation at finite speed. Indeed, in any interval [t;,t2] containing no
interaction, the speed A\*(x,t) of each wave front z = z"(t) is constant and we can
write

lu(t2) = wP (t)llprgry < Y Il (2 (t), 1) = ul (&P (t1), 12| [2"(t2) — 2" (1))
For non-artificial fronts we have

|z"(ta) — 2 (t1)] = |A*| [t2 - t1] < (O(R) + SEB ()] Jb2 = ta].

On the other hand, for artificial fronts we have

|z (t2) — 2" (t1)| = Aw1 |tz — ta],

but the total strength tends to zero with h, by Lemma 2.2. This completes the proof
of the estimates (2.6).

Number of wave fronts.

In view of the estimate (3.4) the number of interactions having |s® s#| > £(h) must be
finite since the non-negative function Q(t) decreases by the amount cE(h) (at least)
across any such interaction. Then, disregarding first the artificial waves we observe
that:

e In the case |s* sP| < £(h) the rough solver is used and generate two outgoing

waves for any two incoming waves of the same family.

e Two waves of different families may cross at most once.

Therefore, the number of non-artificial waves is also finite for all time. It follows also
that the number of artificial waves is finite since new artificial waves are created by
interactions between non-artificial waves. This establishes that the total number of
waves is finite.

We just observed that the number of interactions involving the accurate solver is
finite. On the other hand, when the rough solver is used, the system being strictly
hyperbolic, two waves of different families can cross each other at most once. So, we
may restrict attention to the solution u”* after a sufficiently large time and we may
assume that only interactions between waves of the same family are taking place. Con-
sider a concave-convex i-characteristic field (since the result is obvious for genuinely
nonlinear fields). In view of the interaction cases listed in the proof of Theorem 1.3
and without taking into account artificial waves, we see that the interaction of two
waves of the same family leads either to a two-wave pattern, one of them being a
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right-contact, or to a one-wave pattern. Moreover, a right-contact may not interact
with waves on its right-hand side. When it interacts with a wave on its left-hand side
the outgoing pattern contains a single wave. In consequence, for each concave-convex
i-field and for all ¢ sufficiently large, the functional

FP(t) = (GF )+ 1) G + Y Gi(b) +ZGCh ot
C;UR;

is strictly decreasing at each interaction, where the sums are over all ¢-shock fronts
C; and rarefaction fronts R; and over all right—contacts, respectively, and G2(t) is the
total number of waves at time t while G* Ol teft (t) is the total number of waves located

on the right hand-side of the right-contact CE. This completes the proof that the
number of interaction times is finite.
We now want to derive an estimate on the number of waves. To each wave we
associate a generation order r = 1,2,.... This number keeps track of the number
of interactions that were necessary to generate that wave. All the waves generated
at time ¢t = 0+ have by definition the order » = 1. At each interaction the “old”
waves keep the same order, while we assign a higher order to the “new” waves. More
precisely, consider an interaction involving an i-wave of order r® and strength s* and
a j-wave of order r® and strength s°.
1. If i,j < N and |s* sP| > £(h), then we used the accurate interaction solver.
We choose the order of the secondary outgoing waves to be max(r®,r%) + 1.
When i # j, the order of the primary outgoing i- and j-waves is r® and 7%,
respectively. When ¢ = j, the order of two primary outgoing i-waves is defined
to be min(r®,r?).
2. If i, < N and |s® s®| < £(h), we used the rough interaction solver. When
i # j, the outgoing i- and j-waves keep their orders r* and r?, respectively.
When i = 5, the order of the i-waves is defined to be min(r®, r%). The artificial
wave is assigned the order max(r®,r?) + 1.

3. Ifi = N+1 and j £ N, we used the rough solver. The solution contains a
j-wave and an artificial wave and the outgoing waves keep their orders r* and
8, respectively.

We checked earlier that the total number of fronts is finite for each fixed h. So
there exists a maximal generation order, say 7y, (depending on k).

LEMMA 3.2. (Number of wave fronts.) The number M, of fronts with order r is at
most polynomial in 1/h,

C
MTShT(Z;))-, r=12,... ,"max (3.8)
for some constants C(r) > 0 and some integer exponents m(r).

PROOF. By construction, the initial data contain at most 1/h jumps. Then, each
initial jump may generate N waves, possibly decomposed into O(1/h) small jumps
(when there are rarefaction fans). Therefore we obtain

- 0(%). (3.9)

There are less than M? points of interaction between waves of the first generation
order and at most C N/h outgoing waves from each interaction. Thus the number
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M, of wave fronts of the second generation satisfies

Ma <0(7) M? < 0(55)-
More generally, the waves of order r — 1 can produce waves of order r by interacting
with waves of order < r — 1. Thus the number of waves of order r is found to be

C
M, < NE(Ml +My+--+ M) M,
which implies (3.8) by induction from (3.9). O

Strength of artificial waves.

Denote by p"(z,t) the order of the wave located at z € J”(t). Away from interaction
times ¢ and for each integer r, let V,.(t) be the sum of the strengths of all waves of
order > r,

Vi)=Y lo)

zeJh(t)
ph(z,t)>r

and define also Q,(t) by
Q) =M ¥ @@+ Y 10" 8ot 1)

(@w)eal() (mweab(®)

max (ph (m,t),ph(y,t)) >r max (Ph (Iit):Ph(y:t)) 2r

Denote by I, the set of interaction times where two incoming waves of order p”(z,t)
and p"(y,t) interact with max(p"(z,t),p"(y,1)) =r.
Similarly as done above in the proof of Lemma 3.1, one can check the following
precised estimates:
e The strengths of waves of order > r do not change when two waves of order
< r — 2 interact:

V()] =0, teLU...UL_s. (3.10i)

e The change in the strength of waves of order > r is compensated by the
interaction potential between waves of order > r — 1:

Vo)] + Ca [Qr—1(8)] €0, tel,_ UL U... (3.10i)

Similarly for the interaction potentials, we have:
o At interaction times involving low-order waves, the possible increase in the
potential @, is controlled by the decrease of the potential Q:

Q-] + Ca Vo(t=) [Q)] <0, te L U...UL_y, (3.11i)

o At interaction times involving a wave of order r—1 and a wave of order < r—1,
the possible increase in @, is controlled by (the decrease of) Q,_1:

Q-]+ CaV(t—)[Qr-1()] £0, tel,_y, (3.11ii)
¢ At the remaining interactions, the potential of interaction is non-increasing

[Q-(t)] <0, tel, UL 1U... (3.11iii)
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On the other hand, observe also that

Vi) =V (1), @i(t) = Q)
Ve(0+) = Q(0+) =0, r2>2. (812)

We now claim that:

LEMMA 3.3. (Total strength of waves of a given order.) There exist constants Cs > 0
and 1 € (0,1) such that

Vi) <Csn"y, t>20,r=1,2,..., max-

PROOF. The estimates (3.10) and (3.182) yield (r > 2)
V)= 3 ]+ Ve(04) < =Cs D7 [Qra(r)],
0<7<t 0<r<t

thus
V() <Ci Y [@ra(m)]_. (3.13)

O<r<t
On the other hand, for the interaction potentials we find (r > 2)

0< Q) Q0+ D [@r(7)],

0<7<t (3 14)
< 04 Z [Q’I‘(T)]_ sup V’r(t,) + 04 Z [QT—I(T)]_ sup V(t/)v
0<r<t t o<r<t t
where we used (3.11) and (3.12).
Note that, since Q. is non-negative and Q,(0+) = 0 for r > 2,
0< Qr(t) = Z [QT(T)]+ - Z [QT‘(T)]_i
O<r<t 0<r<t
thus
Yleml_< > @], (3.15)
0<T<t 0<r<t

With the uniform total variation estimate we have also

Vi (t) SV (t) < CLCr TV (uo),
> [@r(D)]_ <supQ, <supQ < Q(0+) < CZCFTV (uo)?.

0<T<+00
Define now

Voe=swpVo(t), Q= Y. [@(7)],.
>0 0<7<+00
Therefore, we obtain from (3.13) and (3.14)

‘77' < C4 Qr-—l’

Qr < C"TV (u0)?Vy + C" TV (ug) Q1.
Thus we have

Q, < (C'C2TV (uo)? + C" TV (ug)) Qror <1 Qs

with n € (0,1), provided again that the total variation of ug is sufficiently small.
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Then, we have
Qr <" Q1 <7 C2C3 TV (w)?,
and for allt > 0
V.t <V, <Cqh,
which yields the desired inequality on V. O

To complete the proof of (2.11) in Lemma 2.2 we rely on Lemma 3.3 which shows
that the total amount of waves with large order is “small”. On the other hand, by
construction, artificial waves —when they are generated— have a small strength less
than Cy|s®s?| < C4€(h) (where s* and s” denoted the strengths of the incoming
waves).

Given € > 0, choose an integer r, such that

Cs Zﬂrﬁg

2T

Consider the total strength of artificial waves

Et)= Y |o"z1)l

ih(z,t)=N+1

For waves with orders p" > r, we take advantage of the estimate in Lemma 3.3, while
for waves with low orders p" < r, we rely on Lemma 3.2, as follows:

B0< Y 90 cemy o Yo

r<Ty 2Ty
C(r.) €
< R (re) S(h) + 5’

by keeping the worst constant and exponent among C(r) and k™). Finally, in view
of the assumption (2.5) on &, we can choose h sufficiently small so that the first term
in the right-hand side above is less than ¢/2, hence

E(t) <e for all sufficiently small h.
Since ¢ is arbitrary this establishes (2.11) and completes the proof of Lemma 2.2. O

4. Pointwise regularity properties

In this last section we state without proof some regularity properties of the solution
constructed in Theorem 2.1. Solutions to conservation laws turn out to be much more
regular than arbitrary functions of bounded variation. (Compare with the statement
in Theorem A.5 of the appendix.)

THEOREM 4.1. (Structure of shock curves). Let u = u(z,t) be a solution of (1.1)
given by Theorem 2.1 and let € > 0 be given. Then, there ezist finitely many Lipschitz
continuous curves, * = yx(t) fort € [Ty, Tk, k = 1,... ,k, such that the following
holds.
For each m and all (but countably many) times to € [T, Tk| the derivative yx(to)
and the left- and right-hand limits
Uo = lim u(z,t), Uy = lim u(z,t) (4.1)

(z,t)—(yg (to).t0) (z,t)—(yg (to)sto)
r<yg(tg) x>y (tg)
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exist. The states u_ and uy determine a shock wave with strength |ok(to)| > €/2,
satisfying the Rankine-Hugoniot relations and Lax shock inequalities. The total vari-
ation of the mapping t — oy (t) and of t — yx(t) are bounded. At each point (xo,to)
outside the set

Je(uw) = {(ys(t),t) [t € [Ty, Tk, k=1,... ,k}
and outside o finite set Z.(u), the function u has small oscillation:

lim sup |u(x, t) — u(iﬂg,to)‘ < 2e. (4.2)
({E,t)——«)(:l:o,to)

Using a countable sequence € — 0 we arrive at:

THEOREM 4.2. (Regularity of solutions). Let u be a solution of (1.1) given by The-
orem 2.1. Then, there exists a countable set I(u) of interaction points and a
countable family of Lipschitz continuous shock curves

J(u) = {(yk(t)’t)/t € {IkaTk]v k= 1a27"‘}

(both being possibly empty) such that the following holds. For each k and each t €
[Ty, Tx] such that (yx(t),t) ¢ Z(u), the left- and right-hand limits in (4.1) exist at
(yk(t),t); the shock speed yx(t) also exists and satisfies the Rankine-Hugoniot relations
and Lax shock inequalities. Moreover, u is continuous at each point outside the set
J(u) UZ(u). O
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CHAPTER VIII

NONCLASSICAL ENTROPY SOLUTIONS
OF THE CAUCHY PROBLEM

In this chapter we give a general existence result for nonclassical entropy solutions
to the Cauchy problem associated with a system of conservation laws whose charac-
teristic fields are genuinely nonlinear or concave-convex. (The result can be extended
to linearly degenerate and convex-concave fields as well.) The proof is based on a
generalization of the algorithm described in Chapter VII. Here, we use the nonclassi-
cal Riemann solver based on a given kinetic function for each concave-convex as was
described in Section VI-3. Motivated by the examples arising in the applications (see
Chapter IIT) we can assume that the kinetic functions satisfy the following threshold
condition: any shock wave with strength less than some critical value is classical. In
Section 1 we introduce a generalized total variation functional which is non-increasing
for nonclassical solutions (Theorem 1.4) and whose decay rate can be estimated (The-
orem 1.5). In Section 2 we introduce a generalized interaction potential and we extend
Theorem 1V-4.3 to nonclassical solutions; see Theorem 2.1. Section 3 and 4 are con-
cerned with the existence and reqularity theory for systems; see Theorems 3.1 and 4.2
respectively.

1. A generalized total variation functional

Consider the Cauchy problem for a scalar conservation law

Ou+ 0z f(u) =0, u=u(z,t)€R,

u(z,0) = up(z), =€ IR, (1.1)

when the flux f: IR — IR is assumed to be a concave-convex function (in the sense
(II-2.5)) and the data ug : IR — IR are integrable functions with bounded variation.
We consider the piecewise constant approximations u" = wu”(x,t) associated with
(1.1) defined earlier in Section IV-3. To control the total variation of approximate
solutions we introduce a “generalized total variation” functional V(u"(t)) which is
non-increasing in time and reduces to the standard total variation functional in the
classical regime. This functional will be sufficiently robust to work for systems of
equations (Section 3, below).

We will use the same notation as in Section II-4. The monotone decreasing
function ¢! : IR — IR is characterized by

fu) - fo'(w)

e AAOUIR

and that ¢! denotes the inverse of the function ¢¥. Recall that ¥ (u) tends to —1/2
when v tends to 0. We assume here that

-1< gah/(u) <0, u€elR,
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but, alternatively, we could restrict attention to a bounded range of values u.

Given a threshold coefficient 3 > 0, consider a kinetic function cp" :IR - IR,
which is smooth everywhere but possibly only Lipschitz continuous at u = +03 and
satisfies the inequalities

¢7Mu) < ' (u) < '(u), u>0,
P'(u) < @' (u) <@ (u), uw<O.
Define also ¢! : IR — IR by the inequalities
P'(u) <@H(u) <u, u>0,
u < of(u) < pfu), u<0,
and the condition

flw) = F(@(w) _ fu) — f(ph(u) £0
— = — , u#0.
u— ¢"(u) u — @ (u)
Our main assumptions on the kinetic function are the following ones. For some
constants 8 > 0 and

c1 € (0, 1], C2,C3 € [0,1), ca<c3<1l-—cy+eco,

(1.2)
orelsecy =1, co =c3 =0,
we impose
e the monotonicity of ¢°, more precisely
— <¢”’(w) <0, uekR, (1.3)

o the threshold condition

P =), Jul<B, (1.4)

e and the monotonicity of ¢*, more precisely
7
—c3 <o (u) < —cz, |u| > B. (1.5)

REMARK 1.1.
e Our assumptions imply for instance
P (B) —c1 (u—B) < P (u) < H(B), u>B,
PH(—0) < ¢ (u) S PH(=B) —er(u+ ), u< -,
and
©"(B) — cs (u—B) < Mu) <P(B) —ca(u—pB), u>4B,
PH(=B)—c2(u+B) <P (u) S PH—B) —cs(u+ ), u<—p.

o A typical example of interest is given by f(u) = u?,

ﬂ/2—01(u+,3), US—ﬁa
@ () =4 —u/2, u < B, (1.6a)
—B2—ci(u—-0), u>p0,

i
=
IN
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and
B/2 —c2 (u+ B), u < -0,
Pfu) = ¢ —u/2, -B<u<p, (1.6b)
-B/2-c2(u—p), u=p,

where the constants ¢; and ¢, satisfy
1/25(}131, Cl+62:1.

The kinetic function derived in Section III-2 from a dispersive-diffusive regu-
larization of (1.1) has the form (1.6) with ¢; =1 and c; = 0. This last case is
covered by the second line in (1.2).

e More generally, the assumptions (1.3)-(1.5) are satisfied by any concave-
convex flux-function and any kinetic function generated by nonlinear diffusion-
dispersion, at least as far as values near the origin are concerned. (This is,
of course, the situation of interest in the application to systems, in Section 3
below.) The conditions (1.2) will be motivated in Remark 1.6, below.

O

We will work with a generalized total variation functional V(u), defined as
follows. If u: IR — IR is a piecewise constant function, then we set

V(u) =) 5(u-(2),us(2)),

x

where the summation is over all points of discontinuity of v and &(u_,u,) denotes
the generalized strength of the wave connecting the left- and right-hand traces
u_ ;= u_(x) and uy = u,(z) and is defined as follows. Note first that, if 5(u_,uy) =
|uy —u_|, then V(u) coincides with the standard total variation TV (u). Instead, to
handle nonclassical solutions we choose (see Figure VIII-1)

luty —u_|, u-uq 2> 0,
Fluyuy) =4 Jus — (1= K(us))ugl, u_uy <0, Juy] < b)),
lu + ¢ (un) = (2= K(u-)) o (u-)], ug = ¢ (u-), wn
where K is a Lipschitz continuous function satisfying
K(u.)€ 0,2,

K(u-)=0 when |[u_| <g.

Observe that when |u_| < 8 we have *(u_) = ¢"(u-) = ¢*(u-) and, therefore,
& coincides with the standard wave strength, that is, 6(u_,uy) = |u4 — u_| for all
uy. Note that the definition (1.7) does not specify §(u_,u+) when u; belongs to
the range u_uy < 0, |uy| > |@*(u_)|, and |uy| # |¢*(u-)|, since the generalized
strength will not be of real use within this range. For convenience in the presentation
we can define 6(u_,uy ) for arbitrary u_ and uy as being the sum of the generalized
strengths of the two waves in the associated Riemann solution. (See the dashed lines
on Figure VIII-1.)

Observe also that

G(u—,uy) >0 forall uy #u_,
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and, more precisely, for every M > 0 we have

1-¢
1+¢;

lug —u—| <F(u—,us) <|uy —u_|, u_,uy € [—M,M], (1.9)

where
¢, := sup{|¢’(u)/u| /u € [-M,M]} < 1. (1.10)

(When ¢; < 1, ¢} can be replaced with ¢; and, then, (1.9) holds for arbitrary u_,u,.)
Hence, the generalized strength and the generalized total variation are equivalent to
the standard ones.

6(u_,u+)

A

Y

Plu) i) 0 0 "

Figure VIII-1 : Generalized strength.

REMARK 1.2. The form of the generalized total variation is motivated as follows:

e The standard total variation cannot be used here since, when a nonclassical
shock is generated at some interaction, the standard total variation increases
by some (large) amount of the order of the strength of the incoming waves.

e From considering the interaction cases listed in Section IV-3 one can show
that, to obtain a non-increasing functional, it is necessary that the strengths of
nonclassical and of crossing classical shocks be weighted less than the standard
strengths. (Note that a crossing classical shock may be transformed into a
nonclassical shock through interactions.)

e Additionally, for the generalized total variation of the nonclassical Riemann
solution to depend continuously upon the left- and the right-hand states, the
strength of the classical shock from u_ to ¢#(u_) must coincide with the
strength of the nonclassical shock from u_ to ¢°(u_) plus the strength of
the classical shock from ¢’(u_) to @f(u_). The definition (1.7) satisfies this
property as is clear from

Fums (1) = fus — (1= K () @h(us)] - ¢ (uo) — oH(uo)]
= (u, b (u)) - 5 (us), @ (u).
O

The generalized strength depends on the function K, which should satisfy some
constraints for the total variation of approximate solutions of (1.1) to be non-increasing.
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THEOREM 1.3. (Diminishing generalized total variation.) Under the assumptions
listed above, suppose that the function K satisfies (1.8) and the following differential
inequalities for all |u] > 3

max (- (24 Ko¥), 2~ K) ¢ —2(1+¢")) S @K' < @2-K)o¥.  (L11)

Consider the piecewise constant approzimations u" = uP(x,t) defined in Section IV-3
and based on the nonclassical Riemann solver. Then, the function

t = V(uh(t))
18 non-increasing.

It is easy to check that by our assumptions (1.3)-(1.5) the intervals involved in
(1.11) are not empty. The actual existence of a function K is established in Theo-
rem 1.4 below.

PROOF. Observe first that (1.11) implies that the functions K, 2 u+¢#(u), 2 (u+¢")—
(2 - K) ¢!, and (2 — K) ¢! are non-decreasing for u > 3. The first three functions
are also non-decreasing in the region 0 < u < f (region in which we simply have
K = 0). We consider a front connecting a left-hand state u; to a right-hand state u,
and interacting at some time ¢y with some other front connecting u,, to some state
u,. For definiteness we always assume that u; > 0, the other cases being completely
similar. We use the notation and classification given in Section IV-3.

Case RC-1 : Recall that u; < u,, and that ©*(u;) < u,. We distinguish between
two subcases. When u, > 0, the result is trivial and

[V(u"(to))] = —2|um — w] < 0.
When u, < 0 we have
[f/(uh(to))] = (w — (1 — K(w))ur) = (tum = w) — (tm — (1 — K(tm)) ur)
=2 (u — Um) + ur (K(w) — K(um))
= (2 (w1 — Um) + 0 (w) (K (uy) — K(um))) + (ur — oH (1)) (K () — K ()
< 2w+ K(w) <p“(ul)) = (2um + K(um)wﬁ(um)),

since u, — @¥(u;) > 0 and K is non-decreasing by (1.11). Furthermore, by (1.11) we
have that 2u + ¢! K is non-decreasing, so that [V (u”(t5))] < 0.

Case RC-2 : We have u; <, and o (up) < u, < 0" ().

[V(u(to))] = (w + ¢ (w) — (2= K(w)) ¢* (w)) + (¢ (w) — ur)
— (tm — w) — (um — (1 = K(um)) Uur)
=2(w — um) + 29" () = (2 = K(w)) ¢*(w) — K (um) ur
= 2" (w) — ¢ ()] = K (um) |ur — ¢ (um)]
+ (2w + K(w) cpﬁ(ul)) — (2um + K(um) cpu(um)).

The first two terms are non-positive and may vanish. For the last two terms we use
the assumption made in (1.11) that 2u + ¢*(u) K (u) is non-decreasing.
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Case RC-3 : We have max(wb(ul),cpﬁ(um)) <, < () <0< uy < U, thus

[V (u"(t0))]
=u + ¢ (w) — (2 — K(w)) o (wr) + (ur — " (w))
— (um — w) = (Um — (1 = K(um)) ur)
=2(u — um) — (2 — K(w)) o*(w) + (2 - K(um)) u,
= =12 = K () 1H () = el + (2 (0t = ) + () (K () = K (um)) ),
and we conclude as in Case RC-1.
Case RN : We have 0 < u; < Uy, and u, = gob(um), thus
[V(Wh(to))] = (w + ¢ (w) — (2 = K(w)) @*(w) + (9" (w) — & (um)) = (m — w)
- (um + @b(um) -(2- K(“m)) (pﬂ(um))
= (2u+2¢(w) - 2 - K(w) ¢ (w))
— (2 + 26 (um) = (2= K(um)) ¢Hum) ),

which is non-positive since the function 2u 4+ 2’ — (2 — K) ¢! is non-decreasing by
(1.11).

Case CR-1: We have ¢*(u;) < u, < 4, <0 < u, thus

[V(uh(to))] = (ul -(1- K(ul))ur) — (ul - (1 - K(w)) um) = (Um — ur)
= —K(u) |t — ur|.

Case CR-2 : This case is trivial and

[V(uh(to))] = —2|tp — U

Case CR-3 : We have u, < go"(ul) < o (w) < um <0 <y, thus

[V (uh(t0))] = (w + ¢ (w) — (2 — K(w)) &*(w)) + (" (w) — uy)
—(w — (1= K(w)) um) — (um — ur)
= —K(w) [um — *(w)| - 2|6"(w) — ¢ (w)].

Case CR-4 : We have ¢’ (u) < u, < 0¥ (0;) < tm < 0 < uy, thus

[V (@t (to))] = (w +¢"(w) = (2 = K(w)) ¢*(w)) + (ur — ¢"(w))
—(w— (1= K(w)) tm) — (um — ur)
= —K(w) |um - wﬂ(ul){ -2 |<p”(ul) - uT|.

Case CC-1: We have ¢!(up) < u, < upy, < u;. When u, > 0 the result is trivial
and

[V (u"(t0))] = 0.
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When u, < 0 we have

V' to))] = (w = (1= Kw))wr) = (wr = um) = (tn = (1 = K (um)) wr)
= —|K(w) — K(um)| ur|,

which is non-positive since K is non-decreasing.
Case CC-2 : We have (p”(ul) <Up < Up < wu(um) < u;. When u, < 0 we find
[V(uh(tg))] = (w — (1 - K(w))ur) — (w — (1 — K(w)) tm) — (ur — )
= —|2 — K(w)| |ur — |-
When u, > 0 we find

[V (u"(t0))] = (w —ur) = (w = (1 = K(w)) um) = ((1 = K (um)) tr — unm)
= —|2 - K(ul)l |Um| - |2 - K(um)‘ ['U’Tl’
since Uy, < 0.

Case CC-3 : This case does not occur here since the function ¢* is non-increasing.
Case CN-1: We have 0 < u,, < u; and o(u;) < u, = @ (tm), thus
[V(u"(t))] = (w — (1 = K(w)) ¢" (um)) = (w — um)
~ (um + ¢ (m) = (2 = K (um)) ¢ ()
= (2= K(um)) (¢} (tm) — @ (um)) + (K () = K (1)) ¢ ().
When u,, < 3 the result is immediate (same formula as in Case CC-1):
[V (" (t0))] = —K () |" ().
When u,, > 3 we write
[Vt (to))] == (2 = K(w)) |¢’ (um) — ¢* ()]
— (2 - K(w)) ¢F(w) = (2 = K(um)) ¢*(um)) <0
since (2 — K (u)) ¢"(u) is non-decreasing for u > 3 by the second inequality in (1.11).
Case CN-2 : We have ¢¥(u) < um <0 and 4, = ¢ (uy,), thus
[V(uh(t)] = (w = ¢ (um)) = (w = (1 = K(w)) um)
- ('“m - SDb(“m) + (2~ K(um)) ‘Pﬂ(um»
= —[2 = K(w)| |um| = 12 = K (um)| [ (um),
since Uy, < 0 and @*(upy) > 0.
Case CN-3 : We have 0 < um, < u; and ur = ¢©°(um) < (), thus
[V (u"(to))] = (w + ¢ (w) — (2 — K(w)) ¢* (w)) + (¢ (um) — ¢ (w)) — (w1 — um)
- (um + Wb(um) - (2 - K(um)) ‘Pu(um))
= (K (w) — 2) ¢* (w) — (K (um) — 2) ¢* (um),
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which is non-positive since (K — 2) ¢! is non-increasing by (1.11). Note that as in
Case CN-1 above, the second inequality in (1.11) is required in the region |u| > £,
only.

Case NC : We have ¢f(u;) < u, < 0% () < u and uy, = ¢°(w). When u, < 0 we
find

[V (u(20))]
= (w— (1= K(uw))ur) = (w +¢"(w) = (2= K(w)) ' (w)) - (ur — " (w))
= —[2 = K(w)| [ur — ¢*(w)]-

When u, > 0 we find

[V (ut(t0))]
= (w —ur) — (w +¢"(w) = (2= K(w)) o' (w)) — (1 = K(tm)) ur — tim)
= —|2 = K (w)] " (w)| — 12 — K (um)| |ur|-

Case NN : We have u,, = ¢”(u;) and u, = ¢"(uy,), thus

[V (Wh(t))] = (w = ¢ (um)) — (w + ¢ (w) — (2 — K (w)) ¢"(w))
— (=¢" (w) — ¢ (wm) + (2 — K(um)) ¢* (um))
= —|2 = K(w)| |¢*(w)| = 12 = K (um)| |¢* (um)|-
This completes the proof of Theorem 1.3. ]

We now establish the existence of a function K satisfying (1.11). We also estimate
the rate of decay of the generalized total variation.

THEOREM 1.4. (Existence of a function K.) Consider a concave-conver fluz-function
f, a kinetic-functions ©°, and constants 3, c1,ca, 3 satisfying the assumptions (1.2)-
(1.5) on an interval

Ig = [-(1+£)B,(1+k)A] (1.12)
for some k > 0. Then, the function K defined by
-K.(u+8), u<-p,
K(u):=4 0, lul < B, (1.13)
K* (U - ﬂ)a U Z /Ba

satisfies the differential inequalities (1.11), provided the constant K, > 0 satisfies

A() S K* S min(Al,Ag,Ag) (1.14)
where 0 X )
C3
Agi= ——, Aji=—, Agi= ——1——
CTIE@ T kB T (QR(B) [ + 2e5 5 (L.15)
2 (1 —c + 02) ’

A = 1 AB T et o) rf

(as well as analogous inequalities with |o*(B)| replaced with |p%(—B)|).
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THEOREM 1.5. (Decay rate for generalized total variation.) Under the assumption
made in Theorem 1.4, consider the piecewise constant approzimations u® = u"(z, t) of
the Cauchy problem (1.1), defined in Section IV-3, based on the nonclassical Riemann
solver associated with the kinetic function ©°. Suppose that the range of u® is included
in the interval Ig . If in (1.14) we have also the strict inequality

K, < min(Al, A2),

then at each interaction time ty involving three constant states u;, Um, and u,., we
have the decay rate

[V(u"(t))] < —cO"(to) (1.16)
for some uniform constant ¢ > 0, where the cancelled strength ©"(ty) is defined
using the classification in Section IV-3 by

|Um — wil, Cases RC-1, RC-2, RC-3,
[ur — U, Cases CR-2, CC-2, CN-2,
O (to) == ¢ |ur — @ (w)], Cases CN-1 (when |uy| > |8|), NC,  (1.17)
| (urm) — o*(w)|, Case NN,
0, other cases.
REMARK 1.6.
e When f(u) = u3 we find ¢%(u) = —u/2. Therefore the inequalities (1.14) on
K, become
8 1 1 1—ci+cs
<—-K,< —_—, y s
%-4K'—nm(2n 1+2cark 1+2@2+c9n)

which, under the assumption made in (1.2), always determines a non-empty
interval of values K,, if « is sufficiently small at least. (Either c3 < 1—¢; +¢o
and we can find k sufficiently small satisfying these inequalities, or else c3 =
K, =1—c; + cz =0 and there is no constraint on .)

e More generally, for general concave-convex flux-functions we observed ear-
lier (Chapter II) that ¢!(u) ~ —u/2 near the origin, so that (1.14) always
determines a non-empty interval of K, if attention is restricted to a small
neighborhood of the origin. Observe that when c;, c2, and c3 are close to 1/2
we can take & close to 1/2.

e In the special case (1.6) with ¢; =1 and ¢p = ¢3 =0, we find K =0 and

3lpf(u)|  if uy =@ (u-),
|uy —u—| in other cases.

&(U_, U+) = {
We have also

Ap=0, A= Ay =

2
kB’
and, concerning the constants w; defined below, w3 = wy = 0.
e In view of the condition Ag < K, in (1.14) (assuming that c3 # 0), we see that
K, tends to infinity when 3 — 0, so that the approach in this chapter is limited
to the (large) class of kinetic functions admitting a threshold parameter. O
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Theorem 1.4 gives us a new proof for the uniform estimate of the total variation
established earlier in Theorem IV-3.2. We can restate here this result as follows.

THEOREM 1.7. (Existence result for the Cauchy problem.) Given a concave-convex
fluz-function f, a kinetic function ¢, and constants 3, c1, ¢z, and c3 satisfying (1.2)-
(1.5) on some interval Ig ., then provided B and k are sufficiently small we have the
following property. For all initial data ug in L' N BV with range included in the
interval Ig ., consider the sequence of piecewise constant approrimations uh based
on the associated nonclassical Riemann solver and defined in Section IV-3. Then,
the total variation of u® remains uniformly bounded, and the sequence u" converges

almost everywhere to a weak solution of the Cauchy problem (1.1).

Observe that if the range of the initial data is included in the interval I3 ., then
by our assumptions the same is true for the (approximate and exact) solution at time
t. Theorem 1.7 covers general concave-convex functions in a neighborhood of the
origin and a large class of kinetic functions satisfying a threshold condition. Still, the
assumptions made here on the kinetic function are stronger than the one required in
the analysis of Section IV-3. But, the result here is also stronger since we determine
the decay rate of the generalized total variation at each interaction. The interest of
the present approach lies in the fact that it can be generalized to systems, as we will
see in Section 3.

PROOF OF THEOREMS 1.4 AND 1.5. Observe that the inequalities (1.11) are trivially
satisfied in the region |u] < @ since K = 0. We will determine K, > 0 so that
(1.8) and (1.11) hold in the range u € ([3, 1+ k) ﬁ), say. Dealing with the interval
(—=(1+ k) B, —B) is completely similar.

To guarantee K < 2 we need that K ((1+ ) 8) < 2, that is,

2
K, <—.
S %3
To guarantee that |pf| K’ < 2 — |o"'| K we need
(“Ph(ﬂ)l +c3(u— ﬂ)) K,<2—-c3K,(u— ﬁ)»
that is,

2
Ki<—eoF———.
|08 (B)] + 2c5 K 8
To guarantee that (K — 2) ot < |f| K’ we need
(2 - K* (u - ﬂ)) c3 < (I‘ph(ﬂ)l +c2 (u - IB)) K*a u € [IB’ (1 + K:) IB]?
that is,
203

K2 1aten

|
Finally, to guarantee that |p#| K’ <2+ 2 cp", + (K —2) ¢ we need
(19" B +c3(u=B)) K <2-2¢1+ (2 K (u—B)) ez,

that is,
K, < 2(1—Cl+62) .
| (B)] + (c2 + c3) B
This completes the derivation of the inequalities (1.16) and (1.17).
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We now estimate the rate of decay when the constants

= i _ 9K,
1= g2 () KB>0
and ’
2 Ogugu(l1+n)ﬁ( + K'(u) o (u) + K(u) ¢ (u))

>2— (|¢"(B)| +2c368) K\ >0
are positive. For completeness in the calculation, we also use the notation

wpi=  omf (@~ K@) ¢ () - K'(u) ¢*(w)
> |p"(B)| Ky —2¢3 >0
and , ,
wei= dnf (242 ¢ () + K'(w) o (u) + (K (u) — 2) o* (u))

>2-2c+(2-K.k8) ez - ([(ph(ﬁﬂ +c3B) K > 0.
Under our assumptions, w3 and ws may well vanish however. (See an example in
Remark 1.7.)

Case RC-1 : In the first subcase
[V (u"(t0))] = —2]tm — wl,

and in the second one 5
[V(uh(to))] < —wg [t — uyl-

Case RC-2 : )
[V (@"(t0))] < —wa |tm — wl.
Case RC-3 : )
[V(uh(to))] < —wsg [ty — ).
Case RN : )
[V(uh(t0))] < ~wa |um — | 0.
Case CR-1:

[V (uh(to))] = =K (w) um — url,
which vanishes for u; < .

Case CR-2: ;
[V(u"(to))] = —2|ur — Uml.

Case CR-3 :
[V (u(t0))] = —K (w) um — 9" (ur)] — 2|¢* (w) — ¢ (w)] < 0.
Note in passing that the estimate becomes
[V(uh(to))] < =2 |ty — Uy

in the special case that u,, = ¢*(u;) and u, = ¢ ().
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Case CR-4 :

[V (" (t0))] = =K (w) [um — ¢*(w)| = 2|6 (w) — ur] < 0.

The estimate becomes
[V (t0))] < ~2 fum — |

in the special case um, = ¢#(u;).
Case CC-1 : In the first subcase
[V(u"(t0))] =0
and in the second one
[V(u"(to))] < —lur| |K (w) — K (um)],
which vanishes as u, — 0.

Case CC-2 : In both subcases

[V(uh(tg))] < —wy |Up — Upp)-

Case CN-1 : When u,, <  we have
[V(uh(to))] <0.
When u,, > 8 we find

[V(Uh(tO))] < ~wq lw"(um) - ‘Pﬁ(ul)i = —w |u, — Sﬂn(uz)l-
Case CN-2:
[V (" (t0))] < =1 [um = ¢ (um)| < =5 [ = ],

since |tm — @ (Um)| < 2 |tm — @ (um)| by our assumptions (1.3) and (1.5).
Case CN-3 :
[V (" (t0))] < —ws [us — um| < 0.

Case NC : In both subcases

[V(uh(to))] < —wy Jur — oHw)].

Case NN :
[V (u"(t0))] < w1 l¢* (w)] — w1 0" (um)l,

which is bounded away from zero. This completes the proof of Theorems 1.4 and 1.5.
O
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2. A generalized weighted interaction potential

The (linear) functional described in Section 1 is non-increasing, but fails to be de-
creasing in some interaction cases. Our aim in the present section is to determine a
(quadratic) functional which will be strictly decreasing at each interaction. Consider
the generalized weighted interaction potential

Q) =Y qlu—(2),u4+(2)) 6 (u-(2), us () F(u-(y), u+(¥)), (2.1)

z<y

where G is the generalized strength defined in (1.7) and ¢ is a weight determined so
that a nonclassical shock located at x is regarded as being non-interacting with waves
located on its right-hand side y > x. This is motivated by the fact that nonclas-
sical shocks for concave-convex equations are slow undercompressive. See also the
classification in Section IV-3.

We generalize here the definition (IV-4.8) introduced first for classical solutions.
Setting uy := u4(z,t) we define the function q(u_,uy) by

1, 0<u. <uy,
o(p(u_,uq)yug), @H(u) <uy <u_ and u_ >0,
alu_yuy) =1 0, uy = (), 22)
(p(uc,ug)yug), u- <uyp <hu_)and u_ <0,
1, uy <u- <0.

where p(u_,uy) # u—,u4 (when u_ # uy) is defined by
Fpumyus)) = flus) _ fluy) = flus)

plu—,uy) —u_ Uy —u-
and &(u,v) is a variant of the generalized strength defined earlier:
v —ul, uv > 0,
F(u,v) := { | | - (2.3)
lu—(1-K(u))v|, uv<0.

We suppose that the function K is defined by (1.13) to (1.15). The main result
in this section is:

THEOREM 2.1. (Generalized interaction potential.) Consider solutions with total
variation less than some fized constant V. Let f be a concave-convex flux-function f
and 6, € (0,1) be sufficiently small constants. Then, consider positive constants (3,
K, C1, ¢;, and ¢z, c3 satisfying (1.2) and ¢} < 1 together with

(1+r)B <4,

2(1 —C +02)K,,8 < (24)

[P (B)| + (c2 +ca) kB~ 77
and let ©° be any kinetic function satisfying (1.3)~(1.5) and (1.10) on the interval
Ip . Then, for every constant C, such that

C.0V <A C.62<)B,

the piecewise constant approzimations u® of Section IV-3 (with range included in Ig
and total variation less than V') satisfy at each interaction (for some uniform ¢ > 0):

[V (uh(t0)) +Cx Qu"(t0))] < —~¢|[V (" (to))]| - ca(ur, tm) |t — tm| [tm —ur. (2.5)
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REMARK 2.2.
e In fact we have

[V (to)) + C. Ol (t0))] < { el vl in Case NC,

—cq(ug, Um) |Ul - um| |um - u,~| in other cases.

Observe that Case NC is the only interaction when a nonclassical shock meets
some classical wave on its right-hand side: in that case, the interaction po-
tential between the two incoming wave vanishes (according to the definition
(1.19)) but the generalized total variation of the solution decreases strictly.

e Under the conditions (1.2) there always exist some 3 and § (sufficiently small)
such that the hypotheses (2.4) hold. This is clear since for £ — 0 the second
condition in (2.4) is trivial. On the other hand, k cannot be arbitrary large
since the same condition with K — 0o becomes 2 (1—¢; +¢2) < (2 +¢3) which
would contradict (1.2). O

PROOF. Note first that the second condition in (2.4) combined with (1.14)-(1.15)
guarantees that
K.kB<A (2.6)

and in particular that K(u) < A. Note also that the function p satisfies

|p(ut ur) = p(ut, um)| < (14 O(9)) | — url,

(2.7)
1ul — U, — P{Um, Ur) + p(ul,ur)} < Colup — upl

When f(u) = u® these inequalities are obvious since p(u,v) = —u — v. For a general
flux-function p(u,v) ~ —u — v and these inequalities hold in a sufficiently small
neighborhood of 0, at least.

We consider the same decomposition as in the proof of Theorem 1V-4.3:

[Q(uh(to))] =P+ P+ P;, (2.8)

where P; contains products between the waves involved in the interaction, P, between
waves which are not involved in the interaction, and P; products between these two
sets of waves.

On one hand, we have

Py = —q(w1, Um) 5 (U1, Um) 6(Um, Ur) < —cq(Ur, Um) [t — U | [Um — ur|,

since there is only one outgoing wave or else the two outgoing waves are regarded as
non-interacting in view of the definition (2.2).

On the other hand, P, = 0 since the waves which are not involved in the interac-
tion are not modified.

Call W, and W, the (weighted) total strength of waves located on the left- and
right-hand side of the interaction point, respectively. Let us decompose P3 accord-
ingly, say

P3 = Py + Ps;.
In view of the definition of the potential and the fact that the generalized strength
diminishes at interaction (see (1.14)) the contribution to @ involving waves located
on the left-hand side of the interaction is non-increasing:

Py =W, (6(ulaur) — o (ug, Um) — &(uraum)) <0.
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To deal with waves located on the right-hand side of the interaction point we set
P3,. = Q. W, with

Q- = q(ur, up,) 3(ut, U, + (U, ur) 3 (2, ur)
— q(ur, um) 6 (U1, Um) — @(tUm, Ur) (U, Ur),

(2.9)

where we assume that the outgoing pattern contains a wave connecting u; to some in-
termediate state u/,, plus a wave connecting to u,. We will show that either ,. < 0 or
else the term Q, W,. can be controlled by the cancellation determined in Theorem 1.4.
We need only consider cases when one of the states under consideration at least is
above the threshold 3 since, otherwise, the desired estimate was already established
in Theorem IV-4.4.

The notation O(4) refers to a term which can be made arbitrarily small since
we are restricting attention to values sufficiently close to the origin. In view of the
classification given in Section IV-3 we can distinguish between the following cases.

Case RC-1 : When u, > 0, we obtain
Q= ((1 - K(p(ulaur))) Upr — P(Ulyur)) (ul - ur) - (um - ul)
- <(1 - K(p(tm, “r))) Uy — p(umaur)) (Um — ur)
= —(14 (1 + K,8) O()) |um — w| <0,
provided é and K.,¢ are sufficiently small. When u, < 0, we obtain similarly

Qr = (ur — p(us, ur)) (w — (1= K(w)) ur) = (m — w)
— (ur — p(um,ur)) (um - (1 — K(um)) ur)
- —(1 + (1+ K.6) 0(5)) |t — w1] < 0.

Case RC-2 :
Q, = (@b(ul) - Ur) — (U — W) — (Ur - p(um,ur)) (um —(1 - K(um)) ur)
< (‘Pb(ul) - @b(um)) - (um - ul)

; —(1—c) |tm —wl.

Case RC-3 : Using ¢°(um) < ¢’ (w;) we obtain
Q= (o (), ur) = (1= K (p(¢ (), u))) ) (ur = ¢ (1))
— (U — W) — (ur - P(um’ur)) (um — (1 - K(um)) ur)
When u,, — u; we have u, — ©!(x;) and p(¢"(w),u,) — u;, thus Q, converges

toward
(ur = (1 = K (w) 9" (ur)) (" (ur) = " (w))

— (" (w) — " () (w — (1 — K(w) " (w)),
which vanishes identically. Therefore, in the general case we have

Q= —(1 + (14 K.8) 0(9)) |t — | < 0.
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Case RN :
r =" () = ¢ (um)) — (um — w)
= (1 —c) [um — wl.

l/\ ||

Case CR-1:
Qr =(ur — p(u, ur)) (w — (1 = K(w)) ur)
= (um = p(ut, um)) (w — (1 — K(w)) m) — (U — ur)
= (14 0(8)) [t — s].
Case CR-2:
Q= (1= K(plw, ur))) ur = plur, ur)) (ur = ur)
= (1 = Koty um))) wm = plut, um) ) (w1 = ) = (ur = )
- _(1 + (1 + K.0) 0(5)) |t — uy| < 0.

Case CR-3 :
O =(6" () = ) = (e = p(ut,tum)) (s = (1 = K (1)) ) = (tm = )
1P () = tn] — [t — (21, )| it — (1 = K (1)) ]
Case CR-4 :
0 =(ple (), ur) = (1= K(p(¢ (), ur))) wr ) (ur — ¢ (w))
~ (ttm — (1, Um)) (u, - (1-K(w)) um) = (U — 1)

By construction, we have 0, = 0 in the limiting case u, = u,, = ¢¥(u;) since then
p(® (w),ur) = u; and p(uy, Uy ) = ¢ (u;). Therefore, in the general case we find

Qr =(1 + K,8) O(8) |ur — o (w)| + (1 + K.6) O(8) |ttm — ¢ (w)] — |ttm — ur|
- (1 + (1 + K.6) 0(5)) i — ur| < 0.
Case CC-1 : When u, > 0 we have
Q4 =((1 = K(p(us,wr))) wr ~ ple,ur) ) (10 = wr)

= (1= K(p(ut, ) tm = putytm) ) (11 = o)
= (1= K(ptm, wr))) tr = plty 1) ) (2 = )

= —(pur,ur) = plas, um)) (wt = )

= (1 =t = P, ) + plut, ) ) (1t — )
= (= Koty um)) tm + K (p(ou, wr)) wr ) (11 = )

+ (=K (o, ) + K (platms 1)) (11 — 1),
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therefore
Qr < —(plur, ur) — plur, um)) (w — um)

= (w — Um — p(Um, ur) + p(ur, ur)) (Um — ur)
+ (K6 + max K) u; — tm| [tim — ur]

—(1 = Ki6 + max K + O(8)) [ur — tm/| |tm — url
by (2.6)-(2.7).
When u, < 0 we have along similar lines

Q. =(ur — p(ul,ur)) ( -(1- K(ul))ur)
= (1= Kol 1)) tm = pltt,tum) ) (11 = )
= (ur — p(um, ur)) (um — (1 = K(um)) ur)
(um — Uy — p(ug, Um) + p(ul,ur)) (ug — um)
~ (p(u, ur) = p(tm, ur)) (tm — ur)
= (ur = p(tm, ur)) K (um) ur + (ur — p(w, ur)) K(w) ur
+ K(p(u, um)) um (ur — um),

therefore
0 = (s, ) = plat ) ) (w1~ )
(

= (w — um + pluw, ur) — P(um,ur)) (Um — ur)
¥ (K*é + (24 0(5)) ma,xK) 6, — ] [t — ]

< = clup — U] |Um — ur,
where we also used |um|, |ur| < |tr — Um|.

Case CC-2 : When u, < 0 we have
Q= (ur — p(w, ur)) (w — (1= K(w)) uyr)
~ (um — p(ut, um)) (w — (1 — K(w)) tm)
= (plum,ur) = (1= K(p(tn, ur))) ur ) (ur = )
= O(6) [ur — uml,

which can be controlled by the cancelled strength |u, — um,| in (1.16)—(1.17), provided
C. 6 TV (u(t)) is sufficiently small. When u, > 0 we find

0, =((1 - K(p(u, ur) ur — plua, ur) ) (1 — )
— (um — p(ul,um)) (ul - (1-K(w)) um)
= (p(tm, ur) — ur) (tm — (1 = K(um)) ur).

In the formal limit u, — u,, (possible only if, simultaneously, u,, — 0) we find
Q. — 0. Therefore, using ||, |ur| < |ur — um| we obtain

Q = ((1 — K (p(u1,ur))) thr — tm + p(u, Um) — p(w,ur)) +0(6) |ur — tm|
=0(98) [ur — Um|,
which can be controlled by the cancelled strength.
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Case CN-1 : The case u,, < 3 is the same as the case CC-1 with u, < 0. When
Uy, > B we have

0 = (" (m) — p(¢ (um), ) (ur — (1 = K(wr)) ¢ (um))
- ((1 — K(p(w,um))) tm — p(w,um)> (1 — )

But, when u; decreases toward u,,, the value (1) increases and one reaches first
equality in the inequality !(w;) < 1, = ©"(un), and one can check that €, is non-
positive when ¢f(u;) = u,: this is actually a special case of Case CN-3 treated below.
Hence, by continuity we find

Q. < 0(8) | (um) = ¢*(w)| = O(8) Jur — ¥ (w)],
which can be controlled by the cancelled strength.
Case CN-2 :
O = (1 = K(p(us, ¢ () ¢ () = plt, ¢ () ) (1 = ¢ (tm)

= (Um — p(ut, um)) (w — (1 = K(w)) um)
< O(8) |lur — tml,

which is controlled by the cancelled strength.
Case CN-3 : Since |’ () — ©*(tm)| < U — Unm| We have
0 =(p(e (1), ¢ (um)) = (1 = K(ple* (), ¢ (um))) " () ) (" () — ¢ ()
= (= K, um))) i ~ oo, 0m) ) (1 = )
< s = tm| (= p(¢" (w0), & (um)) = put, um)

+ (1= K(p(uty ) ttm = (1 = K(p(* (u2), @ () @ () )-
But we have
(1= K (pluty um))) trm = (1 = K(p(* (us), ¢* () (i) )-
> U (1 ~max K) > 0.
and for ¢ sufficiently small
—p(" (w), " (um)) = plutyum) = (1+0(8)) (w+ ¢ (w) + um + ¢* (um)) 2 0.
Therefore 2, < 0.
Case NC : When u, <0 we find
Q, z(u'r - ,D(Ul,ur)) (ul - (1 - K(ul)) ur)
= (b (w), ur) = (1 = K (ol (), ur))) e ) (e — ()

In the limiting case u, = ©*(u;) we have p(u, u,) = @ (w), p(©"(w), u,) = w, and
thus €2, = 0. Therefore, in the general case we find

Q= 0(9) Jur — (pﬁ(ul)‘,
which can be controlled by the cancelled strength.
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When u, > 0 we find
0, =( (1= K(pw, u) v = plw,ur)) (w — uy)
= (ol (w)yur) = ur) (1 = K (& (w) wr — (1))
Formally, if u, — ¢#(u;) we would find p(uz,u,) = ¢"(w), p(®(w),u,) = w;, and
Q,. = 0. Therefore, in the general case we have
Qr = O(8) Jur — ¢*(w)l,
which can be controlled by the cancellation.

Case NN : We have u,,, = ¢*(w) and u, = ¢°(uy,), thus

Q= (1 = K(p(* (um), w))) ¢ (um) = ol (um), wr)) (w1 = ¢° ()
= 0(8) luy = w| = O(¢?),

which, thanks to our condition C, 62 < A, is controlled by the cancelled strength
which is
Jur — oH(w)| < |"(B)| = O(B)
This completes the proof of Theorem 2.1. ]

3. Existence theory
We now turn to the Cauchy problem for the system of conservation laws
Ou+0,f(u) =0, u=ulzt)el (3.1)

under the usual assumptions of strict hyperbolicity in U = B(dy). Following Chap-
ters VI and VII, we assume that (1.1) admits genuinely nonlinear or concave-convex
characteristic fields. (The analysis can be extended to linearly degenerate or convex-
concave fields.) Throughout this section we strongly rely on the notations and as-
sumptions introduced in Sections VI-2 to VI-4. In particular, a parameter p; is
provided for each i-wave family and, for each concave-convex characteristic field, it is
normalized so that

wi(u) =0 if and only if V;(u) - r;(u) =0.

Based on the parameter p; we defined the critical value /J,E in Lemma VI-2.3. On the
other hand in Section VI-4, to determine the admissible nonclassical shock waves in
each concave-convex i-family we prescribed a kinetic function u’. Finally, from the
parameter u? we defined the companion value ug (see the formula (VI-4.3)).

Beyond the assumptions made in Section VI-4 we also postulate the existence of
a threshold value for the mapping !, that is: there exists 8; : U \ M; — IR which
is defined and smooth away from the critical manifold

M; = {u €U/ V() - ri(u) = o}

and satisfies the following four properties for some constant 37 > 0:
e VB -r; <0on M UM;*, where

ME = {u eU/ VN 1i(u) S 0},
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o Bi(u) € (—28;,-6;/2) for all u € M, while B;(u) € (8;/2,28;) for all
u € M;,
e and
W) = piu)  when |ui(w)] < |6i(w)]. (32)
e Additionally, the kinetic function u is smooth everywhere but possibly only
Lipschitz continuous along the threshold manifolds

N = {u € M7/ palw) = Bi(w)}.

The condition (3.2) means that, in a neighborhood of the manifold M; the nonclassical
Riemann solution described in Section VI-4 reduces to the classical one (Section VI-
2). Our assumptions cover the examples of interest arising in continuum physics; see
Remark I1I-5.4 for instance.

Figure VIII-2 : Critical and threshold manifolds.

To solve the Cauchy problem associated with the system (3.1) we follow the strat-
egy developed in Chapter VII, the novelty being that we now rely on the nonclassical
Riemann solver. We will only stress here the main differences with the classical case.
The approximate solution may contain classical and nonclassical shock fronts, rarefac-
tion fronts, and artificial fronts. By definition, an approximate nonclassical wave
front is a propagating discontinuity connecting two states satisfying the Hugoniot
relations and the kinetic relation (up to possible errors of order O(h)).

Based on the study in Section 1 above we introduce a generalized total vari-
ation functional for systems, defined for piecewise constant functions u : IR — U
made of single wave fronts. Given such a function u = u(x) we set

V() =Y 6(u_(z),us(2)),

xT

where the summation is over the points of discontinuity of u. The generalized
strength &(u_,uy) will be defined shortly so that

1
o lur —u-l < 5(u-,us) < Cluy —u-|
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for some uniform constant C > 1, implying that the functional V is equivalent to the
standard total variation:

STV() < V) < OTV(w) (33)

Depending upon the kind of i-wave connecting u_ to u,, we define the strength
F(u_,uy) = Fi{u—,uy) as follows:

N [wi(uy) — pi(u-)|  genuinely nonlinear i-field,
(U, uq) = . (3.4)
luy —u_] artificial front,
and, for every concave-convex i-characteristic field,
&(u— » U+)
wi(us) — piu-)l, pri(ug) pa(u-) 2 0,
i(u-) = (1 = Ki(u-)) pa(us)l; piu) piu-) <0 (3.5)

and |p;(uy)| < pd(u)],
i(uz) + p2(us) = (2= Ki(u)) ph(u)l, paluy) = pl(u),

which is the natural generalization of the definition (1.7) introduced for scalar equa-
tions. Here, the mapping K; : i — IR is Lipschitz continuous and is given (by analogy
with (1.15)) by

=K} (ui(u) + Bi(w), pi(u) < Bi(u) <0,
Ki(u) == 0, i (u)] < 18:(w)l, (3.6)
K} (pi(u) — Bi(uw)), ps(u) > Bi(u) >0,

where K} € [0,1) are sufficiently small constants. Observe that when all waves
are classical and remain within the region |u;(u)| < |Bi(u)] the generalized strength
coincides with the strength defined earlier in Section VII-1.

Next, following the discussion in Section 2 above let us introduce the generalized
interaction potential

Qi (u) := Qs(u) + M Qalu) 3.7
with
Qa(u) =Y &(u_(2),us(x)) & (u_(y), us (1)) (3.8)
and

Qulu) 1= 3 q(u-(@),u4 (2)) 5 (u-(2), us () F(u (), us (0),  (3:9)
<y
in which the summation is done over all pairs of jumps in the function u = u{z). In
(a(u) we count all products between waves of different families provided the left-hand
wave is faster than the right-hand one. In Q;(u), we include products between waves
of the same characteristic family, say i-waves. We define the weight by

q{(t—,uy):=1, genuinely nonlinear fields,
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and for concave-convex i-field by

L 0 < pilu-) < piuy),
é'i(pi(u—a'u'+)7u-+-)a /1'1(u ) < Nl(u-i-) < /”'l(u—) and )u'l( ) >0,
Q(U_,U+) S Oa ,u'i(u+) (U )a
Gi(pi(ucrug)uy), p(us) < pelug) < p(u) and p(u_) < 0
1, pi(s) < pius) <0
(3.10)
where 5(0) — g () (v) i) > 0

. — Kil\V) — HilU)], Bi\v) pilu) 2 U, ‘
filu.v): { ) — (1 - Ko@) @), m@m <o, O

which is the natural generalization of (2.2)-(2.3). Given any two distinct vectors
u— and u, satisfying the Hugoniot conditions, we denoted by p;(u—,uy) # ug the
solution of

=Xi(um, uy) (pilum, uy) —us) + fpiu—, uy)) = fluo) =

(See the discussion in Lemma VI-2.5).

We follow the general strategy in Chapter VII. To initial data ug : IR — U we
associate a sequence of piecewise constant approximations u{; : IR — U containing at
most C/h jumps and such that

ul = up  in the L' norm,

h (3.12)
TV(ug) — TV (up) as h tends to zero.

At each discontinuity on the line t = 0 we solve a Riemann problem using the non-
classical solver constructed in Section VI-4 and based on prescribed kinetic functions
,u';. Locally in time, the corresponding approximate solution u* : IR x IRy — U is
made of admissible (classical or nonclassical) shock fronts and rarefaction fronts (with
strength < h), only. To extend the solution further in time, approximate interaction
solvers are considered, an accurate one and a rough one, which we use depending on
the size of the incoming waves and of some threshold £(h) — 0, as was explained in
Section VII-2.

THEOREM 3.1. (Existence theory for nonclassical entropy solutions.) Consider the
strictly hyperbolic system of conservation laws (3.1) defined in U = B(dy) together
with some sufficiently small 81 < do. Suppose that each characteristic field of (3.1) is
either genuinely nonlinear or concave-conver. Then, there exist a constant c¢,C > 0
such that the following result holds for 0 < C' < C”.

Let 6 < 6;. Let ¢q,c9,... be constants that are sufficiently close to 1/2 and
satisfy

a>cy, cg>c (3.13)

For each concave-conver i-family let i (u) be a kinetic function satisfying the threshold
condition (3.2) for some B;(u) satisfying

C' 85 < Biu) < C" &,
together with the inequalities

V) i) V) ()
T 7 TRt
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Given some initial data ug : IR — B(d2) with small total variation:
TV (up) < ¢, (3.13)

the approzimation scheme based on the corresponding nonclassical Riemann solver
generates a globally defined sequence u® : IR x IR, — B(8g) such that for suitable
constants Cy, M, K > 0 the function

V(uh(t)) + C. Qur(uh(t)) is decreasing (3.16)

at each interaction time. The sequence u®
solution u : IR x IRy — B(dp) of (3.1) with

converges almost everywhere to a weak

TV (u(t)) < CTV(u),  t>0.

Observe that the result in Theorem 3.1 applies to solutions with total variation
less than a fixed constant c¢. The threshold §;(u) can be taken to be sufficiently small
so that nonclassical shocks can exist in the ball B(d;). However, for é, fixed, the
inequality C” 62 < B;(u) prevents the threshold 3;(u) to become arbitrary small; in
fact, as §; — 0 the size 62 of the neighborhood B(d2) shrinks to the origin. Classical
entropy solutions are covered by Theorem 3.1 by taking p?(u) = ug(u) = ,u? (u) and
recalling Lemma VI-2.4.

The key to the proof of Theorem 3.1 is deriving a uniform bound on the total
variation of u”, which is based on the following generalization of Theorem VII-1.1.

THEOREM 3.2. (Wave interaction estimates for nonclassical solutions.) For all uy, s,
and u, € B(6;) we have the following property. Suppose that u; is connected to u,, by
a t-wave front and that u,, is connected to u, by a j-wave front (1 <i,5 < N). Then
the outgoing wave strengths Gy(u;,u,) satisfy (1 <k < N)

Fr(ur, ur) < Gr(Ur, Um) + Gk (Um, ur) + O(1) Q= (U1, Um, ur),

&i(ul,um)—I—O(I)Q_(ul,um,ur), k=1i4#j,
) F(um, ur) + O(1) Q@ (wt, i, ur), kE=j#4, (3.17)
) i, um) + 55 (tm, ur) + O(1) Q— (tt U, ur), k=3 =1,

o(1) Q- (1, U, Ur), otherwise,

where the generalized interaction potential between the two incoming waves is
defined as

&i(ulyum)(}j(umaur)y 1> 7,

7 ' 3.18
q(ur, um) Gi (U1, Um) Gi(Um, Ur), ©=J. (3.18)

Q—(ul» Um, ur) = {

O
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4. Pointwise regularity properties

In this section we state without proof some regularity properties of the solution ob-
tained in Theorem 3.1.

THEOREM 4.1. (Structure of shock curves). Let u = u(z,t) be a solution of (3.1)
given by Theorem 3.1. For each (sufficiently small) € > 0 there exists finitely many
Lipschitz continuous curves, x = z(t) for t € (t5,%;) , k = 1,... , K., such that
the following holds. For each k and all (but countably many) times to € (£5,%;) the
derivative Z(to) and the left- and right-hand limits

u-(2(to) o) := <m,z)~»l<lz%o),to> u(a,t), w(z(to), to) = (z,twl(lzl;?(to),to) uz,t)
z<zp (tg) x>z (tg)
(4.1)

exist and determine a shock wave with strength |ok(t)| > €/2, satisfying the Rankine-
Hugoniot relations: it is either a classical shock satisfying Lax shock inequalities or a
nonclassical shock satisfying the kinetic relation. Moreover, the mappings t — ox(t)
and of t — Zx(t) are of uniformly bounded (with respect to €) total variation. At each
point (xg,tp) outside the set

Te(u) = {(2k(t),t) /t € (¢5, %), k=1,... , K.}
and outside a finite set I.(u), the function u has small oscillation:

limsup |u(z,t) — u(zo,t0)| < 2e. (4.2)
(m,t)—)(:l:o,tg)

We have also:

THEOREM 4.2. (Regularity of solutions). Let u be a solution of (1.1) given by The-
orem 3.1. Then there exists an (at most) countable set Z(u) of interaction points
and an (at most) countable family of Lipschitz continuous shock curves

T = {(z(t), D)/t € @ Te) k=1,2,...}

such that the following holds. For each k and each t € (T, T}) such that (z(t),t) ¢
I(u), the left- and right-hand limits in (4.1) exist at (2x(t),t); the shock speed Z(t)
also exists and satisfies the Rankine-Hugoniot relations. The corresponding propa-
gating discontinuity is either a classical shock satisfying Lax shock inequalities or a
nonclassical shock satisfying the kinetic relation. Moreover, u is continuous at each
point outside the set J(u) UZ(u). O
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CHAPTER IX

CONTINUOUS DEPENDENCE OF SOLUTIONS

In this chapter, we investigate the L' continuous dependence of solutions for
systems of conservation laws. We restrict attention to solutions generated in the limit
of piecewise approximate solutions and we refer to Chapter X for a discussion of the
uniqueness of general solutions with bounded variation. In Section 1 we outline a
general strategy based on a L' stability result for a class of linear hyperbolic systems
with discontinuous coefficients. The main result in Theorem 1.5 shows that the sole
source of instability would be the presence of rarefaction-shocks. In Section 2 we apply
the setting to systems with genuinely nonlinear characteristic fields; see Theorem 2.3.
One key observation here is that rarefaction-shocks never arise from comparing two
classical entropy solutions to systems of conservation laws. In Section 3 we provide a
sharp version of the continuous dependence estimate which shows that the L! distance
between two solutions is “strictly decreasing”; see Theorem 3.2. Finally, in Section 4
we state the generalization to nonclassical entropy solutions.

1. A class of linear hyperbolic systems
For solutions u = u(x,t) and v = v(x,t) of the system of conservation laws
Ou+0:f(u)y=0, u=u(z,t)el, ze€lR,t>0, (1.1)
we want to establish the L! continuous dependence estimate
u(®) —v®)llr@m) < Cllu(0) —v(O0)llLrgr), 20, (1.2)

for some uniform constant C > 0. In (1.1), U := B(§) C IR" is a ball with sufficiently
small radius 4, and the flux f: U — RN isa given smooth mapping. We assume that
Df(u) is strictly hyperbolic for all u € U, with eigenvalues

Al(u) <...< AN(u)

and left- and right-eigenvectors I; (u) and ri(u) (1 £ j £ N), respectively, normalized
so that
Li(uw)rj(u) =0 if i # j, and [;(u) ri(u) = 1.

To motivate the results in this section we outline our general strategy of proof to
derive the estimate (1.2). Consider any averaging matrix A = A(u,v) satisfying,
by definition,

A(u,v) (v —u) = f(v) — f(u),
Au,v) = A(v,u), u,v€U.

For instance, one could choose

(1.3)

1
Alu, ) =/0 DF((1— 8)u+6v) de.
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We denote by A;j(u,v) the (real and distinct) eigenvalues of the matrix A(u,v) and
by ;(u,v) and 7;(u,v) corresponding left- and right-eigenvectors, normalized in the
standard way.
Let u = u(z,t) and v = v(z,t) be two entropy solutions of (1.1). Clearly, the
function
Yi=v—u (1.4)
is a solution of

B + 0:(A(u,v) ¥) = 0. (1.5)
Therefore, to establish (1.2) it is sufficient to derive the L! stability property

1@l < ClloO)Lrmy, 20 (1.6)

for a class of matrices A = A(z,t) and a class of solutions ¢ = 9(z,t) of the linear
hyperbolic system

Opth + O (A(CL', t) d)) =0, ¢= ¢($7t) € lRNv (17)

covering the situation of interest (1.4) and (1.5).

The present section is devoted, precisely, to deriving (1.6) for solutions of (1.7)
(and, more generally, of (1.12) below.) As we will see, the characteristic curves (in the
(z,t)-plane) associated with the matrix-valued function A will play a major role here.
We begin with some assumption and notation. Throughout we restrict attention to
piecewise constant functions A = A(z,t) and piecewise constant solutions ¢ = ¥(z,t).
By definition, A admits finitely many polygonal lines of discontinuity and finitely
many interaction times ¢ € Z(A) at which (or simplicity in the presentation) we
assume that exactly two discontinuity lines meet. The set of points of discontinuity
of A is denoted by J(A). At each (z,t) € J(A) we can define the left- and right-
hand limits A4 (z,t) and the corresponding discontinuity speed A*(z,t). On the other
hand, the matrix A(z,t) is assumed to be strictly hyperbolic at each point (z,t), with
eigenvalues denoted by /\j‘(x,t) and left- and right-eigenvectors denoted by l;f‘(m,t)
and rf(a;,t), respectively, (1 < j < N). We also use the notation lfi_(a:, t) and
rfi (z,t) for the limits at a point of discontinuity.

We suppose that the eigenvalues are totally separated in the following sense:
There exist disjoint intervals [z\?‘i“,)\}"a"] (j = 1,...,N) having sufficiently small
length (that is, |\ — AM?| << 1), such that

A (z,t) € [APin Amex], (1.8)

Similarly, we assume at each (z,t) € J(A) there exists some index 7 such that
M(z,t) € [Apin \max]| (1.9)

and we refer to the propagating discontinuity located at this point (z,t) as a i-wave
front. More precisely, we assume that the matrix A may also contain artificial wave
fronts which do not fulfill (1.9) but, by definition, propagate at a fized and constant
speed Any1 satisfying

V< ANt (1.10)

Such a propagating discontinuity is also called a (N + 1)-wave front.
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DEeFINITION 1.1. Depending on the respective values of the left- and right-hand limits
M. = A (z,t) and the propagation speed A4 = A4(z,t), an i-wave front (1 < i < N)
located at some point (z,t) € J(A) is called
e 3 Lax front if
MM >4,
¢ a slow undercompressive front if

min(A2,A4) > A4,
¢ a fast undercompressive front if

max()\f_, )\ﬁ) < )\A,
e or a rarefaction-shock front if

A A A
MM <A

Note that Definition 1.1 is slightly ambiguous: So, for definiteness, an i-wave
front having A2 = A = M, (but A_(z,t) # Ay(z,t) if (z,t) € J(A)) will be
called a Lax front (rather than a rarefaction-shock front). We will use the notation
L(A), S(A), F(A), R(A), and A(A) for the sets of all Lax, slow undercompressive,
fast undercompressive, rarefaction-shock, and artificial fronts, respectively. When it
will be necessary to specify which family the wave front belongs to, we will use the
corresponding notation £;(4), S;(A4), Fi(A), and R,;(A), respectively (1 <i < N).
Finally, we denote by J;(A) the set of all i-wave fronts (1 <¢ < N + 1), so that we
have

J(A) =L(A)US(A)UF(A)UR(A)U A(A),
Ji(A) = Li(A)US;(A)UF(A)URi(A), 1<i<N,
In+1(4) = A(A).

Suppose that we are given a vector-valued function g = g(z,t) consisting (for
each time t) of finitely many Dirac masses located on the discontinuity lines of A,
that is,

J(g) € T(A), (1.11)
where, by extension, J(g) denotes the set of locations of Dirac masses in g. Let
M(IR) be the space of all bounded measures on IR and, for each time ¢, denote by
lg() | mm) the sum of all Dirac masses in g(t). Then, consider piecewise constant
solutions ¥ = ¢(z,t) of the linear hyperbolic system with measure right-hand
side

O+ 0. (AY) =g. (1.12)
The source term g will be necessary later (Section 2) to handle approzimate solutions
of the systems of conservation laws (1.1).

To derive the estimate (1.6) we introduce a weighted L' norm which will be non-

increasing in time for the solutions of (1.12). So, given a piecewise constant function

¥ = ¢(z,t), define its characteristic components a = (¢4,... ,an) by
N
P(z,t) =Y aj(z,t) 77 (2, 1), (1.13)
j=1

With any piecewise constant “weight”

w = (wi,...,wn) suchthat w; >0(1 <j<N),
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we associate the weighted L' norm of v

N
1O = /IR S o (3, 8) w2, 1) da. (1.14)

j=1

Note that the weighted norm depends upon both w and A. As long as there exists
uniform constants w™™ and w™** (independent of the number of discontinuity lines
in A and v but possibly dependent upon the L* norms or total variation of A and

¥) such that
0 < W™ < w;(z,t) <w™  for all j and (z,t), (1.15)

the weighted norm (1.14) is clearly equivalent to the standard L' norm.

It is convenient to a priori assume that the lines of discontinuity in w are either
lines of discontinuity in A or else characteristic lines associated with the matrix A.
In other words, the weight w satisfies the following property at all (but finitely many)
points (z,t):

If (z,t) € J(w)\ J(A), then the discontinuity speed A\*(z,t)
coincides with one of the characteristic speeds A3 (z, t) (1.16)
and w4 (z,t) = w;_(z,t) for all j but j =14.

To begin with, we derive now a closed formula for the time-derivative of the weighted
norm.

LEMMA 1.2. For each solution ¢ of (1.12) and at all but finitely many times t we
have

N
%“lw(t)nlw(t) = Z Zﬁj—(xvt) wj—(:E’t) +/8j+(m7t) wj-l—(m?t)? (1.17)

(z,t)eT(A) 3=1

where
Bi—(z,t) = (AN (=, t) = ML (x,1)) oy (2, 1),
Bi+(z:t) = (A (z,1) = M (2, 1)) a4 (=, ).

PrOOF. Consider the family of polygonal lines of discontinuity ¢ — yx(t) (k describ-
ing a finite set of integers) in any of the functions A, %, and w. In the forthcoming
calculation, we exclude all of the interaction times Z of the vector-valued function
(A, ¥, w). For instance, we exclude times when a discontinuity line in A, for instance,
crosses a discontinuity line in v while the speeds A* and A¥ are distinct. The dis-
continuity lines are straight lines in any interval disjoint from Z and the following
calculation makes sense.

In each interval (yx(t), yk+1(t)) all of the functions are constant and we can write
with obvious notation

(1.18)

Yr+1(2)
/ ZlaJ 2,0 wi(2,8) dz = (yiosa (1) Zlajlwp
Y

k(t) i=1
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yis1(t) N N A
/ " > lag(m )| wj(z, t)de = (Yer1(t) — AMerr_ (8)1) loj k1= (E)] w) k- ()
Yk

where

Jj=1 =1

N
+ 37 (Vs (6 8 = wl®)) oy ()] i (8),
j=1

Mo () = M (We(),8) = M (grr1 (£),8) =1 Ay (1)

After summing over j we arrive at

N
MOl = D D B0 = Ak—(8)8) lage— (0)] wj— (1)

kE j=1
+ (A ()t — (D)) oy et (8) wj 4 (2).

At all ¢ but interaction times we can differentiate this identity with respect to ¢:

d Sy
#WWM=;;%@ A (0)) legie— (0)] - (8) (1.19)

+ (Mokes (0 = 45 (1)) loi e (6)] w4 (2)-

In view of the conditions (1.11) and (1.16) on g and w, respectively, we need to
distinguish between three cases only, as follows:

If A has a jump discontinuity at (yx(t),t) propagating at the speed A4 and
associated with some i-family, then we have

y;c (t) = (yk (t)’ t)v

which leads to the desired terms in (1.17) and (1.18).

If both A and ¢ are continuous but w is discontinuous at (yk(¢),t), we deduce
from (1.16) that the speed y;(t) coincides with some characteristic speed of
the matrix A: All the components w; but the i-component w; are continuous.
In (1.19) the latter is multiplied by

M (e (®),) — k() = AP (gn(2), £) = N (ye(2), 1) = 0.

Again the corresponding term in (1.19) vanishes identically.
Finally, if A is continuous near (y(t),t) while ¥ contains a discontinuity prop-
agating at some speed A, we find from (1.11) and (1.12):

(—A+ Ay (1), £) (¥4 (we(t), 1) — - (y(t), 1)) =0,

which implies that A is an i-eigenvalue of the matrix A(z,t) and that the jump
of ¢ is an i-eigenvector. Hence, all of the components o, but possibly the
i-component «;, are continuous. The coefficient in front of «; is

M (e (2),) — 9 (8) = Ay (e (t),8) — A = 0.

Hence, the corresponding term in (1.19) vanishes identically.
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We conclude that it is sufficient in (1.17) and (1.18) to sum up over jumps in J(A),
only. This completes the proof of Lemma 1.2. O

Next, in view of (1.18) we observe that for each i-wave front located some point
of discontinuity (z,t) we have (dropping the variable (z,t) for simplicity)

:I:BJ:]:SO’ j<ia

L (1.201)
+ IBJ:‘: Z 07 J>71
and
Bi+ <0, Lax front,
+6;4+ > 0, slow undercompressive,
Bug 2 P (1.20ii)

+8;+ <0, fast undercompressive,
Bi+ >0, rarefaction-shock.

Let us introduce some more notation. We assume that the matrix A = A(z,t) is
associated with a scalar-valued function ¢4 = e4(x,t), called the strength of the
propagating discontinuity located at (z,t) € J(A), such that

% |AL(z,t) — A_(z,t)| < e*(z,t) < C|As(z,t) — A_(z,1)]. (1.21)

for some uniform constant C' > 1.

LEMMA 1.3. The coefficients introduced in (1.18) satisfy

N
1Bj+] = 18- + 0(e*)Y " 1B-| +O(g), 1<j<N, (1.22)
k=1

where g denotes simply the (constant) mass of the measure source-term in (1.12) along
the line of discontinuity under consideration.

Proor. The Rankine-Hugoniot relation for the system (1.12) reads
A Py —_ )+ Ay —A Y=g

Thus, we have

N N
Z ) r )aj_rt —
i+ i—Ti— — 9

j=1

Multiplying by lj and using the normalization £ r TS + =0if 7 # j and l{i r{i =1,
we arrive at

M=) gy = (M=) o5 +Z (VM) o Uy (rf —rft ) —14 g. (1.23)
k=1

From (1.23) we deduce that (1 <j < N)

N
(M=) g = (M=) o +0(JAL—A_]) D | =Mb) aw—|+0(g), (1.24)
k=1

which yields (1.22) in view of (1.18) and (1.21). a
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Lemma 1.3 shows that the components |3;_| and |3;4 | coincide “up to first-order”
in e4. Therefore, in view of the signs determined in (1.20) it becomes clear that the
natural constraints to place on the weight in order for the right-hand side of (1.17) to
be (“essentially”) non-positive are the following ones: For each i-wave front and each
1<j<N

20, j<i,

<0, j=1 and slow undercompressive,

Wiy — Wj— (125)

>0, j =1 and fast undercompressive,
<0, j>i.

Indeed, if such a weight exists, then from (1.17), (1.20), (1.22), and (1.25) we can
immediately derive the following estimate away from interaction times:

SOl + Y2 ws—(20) = w5+ (2,0)| 18- (2,

(z,t)ET;(A)
1<i#EN

+ Y (win (1) +wir(2,1)) Bim(2,1)]

(z,t)€L;(A)
1<i<N

+ Y |wie(zt) — wir(z,0)] |Bie (2, 1)] (1.26)

(z,t)€8;(A)UF;(A)
1<i<N

- 3 (wi-(z,t) + wir (2, 1)) |Bi- (2, 1)]

(x,t) GRi{A)UA(A)

1<i<N

+ Y OE*(@,0)16;-(z, 1) + O() llg®) mam)-

(z,1)eT(A)
1<jEN

To control the remainder arising in the right-hand side of (1.26) our strategy will
be to choose now ]wj_(x, t) — wi+(z, t)[ = K& with a sufficiently large K > 0,
so that the favorable term in the left-hand side of (1.26) becomes greater than the
last term in the right-hand side. Recall that a weight satisfying (1.25) was indeed
determined for scalar conservation laws, in Chapter V. An additional difficulty arises
here to treat systems of conservation laws: The conditions (1.25) are somewhat too
restrictive and must be relaxed. Strictly speaking, it would be possible to exhibit a
weight w satisfying (1.25) for systems for every choice of matrices A and solutions .
But, such a weight would strongly depend on the number of lines of discontinuity in
A and 1 and the corresponding estimate (1.6) would not be valid for a general class
of piecewise constant solutions. Alternatively, it would not be difficult to construct a
weight w independent of the number of lines of discontinuity in A and ¢ but exhibiting
(uncontrolled) jump discontinuities in time at each interaction.

To weaken (1.25), our key observation is the following one:

The conditions (1.25) on the jump w;y — w;— are not necessary
for those components B;+ which are “small” (in the sense (1.27), below)

compared to other components.
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DEFINITION 1.4. Consider a solution ¢ = 9(z, t) of (1.12) together with its character-
istic components a;+ and B+ defined by (1.13) and (1.18), respectively (1 < j < N).
For each j =1,... , N we shall say that the component 3;_ is dominant if and only
if for some uniform constant C > 0

N
8,21 > Cer S 1B | + Cll (L.27)
k=1

For each i-wave front the i-characteristic components a;+ are said to be dominant
if and only if for some uniform constant ¢ > 0

claiz| > ) lokl. (1.28)
ki

Later, we will need that the constant c in (1.28) is sufficiently small.
We now prove the main result in this section.

THEOREM 1.5. (L! stability for linear hyperbolic systems.) Consider a matriz-valued
function A = A(x,t) satisfying the assumptions given above and whose strength ¢4 is
sufficiently small. Let v = ¥(x,t) be a piecewise constant solution of (1.12). Suppose
that there exists a weight satisfying the following strengthened version of the conditions
(1.25) but for dominant components 3;_ only:

K &4, j <1,
Ke# or — Ke?, j=1 and undercompressive,
wiy —wj— =3¢ —K ¢4, j =1, slow undercompressive, a;+ dominant,
K4, j =1, fast undercompressive, a;+ dominant,
—-Ke4, j>i.
(1.29)

Then, for some sufficiently large K and uniform constants Cy,Cy > 0 the weighted
norm of ¢ satisfies the inequality (for allt > 0)

t t
6Ol +Cr | (Das) +Ds(9)) ds < 6O luiw + €2 [ R()ds.
where the dissipation terms and the remainder are defined by

D2(3) = Z |ﬂi—(l‘as)|’

(z,9)€L;(A)
1<i<N

Ds(s) := E sA(x, s) ‘ﬁj_($,8)| ds
(x,3)ET(A)
1<5EN

and
R(s) = lg(s)lmam) + TV (¥(s)) sup e’(z,7)

(z,7)ER(A)
TE(O,t)

+ [9(s)l| Lo r) sup Z eA(x, 7).

T€O (4 r)eA(A)
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Since the weighted norm is equivalent to the standard L! norm, the estimate in
Theorem 1.5 is also equivalent to

()l my + /0 (Da(s) + Da(s)) ds < Cs [9(0) 13 amy + C /0 R(s)ds, (1.30)

for some uniform constant C3 > 0, where now the corresponding dissipation terms
and remainder are

ﬁ2(3) = Z ll't— (IL’, 5) (A_(CL‘, 3) - )\(l‘, S)) 1/’—(»’15»3)',
@9 EL; ()

ﬁB(S) = Z lA+(.’L‘, 8) - A_(a:,s)l |(A_.(.'L', 3) - )\(ZB,S)) ’tﬁ...(.’)?, S)',

(z,5)€T(A)
and

R(s) = lg()llaam + TV(()) sup  |A+(@,7) = A-(a,7)]
’:E(O,t)

+ )o@ sup Y. |Ap(z,7) = A_(z, 7).
7€(0,t) (z,7)EA(A)

The following important remarks concerning (1.30) are in order:
e Only rarefaction-shocks, artificial fronts, and the source-term g may amplify
the L! norm. In particular, in the special case that

9=0, R(A)=A(4) =0,

(1.30) implies the solutions 9 of the Cauchy problem associated with (1.12)
are unique and stable. In the following sections, (1.30) will be applied with a
sequence of approximate solutions (of (1.1)) for which the last three terms in
the right-hand side of (1.30) precisely vanish in the limit.

o Theorem 1.5 provides a sharp bound on the decay of the L! norm. Note that
the left-hand side of (1.30) contains cubic terms associated with undercom-
pressive wave fronts of A, and quadratic terms associated with Lax fronts.

PrOOF. We now consider each kind of i-wave front successively, and we derive a
corresponding estimate for the boundary term

N
B:=Y fj-wj- + B+ Wit (1.31)
j=1

Throughout we often use that by (1.27)
Y-l > 18-+ 0(), (1.32)
J

Bj— dominant

provided e is sufficiently small. In view of (1.22) we have

N N
B =) (8- wj- +sgn(Bj3) 18— wjz) + O(e*) Z |Bk—| + O(g),

j=1 k=1
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that is, since by (1.20i) the signs of the 3;1 is determined for all j # 1,

B =(w;- sgn(Bi-) +wiy 5gn(Biy)) 16|

N
=3 (wig —wi) 1B5-1 =Y (wim —wp) 18-+ O(e?) Y 1Bk-| + O(g).

i<i i>i k=1

In view of (1.29), for j # i the dominant components 3;_ are associated with a
favorable sign of the jump w;4 — w;—. On the other hand, non-dominant components
B;— for j # i can be collected in the first-order remainder. So, we obtain

B =(w;_sgn(B;-) + wir sgn(Bi1)) [Bi-| = Ke* > 15|

J#i

N
0(e*) Y 1Bk~ + O(g)
k=1

where the first sum above contains dominant components 3;_ only and, relying on
(1.32), can absorb the first-order remainder, provided we choose K sufficiently large
so that K ¢4 dominates O(¢#). We obtain

K
B < (wi- sgn(Bi-)+wiy sgn(Biy)) |Bi-|+0(e?) Bi- |-~ e > 18,-[+0(g). (1.33)
J#i
It remains to deal with the term |3;—|, which can be assumed to be dominant
otherwise the argument above would also apply to the i-component and we would

arrive to the desired estimate for B. We distinguish now between four main cases:
Lax, undercompressive, rarefaction-shock, and artificial fronts.

Case 1 : If the i-wave is an i-Laz front, we have sgn(8;-) = sgn(f;+) = —1 and
therefore, by (1.33) and (1.15),

B < ~2w™® |G|+ O(e?) |Bi| — —sA > 181+ 0(g).
J#i

So we obtain

B S mm Iﬁz——* - —"EA Z I:BJ—! + O(g)a

J#i
and, therefore, for e sufficiently small
K N
B< -5 el Z 1B;— i—| +0O(g) for Lax fronts. (1.34)
j=1

Case 2 : Next, we consider an undercompressive front and we prove that

N
K
B< 5 et Z |Bi—| +O(g) for undercompressive fronts. (1.35)
=1

Suppose, for instance, that the front is slow undercompressive.
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First of all, the case that both a;+ and §;— are all dominant is simple, since

sgn(B;~) = —1 and sgn(B;y) = 1 while w;y; — w;— = —K 4. Therefore, from (1.33)
we have
B < K& |Bi-| +O(e?) |6i-| ~ ~eA > 18i-1+0(9),
J#i

which yields (1.35) by choosing K sufficiently large.

Second, we already pointed out that the case that §;_ is non-dominant is obvious
in view of (1.32).

Thus, it remains to consider the case where one of the characteristic components
o;+ is non-dominant. Suppose, for instance, that o;.. is non-dominant and that §;_
is dominant. Using that (see (1.28))

o[ < e Y lo]
k#i
and the condition |w;y —w;_| = K &4 from (1.29) (since B;— is dominant), we obtain
1Bi—| |wi- — wig| = K e |Bi-| < O(e®) K (NP™ = A") o |

< O(™) K (AP = AF'™) 3~ -,
i

<O K (AP —xminy 3718, |,
J#i

On the other hand, since A™®* — \M? << 1 by assumption, we observe that
O(e?) K (Amex — \min) < —{Ee/‘.

Therefore, we conclude that the term |§;--| lwi_ — wi+| can be controlled by the term

~——sAZwJ 1

J#
in (1.33), and we arrive again at the inequality (1.35).

Case 3 : Consider next the case of an i-rarefaction-shock, for which no constraint
has been imposed on the component w;. Here, we will show that

B<L<Ce? iy — 9| - _IE et Z |Bi—| +O(g) for rarefaction-shocks.  (1.36)
j=1

From (1.33) we get
K
B < 20" i |+ O(e”) |Bi-| = 5 €* D161+ O0)
J#

<3 maxwz_l_ ""EA Z‘IBJ"'—I_O )
J#i

(1.37)

and we distinguish between two subcases:
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- If a;— a;4 > 0, then by (1.24) in the proof of Lemma 1.3 we have

N
M =2 iy + O =AM =0(e*) Y16, |+ O(g)-
The two terms on the left-hand side above have the same sign, therefore

N
Bl +18i-| = |(M* = M) i | + (ML = M) ai| = O(e*) D7 16;-1 + O(g).

j=1

From (1.37) and by absorbing the term O(e#) above by taking K sufficiently large,
we deduce that

K 4
Bs-Ze Z 1B;—| + O(g),
J#i
which —using once more the previous inequality- implies (1.36).
- If o iy < 0, then we observe that
L= DA A o] < DA - ) eig — aue
Bicl = I = X | < oy = o | (135
< O(e™) [y — 9.

We conclude that

B SO s~ - 5 Y16y +0(g)
j?éi

O™ Ity — 9- |——5A21ﬁg |+ 0(g),

where, in the latter, the estimate (1.38) on |3;—| was used once more. This proves
(1.36).

Case 4 : Finally, it is easy to derive

B < C max(|¢—|, [¥4]) e* + O(g)  for artificial fronts. (1.39)

The estimate (1.30) follows from (1.34)-(1.36) and (1.39), and the proof of The-
orem 1.5 is completed. ]

2. L! Continuous dependence estimate

We show here that the framework developed in Section 1 applies to (classical) en-
tropy solutions of conservation laws. For simplicity, we assume that the system under
consideration is genuinely nonlinear. Theorem 1.5 provides us with the desired L!
continuous dependence estimate (1.2), provided we can exhibit a weight-function sat-
isfying the requirements of Section 1, especially the conditions (1.29). Our first key
observation is:
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THEOREM 2.1. (First fundamental property.) Consider the strictly hyperbolic system
(1.1) defined in the ballU = B(8) with § > 0 sufficiently small. Suppose that all of the
characteristic fields of (1.1) are genuinely nonlinear. Let A be an averaging matriz
satisfying the two conditions (1.3). Then, if u = u(z,t) and v = v(z,t) are any two
piecewise constant functions made of classical shock fronts associated with (1.1) (and
defined in some region of the (x,t)-plane, say), the averaging matriz

A(z,t) := A(u(z,t),v(z,t))
cannot contain rarefaction-shocks.

PROOF. Since A;(u,u) = \;(u) and A is symmetric (see (1.3)) we have
- - 1
Vidj(u,u) = Vad;(u,u) = §VAj(u), 1<j<N. (2.1)

The function u and v play completely symmetric roles. Consider, for instance, a shock
wave in the solution u connecting a left-hand state u_ to a right-hand state u,., and
suppose that the solution v is constant in a neighborhood of this shock. It may also
happen that two shocks in u and v have the same speed and are superimposed in
the (z,t)-plane, locally. However, this case is not generic and can be removed by an
arbitrary small perturbation of the data. (Alternatively, this case can also be treated
by the same arguments given now for a single shock, provided we regard the wave
pattern as the superposition of two shocks, one in u while v remains constant, and
another in v while u remains constant.)

According to the results in Chapter VI, u, is a function of the left-hand state u..
and of some parameter along the Hugoniot curve, denoted here by £. For some index
i we have

uy = uy(€) = u_ +er(u) + O(e?), (2.2)
By convention, £ < 0 for classical shocks satisfying Lax shock inequality

)‘i(u—) > )\i(u-}—):

since we imposed the normalization VA; -r; = 1. We claim that the averaging wave
speed ); is decreasing across the shock, that is,

X‘i(u—av) > Xz‘(u+,v), (23)

uniformly in v. In particular, this implies that the inequalities characterizing a
rarefaction-shock (that is, X;(u—_,v) < Ai(u—,uy) < Xi(uy,v) in Definition 1.1) can-
not hold simultaneously, which is precisely the desired property on A.

Indeed, by using the expansion (2.2) the inequality (2.3) is equivalent to saying

Xi(u_,v) > Aiu_,v) + & ViXi(uo,v) - ri(u-) + O(e?),

or

Vidi(u—,v) - ri(u-)+ Ofe) > 0.
Expanding in term of |v — u_| and using (2.1), we arrive at the equivalent condition
V/\l(u_) . ’f‘,;(u_) + O(‘S‘ + "U — U_!) > 0.

However, since VA; - r; = 1 and |e] + |v — u—| < O(F), the above inequality, and thus
(2.3), holds for § sufficiently small. This completes the proof of Theorem 2.1. O
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We will also need the following observation which, in fact, motivated us in for-
mulating Definition 1.4. Note that the entropy condition does not play a role here.

THEOREM 2.2. (Second fundamental property.) Under the same assumptions as in
Theorem 2.1, consider now two piecewise constant functions u and v made of classical
shock fronts and rarefaction fronts (see Section VII-1 for the definition), and set (see

(1.13))
pi=v—u=Y ojri (2.4)
Recall the notation
A2, t) = X (u(x, t),v(z,t), 1i(z,t) =T;(ulz,1),v(z, ).

Then, for each wave front of A propagating at the speed \* and associated with a
wave front in the solution u we have

sgn(ouz) = sgn(A&k =A%) if oz are dominant. (2.5)

The opposite sign is found for wave fronts of A associated with wave fronts in the
solution v.

PRrOOF. We use the same notation as in the proof of Theorem 2.1. Consider an i-wave
front connecting u.. to us while the other solution v is locally constant. Using the

decomposition
N

Uv—uty = Zajj: Fj(ui,v),
j=1
we can write
My =2 = Xy, v) = Xolu—, uy)
= Voi(u_,uy) - (v—u_)+O(jv —u_|?)

= ai- (1/2+O0(juy —u-| + o~ u_])) + O(1) Yl |
J#i
= (1/240(8)) s + O(1) Y _ Jotj_|-
J#i
This proves that, when c|ai—| > >, |a;-| where c is sufficiently small, the terms
Af, — A% and a;- have the same sign for wave fronts associated with wave fronts in

the solution u. The opposite sign is found for waves associated with wave fronts in
the solution v. The calculation for A{ is completely similar. O

Finally, we arrive at the main result in this section.

THEOREM 2.3. (Continuous dependence of classical entropy solutions.) Consider the
strictly hyperbolic system (1.1) in the ball U = B(d) with small radius § > 0. Suppose
that all of its characteristic fields are genuinely nonlinear. Let u® and v® be two
sequences of piecewise constant, wave front tracking approzimations (see Chapter VII)
and denote by v and v the corresponding classical entropy solutions obtained in the
limit h — 0. Then, for some uniform constant C > 0 we have the inequality

W™ () = " ()l ry < C 0"(0) = u*(O) 2wy + O(R), ¢ 20, (2.6)
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which, in the limit, yields the L' continuous dependence estimate

lu®) = vl L1 @r) < Cllw(0) — v(0)Lrm), ¢ >0. (2.7)

PrOOF. Step 1 : Convergence analysis. Recall from Section VII-2 that u” and
v" have uniformly bounded total variation

TV(uh(®) + TV () <C, t>0, (2.8)

and converge almost everywhere toward u and v, respectively. Each wave front in u”
(and similarly for v") is one of the following:
o A Laz shock front satisfying the Rankine-Hugoniot jump conditions and Lax
shock inequalities and propagating at the speed A = X;(u® (x,t),u’_lﬁ(:v,t)) +
O(h).
e A rarefaction front violating both of Lax shock inequalities and having small
strength, i.e.,

{ul (z,t) — u" (2,t)] < Ch for rarefaction fronts. (2.9)

For some: =1,...,N, u’i (z,t) lies on the i-rarefaction curve issuing from
u” (z,t). The jump propagates at the speed A = A;(u” (z,1), u? (z,t)) + O(h).

e An artificial front propagating at a large fixed speed Ay, 1. Denote by A the
set of all artificial fronts. The total strength of waves in A vanishes with h,
precisely

> bz, t) —ut(z,t)| <Ch, t>0. (2.10)
z/ (mt) €A

Moreover, the Glimm interaction estimates (Section VII-1) hold at each interaction
point. The interaction of two waves of different families ¢ # i’ produces two principal
waves of the families i and i/, plus small waves in other families j # 4,7’ whose
total strength is quadratic with respect to the strengths of the incoming waves. The
interaction of two i-waves generates one principal i-wave, plus small waves in other
families j # i.
Furthermore, by an arbitrary small change of the propagation speeds we can
always assume that:
e At each interaction time there is exactly one interaction between either two
fronts in u” or else two fronts in v".
e The polygonal lines of discontinuity in u” and v" cross at finitely many points
and do not coincide on some non-trivial time interval.
We now apply the general strategy described at the beginning of Section 1. Ob-
serve that the approximate solutions u* and v" satisfy systems of equations of the
form

Oul + 0, f(u") = g", Bl + O, (V") = gP, (2.11)

where g''* and ¢g?" are measures on IR x IR, induced by the facts that rarefaction
fronts do not satisfy the Rankine-Hugoniot relations and that fronts do not propagate
with their exact wave speed. Define

AP = At oh), h=oh —ub,  ghi= gPh — glh,
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The matrix A" satisfies our assumptions in Section 1 (uniformly in A) and the function
Y™ is a solution of

B + 0, (A yh) = g". (2.12)
Observe here that any wave interaction point (x,t) for the averaging matrix A"

e is either a point of wave interaction for «* while v" remains constant, or vice-

versa,

e or else a point where both u" and v" contain single wave fronts crossing at

(z,1).

We define the wave strength ¢4 for the matrix A" (see (1.21)) to be the (modulus
of) usual strength of the wave fronts in 4" or in v", whichever carries the jump.
Relying on the assumption of genuine nonlinearity, we now prove that the strength
¢4 is equivalent to the standard jump of A", that is, uniformly in v

Sl — ] < [Auwr,v) = A, 0)] < Clug — | (2.13)

for any shock connecting a left-hand state u_ to a right-hand state v and for some
constant C > 1.

To derive (2.13), we simply regard A(u,v) — A(u_,v) as a function 1(e) of the
wave strength parameter € along the j-Hugoniot curve. Using the expansion (2.2) we
find

¥'(0) = Dy, A(u, v) r;(u-).
Since u_, u4, and v remain in a small neighborhood of a given point in RN , it is
enough to check that B := D, A(u,u)r;(u) # 0 for every u and j. But, since 4 is
symmetric (see (1.3)) we have D,, A(u,u) = D,, A(u,u) = DA(u)/2. Multiplying the
identity

(D*f () rj(u) = VA;(w) - r5(u))r;(w) = (X;(w) — Df(u)) Drj(u) r;(u)
by the left-eigenvector I;(u) yields

L) B () = b (w) (D Alas ) 75(0) ) () = 3 VAg(u) - 75) = 5.
This shows that the gradient of 1)(¢) does not vanish, for small ¢ at least, and estab-

lishes (2.13) and thus (1.21).
Next, we claim that g* — 0 strongly as locally bounded measures, precisely

T
/ lg*" )| pmmy dt — 0 for every T > 0. (2.14)
0

We can decompose the contributions to the measure source-term g'* in three sets.
First, shock waves satisfy (2.12) almost exactly, with

g'" = 0(1) O(h) e locally.
Second, for an i-rarefaction front connecting two states u_ and u, and propagating

at some speed A = A;(u_,uy) we find

glyh — 'Yh 69::/\ta

7= = (Nilun, ug) + O(R)) (uy —us) + f(us) = flu-).
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But, in view of (2.9) we have
W < Cluy —u_* +Chluy —u_| <O(h) Juy —u_|.

Summing over all rarefaction waves in IR x [0, T, for any fixed T we find

T
[ 180 s at < O, (2.19)
which gives (2.14). Finally, using the same notation and for artificial waves we obtain

M= | = A (g —us) + Fus) = f(us)] < Clus —u-],

and so again (2.15) thanks to the estimate (2.10). This establishes (2.14).

We conclude that the assumptions in Theorem 1.5 are satisfied and, provided
we can construct a suitable weight function, we obtain the stability estimate (1.30).
Thanks to Theorem 2.1 the set of rarefaction-shocks in A" is included in the union
of the sets of rarefaction fronts and artificial fronts in u* and v". From the estimates
(2.14) it then follows that the last three terms in the right-hand side of (1.30) converge
to zero with h — 0 and, therefore, that (2.6) holds. Since

Y" - :=v—u almost everywhere

the desired L! stability estimate (2.7) is obtained in the limit.

Step 2 : Reduction step. To simplify the notation we drop the exponent h in
what follows. In Step 3 below, we will construct a weight satisfying (1.15) and (1.16)
together with the following constraint: for each i-discontinuity associated with the
solution u and for each j =1,... , N, provided o;— o+ > 0, we will impose

Ked, j<i,

—Ke#4, j =1, undercompressive, and a1 > 0,

Wiy — Wj— = (216)

KeA, j =i, undercompressive, and a5+ < 0,
—Ket, j>i.
For discontinuities associated with the solution v similar conditions should hold, sim-
ply exchanging the conditions a;+ > 0 and ¢+ < 0 in the two cases j = i. Note that
no constraint is imposed when a;_ a4 < 0.

Let us here check that the conditions (2.16) do imply the conditions (1.29) needed

in Step 1 in order to apply Theorem 1.5. Indeed, consider an i-discontinuity for which
some component §;_ is dominant. Then, it follows from (1.24) that

sgn((A* = A% ) ajp) =sgn((A* = ML) o). (2.17)
When j # i, the term A\ — Aﬁ has the same sign as A4 — /\34_, so from (2.17) we
deduce that
sgn(ajt) = sgn(a;-),
so that (2.16) can be applied, which implies the conditions in (1.29) for j # 1.
On the other hand, for the i-component of an undercompressive i-wave, again the

terms A4 — A2 and A4 — A2 have the same sign, therefore by (2.17) and provided
Bi— is dominant we have again

sgn(ov4.) = sgn(os-).



2. L' CONTINUOUS DEPENDENCE ESTIMATE 229

Relying on Theorem 2.2 and restricting also attention to dominant components ;4

we see that

o;—, 04 >0, slow undercompressive, (2.18)
oi—,a;y <0, fast undercompressive. ’

Therefore, in view of (2.18), the conditions in (2.16) for j = ¢ imply the corresponding
ones in (1.29).

Step 3 : Constructing the weight-function. It remains to determine a weight
w = w(z,t) satisfying (1.15), (1.16), and (2.16). The construction of each component
of w will be analogous to what was done in the proof of Theorem V-2.3 with scalar
conservation laws. Given some index j, the (piecewise constant) component w; will
be uniquely defined —up to some (sufficiently large) additive constant— if we prescribe
its jumps (w;4(z,t) — w;j—(z,t)). Additionally, the weight can be made positive and
uniformly bounded away from zero, provided we guarantee that the sums of all jumps
contained in any arbitrary interval remain uniformly bounded, i.e.,

| Z (wjt(z,t) — w;_(z,1))| < C, (2.19)

z€(a,b)

where the constant C > 0 is independent of h, ¢ and the interval (a,b).

The function w; will be made of a superposition of elementary jumps propagating
along discontinuity lines or characteristic lines of the matrix A. It will be convenient
to refer to some of these jumps as particles and anti-particles, generalizing here a
terminology introduced in Section V-2.

Decompose the (z,t)-plane in regions where the characteristic component «; keeps
a constant sign. For simplicity in the presentation we may assume that «; never
vanishes. Call Q. a region in which a; > 0. (The arguments are completely similar
in a region where a; < 0.) Observe that no constraint is imposed by (2.16) along
the boundary of Q.. (As a matter of fact, the boundary is made of fronts which
either are Lax or rarefaction-shock fronts of the j-family or else have a non-dominant
component §;_.) The weight w; is made of finitely many particles and anti-particles,
with the possibility that several of them occupy the same location. However, within
Q. a single particle will travel together with each i-discontinuity for ¢ # j and with
each undercompressive i-discontinuity. That is, in . we require that for each i-
discontinuity with i # j

Ke(z,t) ifj<i,
wiy(z,t) —wi—(x,t) = o 2.20
5+(71) i-(@:%) { —Ke(z,t) ifj>i, (2.20)
and for each undercompressive i-discontinuity:
—K e{x,t) for a jump in the solution w,
wj+(:v,t) - wj_(x,t) = { ( ) J P . . (221)
Ke(z,t) for a jump in the solution v.

To construct the weight we proceed in the following way. First of all, we note
that the weight w; can be defined locally near the initial time ¢ = 0+ before the
first interaction time: we can guarantee that (2.20)-(2.21) hold at each discontinuity
satisfying o;_ a4 > 0: each propagating discontinuity carries a particle with mass
+K ¢ determined by (2.20)-(2.21) while, in order to compensate for it, an anti-particle
with opposite strength FK ¢ is introduced and propagate together with discontinuities
satisfying a;_ ;4 > 0. (Alternatively, w; could be taken to be continuous at the
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latter.) We now describe the generation, dynamics, and cancellation of particles and
anti-particles within .

When a wave with strength (in modulus) € enters the region Q. it generates a
particle with strength +K e determined by (2.20)-(2.21) and propagating together
with the entering wave and, in order to compensate for the change, it also generates
an anti-particle with opposite strength FK € propagating along the boundary of Q.

When a wave exits the region €1, its associated particle remains stuck along with
the boundary of €.

At this stage we have associated one particle and one anti-particle to each wave
in ;. Then, as a given wave passes through regions where o, remains constant, it
creates an oscillating train of particles and anti-particles. Clearly, the property (2.19)
holds with a constant C of the order of the sum of the total variations of the solutions
u and v.

But, particles and anti-particles can also be generated by cancellation and inter-
action effects. When two waves with strength ¢ and &’ (associated with the solution v,
say) meet within a region 2, their strengths are modified in agreement with Glimm’s
interaction estimates. Basically, the change in strength is controlled by the amount of
cancellation and interaction 8*. For the interaction of a shock and rarefaction wave
of the same family we have §* = |¢ — &'| + ¢, while, in all other cases, * = e¢’.
New waves with strengths ¢ ¢’ may also arise from the interaction.

To carry away the extra mass of order % and for each of the outgoing waves we
introduce particles leaving from the point of interaction and propagating with the local
j-characteristic speed. The oscillating train of particles and anti-particles associated
with each of the incoming fronts is also decomposed so that, after the interaction time,
we still have waves with attached particles and associated anti-particles. Additionally,
new particles are attached to the new waves and new anti-particles propagating with
the local j-characteristic speed are introduced.

More precisely, in the above construction the local j-characteristic speed is used
whenever their is no j-front or else the front is undercompressive; otherwise the parti-
cle or anti-particle under consideration propagates with the j-front. We use here the
fact that the constraint in (2.21) concerns undercompressive fronts only.

Finally, we impose that a particle and its associated anti-particle cancel out when-
ever they come to occupy the same location: Their strengths add up to 0 and they
are no longer accounted for.

In conclusion, to each wave with strength ¢ within a region €, we have associ-
ated an oscillating train of particles and anti-particles with mass +K e, propagating
along lines of discontinuity or characteristic lines of the matrix A. Additionally, we
have oscillating trains of particles and anti-particles associated with interaction and
cancellation measures §* and 6°.

In turn, the estimate (2.19) holds: for every interval (a,b) we have

| S (e )—wy(@,0)] < C1 (TVEIO)FTV (M (1) + D 6%/, E)4+6°(@, 1)),

z€(a,b) t'<t

where the sums are over interaction points (x',t'). Since the total amount of cancel-
lation and interaction is controlled by the initial total variation, we arrive at

| Y (win(z,t) —wj-(,1)| < C2 (TV(u"(0)) + TV ("(0))),

z€(a,b)
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which yields the uniform bounds (1.15), provided the total variation of the solutions
is sufficiently small. This completes the proof of Theorem 2.3. O

REMARK 2.4. For certain systems the L! continuous dependence estimate (2.7) re-
mains valid even for solutions with “large” amplitude. Consider for instance the
system of nonlinear elasticity

Opv — Opo(w) = 0,

2.22
Oww — Ozv =0, ( )

where the stress-strain function o(w) is assumed to be increasing and convex so that
the system (2.22) is hyperbolic and genuinely nonlinear. It is not difficult to check
that the fundamental properties discovered in Theorems 2.1 and 2.2 are valid for
solutions of (2.22) having arbitrary large amplitude. O

3. Sharp version of the continuous dependence estimate

In this section, we derive a sharp version of the L' continuous dependence property
of entropy solutions established in Theorem 2.3. This version keeps track of the
dissipation terms which account for the “strict decrease” of the L! distance between
two solutions. Throughout this section, the flux-function is defined on U := B(§) and
admits genuinely nonlinear fields. .

To state this result we introduce some concept of “wave measures” associated
with a function of bounded variation v : IR — U. Denote by J(u) the set of jump

u
points of u. The vector-valued measure p(u) := 75 can be decomposed as
T

pu(w) = p*(u) + p°(w),

where p®(u) and p®(u) are the corresponding atomic and continuous parts, respec-

tively. For i = 1,... , N the {-wave measures associated with u are, by definition, the
signed measures p,(u) satisfying
pi(w) = g (u) + pg(u), (3.1a)

where on one hand the continuous part u¢(u) is characterized by

[ vt = [ olitw)-duc(w (3.1b)
IR IR

for every continuous function ¢ with compact support, and on the other hand the
atomic part pu¢(u) is concentrated on J(u) and is characterized by

,uza(u)({xo}) =% (u_,u+), zo € J(u), (310)

Vi (u_, u+) being the strength of the i-wave within the Riemann solution associated
with the left and right-data uy = u(zoz). It is easily checked that the functional

N
V(u; .’L’) = Z|ui(u)|((—oo,x)), z € IR,
=1

is “equivalent” to the total variation of u
du
TV® (u)=/ —|, zeRR,
= (—o0,0) 1T
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in the sense that
C_TVE (u) <V(u;z) <CLTVE (u), ze€lR,

where the positive constants C+ depend on the flux-function f and the parameter 4,
only.

We also consider the measure of potential interaction associated with the function
u = u{z) and defined by

@)=Y (m@lemw)({@y) el xI1/z<y})

1<i<j<N

N (3.2)
£33 e ) ({@y) e Ix1/a#y})

for every interval I C IR, where we have called ,u;t(u) the positive and the negative
parts of the wave measure, respectively:

pa(w) =t pf (u) — p7 (u), i (u) 20,
a(w)] == g (w) + 5" (w),

Finally, the modified wave measures are by definition

fi(u) = |pi(u)| + cq(u),

where ¢ > 0 is a (sufficiently) small constant. Observe that fi; are indeed bounded
measures and satisfy

N N
() + (1= e8) D lui (W) < fi(w) < i) + (1 +cd) D |u(w),

j=1 j=1

where § := V(u;400). Like for the y;’s, they determine a functional which is com-
pletely “equivalent” to the total variation of w.

The advantage of the measures fi;(u) is their lower semi-continuity, as is the total
variation functional. (See the bibliographical notes for a reference.)

LEmMMA 3.1. (Lower semi-continuity of the modified wave measures.) The functionals
u— fi(u) (i =1,...,N) are lower semi-continuous with respect to the L' conver-
gence, that is, if uh : IR — U is a sequence of functions with uniformly bounded vari-
ation converging almost everywhere to a function (of bounded variation) v : IR — U,
then for every interval I C IR

fii(u)(I) < lim inf fis(u")(D).
O

We now define some nonconservative products associated with two given functions
of bounded variation, u,v : IR — U. Recall that A(u,v) denotes the averaging matrix
defined in (1.3). We set

wij(u,v) = Ilj(u) . (E(u, v) — )\i(u)) (v— u)|
Fori,j =1,...,N the dissipation measures v;;(u,v) are defined as follows:

Vij(u7 'U) = quj(u, U) + Vicj(uav)a (33&)
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where the atomic and continuous parts are uniquely characterized by the following
two conditions (with an obvious notation):

v (u,v) : = wij (u, v) dji (u) (3.3b)

and
v (u,0)({2}) = wij(u-,v-) i (w) ({z}) (3.3c)
for z € J(u), where u_ := u(z—), etc, and A\;(u_,uy) denotes the (smallest for

definiteness) wave speed of the i-wave (fan) in the Riemann solution corresponding
to the left and right-data u4. Finally, the (a priori formal) nonconservative product
wij(u, v) dfi;(v) is now well-defined as

wij(u,v) dfi(u) == vi;(u,v).

In the following we use the above definition for functions u and v depending on
time also, and so we use the obvious notation w;;(u,v,t), etc.

THEOREM 3.2. (Sharp L! continuous dependence.) Consider the strictly hyperbolic
system of conservation laws (1.1) where the fluz-function f : IR — U = B(4) has
genuinely nonlinear fields and ¢ is sufficiently small. Then, there exrist constants
¢ >0 and C > 1 such that for any two entropy solutions u,v: IR x IRy — U of suf-
ficiently small total variation, that is, TV (u), TV (v) < ¢, the sharp L! continuous
dependence estimate

lo(t) — u(t) |y + /0 (Da(s) + Ds(5)) ds < C [0(0) — (O ;agmy  (34)

holds for all t > 0, where

N
Das):=Y Y (wii(u_(a;),v_(x),s)+wii(v_(m),u_(:v),s)),

=1 (z,5)€Li(A)

Ds(s) ::/m ZN: (wij(u,v,s) di;(u, s) + wij(v,u, s) dﬁi(v,s)).

t,j=1

Here, L£;(A) denotes the set of all Laz i-discontinuities associated with the matriz
A{u,v), in other words, points (x,t) where the shock speed ) satisfies

Xi(u_,v_) >A> Xi(u+,v+).

Let us point out the following important features of the sharp estimate (3.4):

e Each jump in u or in v contribute to the strict decrease of the L' distance.

o The contribution of each jump is cubic in nature.

o Furthermore, Lax discontinuities provides a stronger, quadratic decay.

The rest of this section is devoted to proving Theorem 3.2. Denote by u* wave-
front tracking approximations with uniformly bounded total variation and converging
to some entropy solution u : IR x IR, — U. The local uniform convergence of the
sequence u" was discussed in Section VII-4. Recall that for all but countably many
times t, the functions z — u”(z) := u”(x,t) satisfy:

o If z; is a point of continuity of u, then for every £ > 0 there exists > 0 such

that for all sufficiently small h

[u"(x) — u(zg)| <& for each z € (xg — 1, zo + 7). (3.5)
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e If 7y is a point of jump discontinuity of u, then there exists a sequence zf € IR
converging to z¢ such that: for every € > 0 there exists n > 0 such that for all
sufficiently small A

luf(z) —u_(x0)] <& for each z € (x? — n,z}),

3.6
ul(z) —uy(mo)| <e for each z € (zh, 2z} + ). (36)
0>T0

To each approximate solution u"

we then associate the (approzimate) i-wave
measures u;"h(t). By a standard compactness theorem, there exist some limiting

measures p;"% (t) and ;" (t) such that, for all but countably many times ¢,

B () = 2 (2) (3.7a)
and

~u,h ~u,

() — () (3.7b)
in the weak sense of bounded measures. Actually the convergence in (3.7a) holds in

a stronger sense. We state with proof (see the bibliographical notes) the following
important property of wave measures:

THEOREM 3.3. (Convergence of the i-wave measures.) Fori=1,... ,N and for all
but countably many times t, the atomic parts of the measures ;"> (t) and p;(u,t)
coincide. In other words, we have

p =) ({z0}) = milu, ) ({zo}) = i (u-, uy) (3.8)
at each jump point xo of the function x — u(x,t), with uy = u(zet,t).

Two main observations needed in the proof of Theorem 3.2 are summarized in
the following preparatory lemmas:

LeEMMA 3.4. (Convergence of dissipation measures.) Let u® and v" be wave front
tracking approrimations associated with two entropy solutions u and v respectively.

Then for each i,j =1,... ,N and for all but countably many times t, we have
Co / wis (w0, 8) A (¢) < lim / wiy (uh, o, £) AN (1) (3.9)

for some constants Cy > 0.

LEMMA 3.5. (Convergence of dissipation measures on Lax shocks.) Consider the sets

- < . . =h
E,-(Ah) and L;(A) of all Lazx shock discontinuities in the averaging matrices A~ and
A associated with the approximate and exact solutions, respectively. Then, for each

i=1,...,N and for all but countably many times t, we have
li i(u h = (U - .
hli% Z wii(ul (), v (2),1) Z _ wii(u-(z),v-(x),t)
(@ t)eLs(A") (@t)eLi(4)

Furthermore, the following estimate is a direct consequence of the definition (3.3):

LEMMA 3.6. For all functions of bounded variation u, %, v, 9, w defined on IR we have

B B
[ ostu i) - [ wi@,) dusw)

o4 4

< C (1o — ull Lo (o) + 18 = L (a,8)) TVias(w),
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where the constant C > 0 only depends on the range of the functions under consider-
ation.

PrROOF OF LEMMA 3.4. Throughout the proof, a time ¢ > 0 is fixed at which the
results (3.5) and (3.6) hold. Given € > 0 we select finitely many jumps in u and v,
located at y3,¥2,. .. Yn, SO that

> |up(@) —u_(@)] + |vp(z) —v_(2)| <. (3.10)

TEYR
k=1,2,...,n

h

To each point y; we associate the corresponding point yf in u”* or in v*. To simplify

the notation we restrict our attention to the case
h h
Uk <Yk <Yrt+1 <Ygyq forallk,

the other cases being entirely similar. By the local uniform convergence property, for
h sufficiently small we have

(a) DD () —us ()l + W) — vx(w)| <

=L (3.11)
() [u"(2) — u(ys+)| + [o"(z) —v(gt) < e, z € (0, 90),
k=1
for the “large” jumps and, in regions of “approximate continuity”,
[uh(z) — u(z)| + [ (z) —v(z)] < 26, z€ (y,’;,ykﬂ) C (Yk> Yr+1)- (3.12)

Based on (3.10) it is not difficult to construct some functions u. and v, that are
continuous everywhere except possibly at the points y; and such that the following
conditions hold:

TV (ue; R\ {y1,.-- ,4n}) SCTV (w; R\ {y1,-.. ,¥n}),

3.13
||u—u€||oo<%a, TV (u—us; R\ {y1,... ,yn}) < Ce, (313)

as well a as completely similar statement with u replaced with v, where C is indepen-
dent of €.
For a constant Cy to be determined, consider the decomposition

Q(h) =/ wij(uh,'vh) dﬂg’h —Cy / wij(u,v) dﬂ;"oo
IR IR

=(Y2/( +i /{yg} Joig (s, 0") dig

k=0 y;’cl’ylicl+1) k=1

_C n / + n / ) | d~;l’oo
O(I;) Yk Yk+1) ; {yk})wj(u v)di
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that is,
Q(h) =Z (/ wij(uh, o) dip" Co/ wi;(u,v) di;” °°)
k=1 /{vi} {yx}
- 3.14
+ wij (ul, o) dp ™ — Co/ wij(u,v) diy” °°) (3.14)
k=0 (vp e (Yk Yrt1)
=0 (h) + Qa(h).
Here y§ = yo = —oo and ?JZ+1 = Yn41 = +00.

In view of Theorem 3.3 we have

|M?’°° ({yk})l = |vi(uk—, ur4)|-

Passing to the limit in the inequality u?’h < ﬂ?’h we find ;"™ < ;"% and therefore

o (o) < 1 ({ue}),

with ugs+ = us(yk). On the other hand, by definition,
Bfoh h .k
| (k)] = il i)
Using that u” is a piecewise constant function, we have

(1= eo)u™ ({ui}) < B ({wi}) < W+ co)m™ ({u})

with ul', = ult (y}). Therefore we arrive at the following key inequality

(k) < (1+¢8) Y wi(up, i) Iys(ul_, upy)| = Cowsg(un—, ve) [y (uk—, ues)|.
k=1

Thus, choosing Cy large enough so that Cy > (1 + ¢é) we find
(k) < (146 (h)

with
Zw” (s 0 s )] — o ot 0= ) bt )|
But, since the functions ~; are locally Lipschitz continuous
n
|Ql(h <C ZZIuﬁi—ukiHlvﬁi—vkil <Ce (3.15)
k:
by the property (3.11a), provided h is sufficiently small. So

limsup Oy (h) < 0.
h—0
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Using that Co > 1 and relying on the inequalities yx < yP < yry1 < 3P 4 for all
k, we consider the following decomposition:

n
Qo(h) < Qy(h) == Z/ wij(ul, o) die™ — wij(u,v) da ™

k=0 (¥ yk+1)

n n
S [ ey [ wi(uh, o) dp
k=0" (Wrvi] k=0 Wr+1,95 1)
:3Q2,1(h) + Qz,z(h) + 92’3(h).
(3.16)

We will show that 3(h) — 0.
Consider first Q3 2(h) and €23 3(h) which are somewhat simpler to handle:

Do)=Y [ (= wis(ulw), o) + s ulpe), o(ue)) 4 ()
=0 " (¥k,y}]

—Z/ wij (u(yx+), v(ye+)) dit; ™ (y)-
k=0 (yk:y;’:]

Therefore, with Lemma 3.6 we obtain

[92a] <C [ duw=( sup July) - uleH) + swp o) - o))
R yE(Yr,yl z€(yx,yk]

n
+C > / i,
b0 ¥ (.9}

Since y — yx, we have for h sufficiently small
|Q2.2(h)| < Ce. (3.17)

A similar argument for Qs 3(h), but introducing now the left-hand values u_ (yx) and
v_(yx) and relying on (3.11b), shows that

|Q23(h)| < Ce. (3.18)
Next consider the decomposition
wi (ul, o) digg ™ — wig(u, v) dig*™
= (wig (", ") ™ = i, 0) At ) + (w3, 0) s (u*) = i o, ve) dﬁ;"h)
+ (wij(usavs) dig " — wij(ue,ve)dg;"“) + (Wz’j(ueaﬂs) dii;"™ — wij(u,v) dﬂ?’w)
With obvious notation, this yields a decomposition of the form

Qz,l(h) = Ml(h) -+ Mz(h) + M3(h,) + M4(h) (3.19)
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Using Lemma 3.6 and the consequence (3.11b) of the local convergence property, we
obtain

IMWKCZ/

sup |u® —u|+ sup ]vh-vl)

k’y’H‘l) (y,’:,ykﬂ) (YR yk41) (3.20)
< Z sup fu® —u|+ sup Jo —vt) <(Ce.
(Yl yet1) (Wl yr+1)
Next using Lemma 3.6 and (3.13) we have
n
IMa(h)| < C / " ( sup |u—u|+ sup |v-— vel)
kz_:—o (v Yie+1) (yP yxt1) {(wlyke1) (3.21)
<(C'e.
Dealing with My(h) is similar:
[My(h)| < C / di;" | sup |u—u|+ sup ]v—vel)
Z (yp ,yk+1) (yﬁ,ykﬂ) (yPyks1) (3.22)
<Ce.

Finally to treat M3(h) we observe that, since u. and v, are continuous functions on

each interval (y}',yx+1) and since ﬁ;"h is a sequence of bounded measures converging
weakly toward [;">°, we have for all h sufficiently small

|Ms(h)| <e. (3.23)
Combining (3.19)—(3.23) we get
|21(h)| < Ce. (3.24)
Combining (3.17), (3.18), and (3.24) we obtain
|Qa(h)| < Ce

and thus, with (3.14)-(3.15),
Q(h) < Ce for all h sufficiently small.

Since ¢ is arbitrary, this completes the proof of Lemma 3.4. [

ProoF oF LEMMA 3.5. Fixing some ¢ = 1,...,N and excluding countably many
times t only, we want to show that

lim > walul (@), 0" (2) = Z_ wii(u_(z),v_(z)). (3.25)
zeLi(A") z€Li(A)
Let yz for k = 1,2,... be the jump points in u or v. Denote by y? the correspond-
ing jump points in u" or v". Extracting a subsequence if necessary we can always

assume that for each k either y? € ﬁi(Zh) for all h, or else y ¢ Li(A") for all h.
Then we consider the following three sets: Denote by J; the set of indices k such that

yr € Ci(Zh) and yy, € £;(A). Let Jo the set of indices k such that y} ¢ Ei(/_lh) and
Y € L;(A). Finally J3 is the set of indices k such that y? € Li(A") and y ¢ L:(A).
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First of all the local convergence property (3.6) implies

Y wis(u? (), 02 () — Y wis(u- (), v-(w)).- (3-26)

keJy kelJy

(Indeed, given € > 0, choose finitely many jump points as in (3.10) and impose (3.11a)
with £ replaced with € |uy (yx) — u—(yx)|.)
On the other hand for indices in J; U J3 we claim that

Z Wiz (U’i(yll;):vii(ylg)) — 0, (3.27)
keJaUJs
while
Z wii (u—(yx),v—(yx)) = 0. (3.28)
keJaUJs

Indeed, for each k € J, yi is a Lax discontinuity but y? is not. Extracting a subse-
quence if necessary, the Lax inequalities are violated on the left or on the right side
of y for all h. Assuming that it is the case on the left side, we have

A (u— (), v- () — N (u— (k) ur (yx)) >0
while
Ni (u— (), v- (k) — i (u— (i), us (i) <0
for all h. We have denoted here by \;(u,v) the i-eigenvalue of the matrix A(u,v).

But the latter converges toward the former by the local uniform convergence, which
proves that

Y (u—(yk)’v—(yk)) - Xi(u—(yk)au+(yk)) =0
and, by the genuine nonlinearity condition, v_(yx) = uy4(yk). In this case, we finally
get
wii(u—(Yk), v—(yx)) = 0.
O

PROOF OF THEOREM 3.2. From the analysis in Sections 1 and 2 (Theorems 1.5 and
2.3) it follows immediately that for all ¢ > 0

t . —h —h
lo(t) — w(®) |1y + / w3 (A} (r,9) A (2,9)
0 —

(z,5)€T (A")
" (2,8) - N'(, 8)) (v"(z,s) —ul(z,5))| ds

+/O lim sup Z ]7?_ (z,s) - (ZE (z,s) — Xh(:v,s)) (v" (z,s) — u" (z,s))| ds

h—0 —_h
(z,8)EL;(AT)
0<s<t, 1<i<N

< Clv(0) = w(0)|| L1 (m)»

since ‘Ehe contributions from the rarefaction fronts an% artificial waves vanish as h — 0.
Here [, denote the left-eigenvectors of the matrix A .
Using that

(4

| (z,5) — A" (2,3)] > clul (z,5) — u" (z, 5)|
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for discontinuities in u” and
|(Zi(m, s) — )\h(x s)) (v* (z,s) — u" (z, s))l
N
>c S [l (@9)- (A (z,5) = X'(2,9)) (v" (2, 8) - u"(z,5))],
j=1

we arrive at
[[v(t) — U(t)l!u(m

/ / Z hmsup ww(uh v, 8) i (s) + wij (V" uP, s) dﬁf’h(s)> ds

ij=1 h—0

+ /0 ;lh;?_s.})lp Z (wu(u’i (x),v" (), 5) + wii (V" (), u” (), s)) ds

(z,5)€L:(A™)
< Clv(0) — w(0)]| 1 m)y-

Applying Lemmas 3.4 and 3.5 we deduce from (3.29) that (3.29)
() — u(t)”Ll(IR)
/ / Z wi;(u,v, 8) A (s )+w¢j(v,u,s)d,1§’°°(s)) ds
" (3.30)

50D SR CRORE SRS RS P

i=1 (g,5)eL;(A)
< O lv(0) = w(0) || L2 (am) -

To conclude we use Lemma 3.1 for instance for u: by lower semi-continuity we
have

fi(u, s) < 57 (s) (3.31)

in the sense of measures, for all but countably many times s and for some constant

¢ > 0. Finally, it is clear from the definition of nonconservative products that (3.31)

implies the same inequality on the nonconservative products. This completes the

proof of Theorem 3.2. O

4. Generalizations

Nonclassical entropy solutions determined in Chapter VIII should satisfy an analogue
of the stability results derived in Sections 2 and 3. In particular, we conjecture that:

THEOREM 4.1. (L! continuous dependence of nonclassical solutions.) Under the no-
tations and assumptions in Theorem VIII-3.1, any two nonclassical entropy solutions
u = u(x,t) and v = v(z,t), generated by wave front tracking and based on a prescribed
kinetic relation, satisfy the L' continuous dependence property

u(®) —v®lLr@m) < Cullw(0) —v(0)llLram), 20 (4.1)

where the constant C, > 0 depends on the kinetic function and the L*° norm and
total variation of the solutions under consideration.
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CHAPTER X

UNIQUENESS OF ENTROPY SOLUTIONS

In this chapter, we establish a general uniqueness theorem for nonlinear hyperbolic
systems. Solutions are sought in the space of functions with bounded variation,
slightly restricted by the so-called tame wvariation condition (Definition 1.1). The
results of existence and continuous dependence established in previous chapters cov-
ered solutions obtained as limits of piecewise constant approximate solutions with
uniformly bounded total variation (in Chapters IV and V for scalar conservation laws
and in Chapters VII to IX for systems). Qur purpose now is to cover general functions
with bounded variation and to establish a general uniqueness theory for hyperbolic
systems of conservation laws.

It is convenient to introduce a very general notion, the (@, {)-admissible entropy
solutions, based on prescribed sets of admissible discontinuities ® and admissible
speeds 1. Roughly speaking, we supplement the hyperbolic system with the “dy-
namics” of elementary propagating discontinuities. The definition encompasses not
only classical and nonclassical solutions of conservative systems but also solutions
of hyperbolic systems that need not be in conservative form. Under certain natural
assumptions on the prescribed sets ® and ¥ we prove in Theorem 3.1 that the associ-
ated Cauchy problem admits one solution depending L' continuously upon its initial
data, at most. In turn, our framework yields the uniqueness for the Cauchy problem
in each situation when the ezistence of one solution depending L' continuously upon
its initial data is also known; see Theorems 4.1 and 4.3.

1. Admissible entropy solutions

Consider a nonlinear hyperbolic system of partial differential equations in non-
conservative form

Owu+ A(u)Ou=0, uv=ulr,t)eld, zcR,t>0, (1.1)

where the N x N matrix A(u) depends smoothly upon u and need not be the Jacobian
matrix of some vector-valued mapping. All values « under consideration belong to an
open and bounded subset ¢ C IR ; interestingly enough, this set need not be small
nor connected. For each u in U, the matrix A(u) is assumed to admit N real (but
not necessarily distinct) eigenvalues

and basis of left- and right-eigenvectors ;(u), rj(u), 1 < j < N, normalized such that
li(u)7;(u) = &;;. It is also assumed that there exists a bound A*° for the wave speeds:

sup |A;(u)] < A%,
1S5S
uel
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We are interested in the Cauchy problem associated with (1.1), in a class of
functions with bounded variation. By definition, a space-like segment is a set of
the form

.= {(x,t)/x € [z1,22], t=7(z):= ax+ﬂ}

for some ;1 < zo and o, € IR with |a] < 1/A°. In particular, an horizontal
segment is a set of the form

I:= {(x,to)/:v € [yl,yz]}

for some y; < yo and some fixed time t;.

TV (u;T)

Y

Y1 ] TV () 9 )

Figure X-1 : The tame variation condition.

By definition, the segment I' lies inside the domain of determinacy of L if
we have
1~ Y2 — T2
Ao A
By definition, the total variation along the segment I of some function u = u(z, t)
is the total variation of its restriction to the segment I' and is denoted by TV (u;T).
The class of functions under consideration in this chapter is defined as follows.
Our condition (1.2) below requires that the total variation does not grow too wildly
as time increases. From now on, some positive constant « is fixed. (See Figure X-1.)

[Z1,22) € [y1,72], 0<y(z1) —to < 0 <v(zg) —tp <

DEFINITION 1.1. (Notion of tame variation.) A map u : IR X [0,00) — U is said to be
a function with tame variation if u = u(z,t) is a bounded, Lebesgue measurable
function and for every space-like segment T' the restriction of u to the segment T is a
function with bounded variation satisfying

TV (u;T) < k TV (u; T), (1.2)

provided the segment I' is inside the domain of determinacy of the horizontal segment
r. O

In particular, any function with tame variation satisfies
TV (u(t)) < TV (u(0)) < oo, telR,. (1.3)

For instance (Theorem 4.1 below), solutions of (1.1) obtained as limits of wave front
tracking approximations are functions with tame variation.

We recall here some standard properties of functions with bounded variation.
(Additional results can be found in the appendix.) If a function v = u(z,t) has
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tame variation, it has also bounded variation in both variables (z,t) on each set
IR x (0,T), that is, the distributional derivatives 0;u and 0,u are Radon measures in
IR x (0,T). For such a function there exists a decomposition of the form

R xR, =C(u)UJ(u)UZ(u),

where C(u) is the set of points of L' approximate continuity, J(u) is the set of
points of approximate jump, and Z(u) is the set of interaction points of the
function u. The latter is negligible in the sense that H;(Z(u)) = 0, where H; denotes
the one-dimensional Hausdorff measure in the plane. At each point (zg,%5) € J(u)
there exist left- and right-approximate limits u(zo,t9) and a propagation
speed A*(zg,1p) such that, setting

_ ’u_.(iL'o,to), T < $0+>\u($0,t0) (t——to),
(z,t) := N (1.4)
U+($0,t0), T>To+ A (il:o,t()) (t—to),
we have
to+h $0+h
ilblinoﬁ/ / mt—uzt‘dwdt (1.5)

The right-continuous representatlve uy of u is defined H;—almost everywhere as
U (x t) R { U’(x7t)’ (.’E,t) e C(’U,),
+\LH ) =
U+(.Z‘,t), (ﬁ,t) € J(u),

and the nonconservative product A(uy ) d,u is the radon measure such that, for every
Borel set B C IR x (0,T),

// A(ug) 0. u—//Bﬁc(u) (u) Oy u—l—/BnJ(u) Aug) (ug — u_) dH;. (1.6)

To define the notion of entropy solutions for (1.1) we prescribe a family of ad-
missible discontinuities

dcuUxu
and a family of admissible speeds
P ® - (=A%, A%)
satisfying the following consistency property for all pairs (u—,uy) € :

|(A(U+) - ¢(U—,U+)) (us = U—)‘ < lluy — u-|) fuy —u—|, (L.7)
where the function n = n(e) > 0 is increasing and satisfies n(¢) — 0 as ¢ — 0.

DEFINITION 1.2. (General concept of entropy solution.) Let ® C U x U be a set of
admissible jumps and ¢ : & — (—)\°°, /\°°) be a family of admissible speeds satisfying
(1.7). A function u with tame variation is called a (®,1)—admissible entropy
solution of (1.1) or, in short, an entropy solution if the following two conditions
hold:
o The restriction of the measure d;u + A(uy) dyu to the set of points of approx-
imate continuity of u vanishes identically, that is,

/ Owu+ A(uy)0zu=0  for every Borel set B C C(u). (1.8)
B
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e At each point of approximate jump (z,t) € J(u) the limits u.(z,t) and the
speed \*(z,t) satisfy
(u— (:C,t),U+(:L', t)) € P, )\u(m, t) = w(u— (:E,t),u+(112, t)) (19)
[
From (1.6), (1.8), and (1.9) we deduce that if u is an entropy solution then, for
every Borel set B,
/ (Bru + A(uy) 8,u)
- / / (Bru+ A(w) D) + / (=3 + Afuy)) (uy —u_)dHy  (1.10)
BNC(u) BNJ (u)
= [ (Al = bl u) (g~ us) P
BNJ(u)

REMARK 1.3.
¢ Roughly speaking, (1.7) guarantees that, as the wave strength |uy —u_| van-
ishes, the propagating discontinuity connecting u_ to u4 approaches a triv-
ial solution of the linear hyperbolic system Oyu + A(u.4) 0,u = 0 (specifically,
Y(u—,uy) = N(uy) and u— = uy + ar;(uy) for some integer ¢ and real ).
Examples of admissible jumps and speeds are discussed below (Section 4).
e The right-continuous representative is chosen for definiteness only. Choosing

u— in (1.8) leads to a completely equivalent definition of solution.
O

Some important consequences of the tame variation condition are now derived.

LEMMA 1.4. Letu:IR x IRy — U be a function with tame variation.

o Then, at every point (zo,to) € J(u), the L* approzimate traces u_(zo,to)
and uy(xo,tg) of u considered as a function with bounded variation in two
variables coincide with the traces of the one-variable function  — u(z,tp) at
the point xg.

o Moreover, u is L' Lipschitz continuous in time, i.e.,

lu(tz) —ut)llzrar) < Mlta —t1], t1,t2 € Ry, (1.11)
where the Lipschitz constant is M := 2A*° k(k + 1)TV (u(0)).

PROOF. Given some point (zg,t) € J(u) and € > 0, in view of (1.5) we have

to+h :Co+h
/ / u(z,t) — u(z,t)| dodt < e
to

for all sufficiently small h and, in particular,

1 to+h min(1,1/(2X%°)) mo—)\oo(t—to)
—/ / lu(z,t) - u_(mg,to)l dzdt
i b

h2 o—h-+A% (t‘-‘t())
1 to+hmin(1,1/(2A%))  pzot+h—-A(t—tg) (1'12)
T / / |u(z,t) — ug (2o, to)| dzdt <.
to Zo+A (t—to)
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On the other hand, denoting by @_ and @ the traces of the function z — u(z,to) at
the point zo, we can always choose h sufficiently small so that

TV (u(to); (zo — hyh)) + TV (u(to); (o, zo + h)) <

alm

(See Figure X-2.)
Az, ty)

u—(zg, t) u(zg, tp)

t0+h

Uy $O+h

zg—h U—.

Figure X-2 : The two notions of traces coincide.

With the tame variation condition (1.2) we deduce that

|u(z,t) —i_| <e, te€(to,to+h),

z € (zg—h+ A°(t —ty),zo — APt — to)),
lu(z,t) —ay| <e, te(to,to+h),

z € (To + A°(t ~ to), To + h — XX (t — t)).

Comparing with this pointwise estimate with the integral estimate (1.12), since ¢ is
arbitrary we conclude that
iy = u(To,t0)-

We now check that the map ¢ +— wu(t) is Lipschitz continuous. Consider any
interval [t1,t2] and set 7 := (t2 — t1) > 0. At every point z € IR we can apply (1.2)
by taking I to be the segment with endpoints (t1,z — 7 A%®), (t1,z+7A>), and T to
be the segment with endpoints (t3, ), (t1,2 + 7 A°°). This yields

[u(te, ) — u(ts, z)| < |u(te, z) — ulty, z +72°)| + |uty, z + 7 A%°) = u(ty, z)|
< (k+ 1TV (ulty); [z — 7 X°, 2+ 7 A7)
=G(r+17A%°) - G(z — 7 2%),
where G(z) := TV (u(t1); (—oo,z]). After integration one finds
/oo [u(te, z) — u(ty, z)| dz < 27 A (K + 1) TV (u(t1))

-

< 2(ta — t1) A° (K + 1) TV (w(0)),

where we also used (1.3). This completes the proof of Lemma, 1.4. O



246 CHAPTER X. UNIQUENESS OF ENTROPY SOLUTIONS

2. Tangency property

Our aim is proving that the Cauchy problem associated with (1.1) has at most one
solution depending continuously on its initial data. In the present section we derive
the following key estimate:

THEOREM 2.1. (Tangency property.) Consider the hyperbolic system (1.1) together
with prescribed admissible jumps ® and speeds ¢ satisfying the property (1.7). Let u
and v be two entropy solutions with tame variation. Denote by I C IR the projection
on the t-azis of the set Z(u) UZ(v) of all interaction points of u or v. Then, at each
time to ¢ T such that

u(to) = v(to)
we have the tangency property

t—to t — ¢t HU(t) - v(t)”Ll(lR) =0. (21)

REMARK 2.2.

o Since H;(Z(u)) = H1(Z(v)) = 0 the set T is of Lebesgue measure zero. Since
these points of wave interaction in u or in v are excluded in Theorem 2.1,
the existence and the uniqueness of the solution of the associated Riemann
problem is completely irrelevant to the derivation of (2.1).

e In view of (1.11), the weaker estimate

““(t) t) ||L1(]R)
< [Ju(t) - u(to) HLI(lR) + [|ulto) — ”(tO)HLl(zR) +[o(t) ~ ”(to)”Ll(zR)
<C(t—to)

is valid for every time t > to at which u(to) = v(to).
d

The proof of Theorem 2.1 will rely on two technical observations. Lemma 2.3
below provides us with a control of the space averages of a function by its space and
time averages. Lemma 2.4 provides us with a control of the L! norm of a function
from its integrals on arbitrary intervals. The first observation will be used near large
discontinuities of the solutions (Step 1 below) while the second one will be useful in
regions where the solutions have small oscillations (Step 3).

LEMMA 2.3. Let w = w(£, ) be a bounded and measurable function satisfying the L
Lipschitz continuity property

lw(r2) —w(n)lprgr) < K2 —ml|, 7,72 € Ry

for some constant K > 0. Then, for each h > 0 we have

h/ w(é, h |d§<‘/_<h2// |w|d§dT>1/2,

whenever the right-hand side is less than K.
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PRrRoOOF. Given h,h' > 0 we can write

h
/_h (&, k) — w(E, )] de < K |h— K,

thus

1

' Lt , K ,
iL[Jm&mwssﬁlhm@mn@+7ﬂh_hL

For each ¢ € (0, 1) integrate the above inequality on the interval h’ € (h — €h, h):

1 [t Y U K ¢h
z < d ket
P owldes gz [ [ woldear s 25
1 horh Ke
< — —.
< 5e /0 [h |w| dédt + 5
The optimal value for ¢ is the one minimizing the right-hand side of (2.2), that is,
1/2
5 (1 [t rt
Ex = E (ﬁ /0 [h |'U)|d§d7'> .

The condition ¢ < 1 is equivalent to saying that the right-hand side of the desired
inequality is less than K. The conclusion then follows from (2.2). O

(2.2)

LEMMA 2.4. For each function w in L'((a, b);IRN) we have

Zk4+1
oo = s 3 | we)dal, (23)
a<zl<z2<"'<bk:l,2,,.. zZk
where the supremum is taken over all finite sub-divisions of the interval (a,b). g

The formula (2.3) is obvious if w is piecewise constant. The general case follows
by approximation (in the L! norm) by piecewise constant functions.

PROOF OF THEOREM 2.1. Let u and v be two (®,)-admissible entropy solutions
of {1.1), having tame variation and satisfying, for some time to ¢ Z,

’U,(to) = v(to).

Given ¢ > 0 arbitrary, we want to estimate the integral |[u(to + h) — v(to + h)|| L)
by O(h¢), which will establish (2.1). We decompose the proof in several steps.

Step 1 : Estimate near large jumps. Let x1,23,... ,%, be the finite set of all large
jumps in u(t) such that

|ut (ks to) — u—(zk, to)| =&, 1<k<p. (2.4)
Since (zk,to) ¢ T(u) by assumption, we have (zg,t9) € J(u). Since u is an entropy
solution (see (1.9) in Definition 1.2) the pair (ug—,uk+) = (u=(Zk, to), u+ (k. to))
belongs to the set ® of admissible jumps and, therefore, the corresponding speed

(ug—,ux+) is well-defined and coincides with the shock speed in the solution u at
that point. Precisely, for all ¢ > £y and all x, we define

Te(,t) = {

Ug—, T — Tk < P(up—,ury) (t —to),
Uty T —Tp> w(uk_,uk+) (t — to).
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Plug_,ugy)
/ v ta+h
u]H, 0
t0

Figure X-3 : Near a point of “large” jump.

According to (1.5) the function Uy, is a good approximation of the solution u in the
neighborhood of the point (zx,to) € J(u). Hence, given n > 0, for all h sufficiently
small we have (Figure X-3)

toth  pr+APh
F5) / / fu(sc,t) - 'ﬂk(x,t)l dedt <n, 1<k<p,
— Xk

in which we will choose
2

€
= 2 K p2 ’
K being a uniform Lipschitz constant for all functions 4 — g, k=1,...,p.

Applying Lemma 2.3 with w(&, 1) := (u — k) (zk + A% &, to + 7), we deduce that

1 $k+/\ h €
—-/ lu(z,to + B) — Tk (z, to + h)|dz < /2K n == (2.5)
h Jzy—ah p
for 1 < k < p and all h sufficiently small. (One can always take ¢/p < K so that the
assumption in Lemma 2.1 holds.) Since v(tg) = u(to), we can set Ty := Ty and the
function v satisfies a completely analogous estimate obtained by replacing u and
by v and Ty, respectively. Hence, by (2.5) we arrive at

1 $k+)\°°h,
EZ/ "U.(x,tg-Fh) ——v(m,to-{-h)‘d.’r

k=1 Y TE—APh
mk+)\°°h 06
%2/ o (|(u = T)(z,to + B)| + | (@ — v)(z,t0 + B)|) dz (2.6)
<2e

for all h sufficiently small.

Step 2 : Using the tame variation property. Choose p = p(¢) > 0 such that
2p < Milk£m [Tk — Tm| and for every interval (a,b)

TV (u(to); (a,b)) <& whenb—a<2pand (a,b)N{z,...,2p} =0. (27
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Next, select points y; (I =1,2,...) to obtain a locally finite covering of

IR\{JH,...,J)I,}

by intervals of the form (y; — p, v + p). We can always assume that each point of the
z-axis belongs to two such intervals, at most.
To describe the domain of determinacy of the interval I;(0) = (yi — p, y1 + p),

0 = {(m,t)/ac EW—p+AX(t—to), g +p—A2(t—t0), to<t<to+ h},
we introduce the intervals
L(h) = (y = p+ X°h, yi + p — Xh).
Clearly, (2.7) together with the tame variation property (1.2) imply that the oscillation
of u is small in each interval I;(h), i.e.,
lus(z,to + h) —us(yto)] < (26 +1)e, z€L(h),1=1,2,... (2.8)

for h sufficiently small. Of course, the same estimate is satisfied by the function v.

Step 3 : Fstimate in regions of small oscillations. We define now an approximation
adapted to points of approximate continuity of v and to points where the jump in
u(tp) is less than €. Fix some index ! € {1, 2,... } and, for simplicity in the notation,
set

A_ = A(U+(yl,t0)), Aj = /\j (U+(yl,t0)), Lj = lj (u+(yl,t0)).
Let u = u(z,t) be the solution of the linear hyperbolic problem
Ou+Adu=0, t2=>to,
u(to) = u(to)-

On one hand, we can multiply (2.9) by each l; and obtain N decoupled equations for
the characteristic components [ ;U

(2.9)

at(!jﬂ) +Aj 6m(11 Q) =0, 1<j<N (2.10)

On the other hand, the solution u of (1.1) satisfies an equation similar to (2.10),
but containing a source-term. Namely, since u is a (®, 1))-admissible solution, accord-
ing to (1.10) it solves the equation

Owu + A(uy) Ozu = p, (2.11)

where p is the measure concentrated on the set J(u) and given by

WB) = [ (Afus) = wlun ) (g — ) (212)
BNJ(u)

for every Borel set B C IR x IR . In view of (2.11) we have
Ouu+ Adu = (A~ A(uy)) deu + b
and so, after multiplication by [; (1 <j < N),
Bu(ly u) + A, 0. (L w) =L (A — Aluy)) Bou+L; (2.13)
which resembles (2.10). Combining (2.10) and (2.13) we arrive at
B(ly (u—w) +X;0:(L; (u—1w) =1 (A— Alug)) Oeu+ L, p. (2.14)



250 CHAPTER X. UNIQUENESS OF ENTROPY SOLUTIONS

Since the matrix-valued function A depends Lipschitz continuously upon its ar-
gument, the coefficient A — A(u4) in the right-hand side of (2.14) satisfies

[(A - A(u+))(a3, to + h)[ <C |u+(y;,t0) —ug{z,to + h)[ (2.15)
<C@2:s+1)e, zehi(h),l=12... '
for all small h, where we have used the estimate (2.8).

To estimate the measure p in the right-hand side of (2.14) we use the consistency

property (1.7) together with (2.8). For every region with polygonal boundaries (for
simplicity) B C €; we find that

W< [ s =) ey -l

BNJ(u)
<wmE@s+e [ fu-ufd (2.16)
BNJ(u)
to+h
< Cnle) TV (u(t); (B):) dt,
to

where (B); := {z/(z,t) € B}. (See (A.11) in the appendix.)

We will now integrate (2.14) on some well-chosen sub-regions of the domain of
determinacy Q; of the interval I;(0). For each j = 1,..., N and each 2’,2” in I;(h)
we consider (Figure X-4)

Qg = {(m,t)/w’ +(t-to—hA; <z <o’ +(t—to—h)d;, to<t<to +h},

which is a subset of §;. By using Green’s formula for functions with bounded varia-
tion, since u(to) = u(ty) we obtain

17

tot+h  px’+H{E-to—h)), z
/ / Bu(l; (u—1) + 2 8 (I, (u—1)) = / I, (u—u)(z, to +h) de.
2 T x!

‘+(t—to _h)éj

J
’ ’
2’z

Hence, integrating (2.14) over Q, _,, we get

i

x to+h  pr”+(t—to—h)A;
[ pe-vensna= [T f Ly (A A(uy)) Opu+1, .
’ to @ +(t—to—~h)A;

Using (2.15) and (2.16) we arrive at the estimate

| /: L (u = w)(yto + ) dy|

< Cnle) tﬁi;b‘v(u(t); (' + (t —to — h)A;, 2" + (t —to — R)A,)) dt.

to

(2.17)
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tg+h

il ’ 1’ N t
Yy —p z/+hAj 1;(0) yt+p 0

z = hj

Figure X-4 : In a region with small oscillations.

Next, in view of Lemma 2.4 and summing (2.17) over finitely many intervals we
find

to+h
/I(h) |L; (v — w)(z, to + h)| dz < Cn(e) T TV (u(t); Li(t — to)) dt.

to
The same estimate holds for the solution v as well and, therefore,

/ |l; (u—v)(z, to+h)| dz < Cn(efﬁ (TV (u(t); Li(t—to))+TV (v(t); Il(t—to))) dt
Ii(h) to

for each 5 =1,...,N. Since |[u —v| < C Z;V=1 |Lj (u— v)| we conclude that

/ |(w —v)(z, to + h)| do
Ii(h)

to+h (2.18)
< COnle) (TV (u(); L(t — o)) + TV (v(t); Li(t — to))) dt.

to

Step 4 : Conclusion. Summing up the estimates (2.18) for all = 1,2, ... we obtain

y1+p—A>h to+h
/ (4~ v) (2, to + 1| dz < O(e) / (TV(u(®)) + TV (v(2))) de

1=1,2,. Jyt=ptA>h to

<(0E) + ) h,

(2.19)
since two intervals, at most, may overlap and the function TV (u(.)) + TV (v(.)) is
uniformly bounded. Finally, since the intervals (y; — p+ A®h,y; + p — A°h) and
the intervals (zx — A°h, zx + A®h) form a covering of the real line, we can combine
the main two estimates (2.6) and (2.19) and conclude that for each ¢ > 0 and all
sufficiently small h

% /m |(u = v)(z, o + B)| dz < O(e) + n(e),

hence (2.1) holds. This completes the proof of Theorem 2.1. O
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3. Uniqueness theory
We introduce the following notion of semi-group.

DEFINITION 3.1. (General concept of semi-group of entropy solutions.) Consider the
hyperbolic system (1.1) together with admissible jumps ® and speeds ¢ satisfying
the property (1.7). By definition, a semi-group of entropy solutions is a mapping
S : K x [0,00) — K defined on a non-empty subset K of functions with bounded
variation on IR such that the following three properties hold:
e Semi-group property : for all ¢1,t; > 0 and ug € K, we have S(t;)up € K
and S(tg) o S(tl)’u,o = S(tg + t1)U0.
¢ Continuous dependence: For some fixed constant K > 0 and for all
Up, Vo € Kandt> 0,

1S (t)uo — S(t)vollLrgry < K |luo — voll 1 (m)- (3.1)

e Entropy solution: For each function ug € K the map ¢ — S(t)up is an en-
tropy solution with tame variation.
|

Of course, since functions of tame variation are Lipschitz continuous in time by
Lemma 1.4, a semi-group in the sense of Definition 3.1 satisfies actually

||S(t2)U0 - S(tl)vol]Ll(m) <K ”UO — ’U()”Ll(m) + K ]tg — tll (3.1’)
for all ug,vo € K and ¢1,t3 > 0, where K’ := max(K, 202 k(K + 1)TV(u(O))).

THEOREM 3.2. (Uniqueness of entropy solutions.) Consider the hyperbolic system
(1.1) together with a pair of admissible jumps ® and speeds ¢ satisfying the property
(1.7). Assume that there ezists a semi-group S : K x [0,00) — K of entropy solutions
with tame variation satisfying the following:
Consistency property with single jumps of (®,¢): If a function v =
v(z,t) is made of a single (admissible) jump discontinuity (v—,v;) € ® prop-
agating with the speed ¥(v_,vy), then v(0) € K and

v(t) = S(¢)v(0), t>0.

Then, if u is an entropy solution with tame variation assuming the initial date up € K
at time t = 0, we have

u(t) = S(t)ug, t>0. (3.2)
In particular, there exists o unique entropy solution with tame variation of the
Cauchy problem associated with (1.1).

It is clear that the consistency property above is necessary, for otherwise one could
find two distinct solutions starting with the same initial data and the conclusion of
Theorem 3.2 would obviously fail.

On one hand, for the consistency property to hold, the set & must be “sufficiently
small”, so that any initial data made of a single admissible jump (u—,u4+) € ® cannot
be decomposed (as time evolves) in two (or more) admissible waves. Indeed, sup-
pose there would exist a semi-group of admissible solutions satisfying the consistency
property with single admissible jumps and suppose also that

(’U_, 'U-{—)r (’U—? U*), (’U*, ’U+) €9,
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where the three constant states v_, v., and v, are distinct and their speeds are
ordered:

’l/)(’l)_,’l)+) < '(,[)('U—,’U*) < 'l,b(’U*,’U-q-)-

Consider the single jump solution

v1(z,t) :{

together with the sequence

v, z<yYlv_,vy)t,
Uy, T> ’(,/)(1)_.,1)_+.) t

v, T <P(v_,v.)t,
U;(il},t) = Vs, w(v_,v*)t<x<5+¢(v*,v+)t,
vy, T>E+P(vi,v4)t

The solution v§ contains two propagating discontinuities and converges in the L!

norm toward
v, = <P(v_,v.)t,

va(z,t) = Vi, Y(V_,v4)t < T < P(va,v4) 8,
Vyy, T2> T/J(U*JH—) t.
According to the consistency property with admissible jumps we have
S(t)v(0) = ui(t), S(t)v3(0) = v3(t).

This leads to a contradiction since the semigroup is L! continuous, and v; (0) = v2(0)
but vy (t) # va(t) for t > 0.

On the other hand, to establish the actual existence of a semi-group of admissible
solutions, the set ® should be “sufficiently large” to allow one to construct the solution
of the Riemann problem, at least. As we will check later in Section 4, for several classes
of systems and sets of interest, our results in previous chapters of these notes do imply
the existence of a semi-group satisfying the properties in Definition 3.1, allowing us
to complete the well-posedness theory.

The proof of Theorem 3.2 is based on Theorem 2.1 together with the following
observation.

LEMMA 3.3. For every ug € K and every time-dependent function with bounded vari-
ation u: IR x IRy — U satisfying the initial condition u(0) = ug the semi-group of
solutions satisfies the estimate

T
1
() = STyl 2 gy < K /0 timint + [u(t + h) — S| oy - (39

PrOOF. Consider the (bounded) function
el
L(t) == hin_}élf EHu(t +h)— S(h)u(t)||L1(m)
together with the (Lipschitz continuous) functions
¢
M(t) = |S(T = tut) — STuO)| gy N(E) = M(®) — K /O L(s) ds.

We will show that N'(t) < 0 for almost every t, which implies the desired inequality
N(t) < N(0) = 0.
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By standard regularity theorems there exists a set Z of zero Lebesgue measure
such that for all ¢ ¢ Z the functions M and N are differentiable at the point ¢, while
t is a Lebesgue point of the function L. Hence, we have

N'(t) = M'(t) — K L(¢). (3.4)
On the other hand by definition we have
M(t+h) — M(t)
= ||S(T - t — h)u(t + k) — S(T)u(0)||,, ")~ (1S(T - tyu(t) — S(T)u(0)| .. &)
< ||S(T ~t = hyu(t + k) ~ S(T ~ t)yu(t)|| 11
= ||S(T -t — h)u(t + k) — S(T — t — h) S(h)u(t)
< K Ju(t + B) = S0)u(t)]| 1 gy

HLl(zR)

Dividing by h and letting A — 0 we find
M'(t) < K L(t). (3.5)
The conclusion follows from (3.4) and (3.5). O

PROOF OF THEOREM 3.2. In view of (3.3) we see that (2.1) precisely implies that
the integrand in the right-hand side of (3.3) vanishes almost everywhere, provided
Theorem 2.1 can be applied.

In fact, to complete the proof we will need a slightly generalized version of Theo-
rem 2.1. We shall say that a point (z,ty) is a forward regular point for u if either
it is a (Lebesgue) point of approximate continuity for u in the set IR x [tg, +00), or
else there exist some traces u(z,tp) and a speed A*(z,to) such that

to+p
lim —/ / u(y,t) —a(y,t 1dydt =0. (3.6)
to

Next, observe that the values u(t) and v(t) with ¢ > tg, only, are relevant in the
statement of Theorem 2.1. Indeed, consider two functions v and v which are defined
and are admissible solutions on the set IR X [tg, +00), such that for every z € IR the
point (z,to) is a forward regular point of both u and v. Given a point of jump (z, to),
we have (u_ (a:,to),u+(m,t0)) € ® and X*(z, 1) = ¥(u—(z,t0), us(z,to)). Then, it is
clear from the proof of Theorem 2.1 that (2.1) still holds.

Let u be a (®,1))—admissible solution of (1.1) assuming some initial data ug at
time ¢t = 0. We want to show that u(t) coincides with w(t) := S(t)uo for all ¢ > 0.
Consider any ty > 0 with to ¢ Z(u) which is also is a Lebesgue point of the (bounded)
function ¢ — TV (u(t)). Define

’U(t) = S(t - to)u(tg) for t > tg-

We claim that, for every z € IR, the point (z,to) is a forward regular point of v.
Indeed, consider any point of continuity x of the function u(ty). The tame variation
property (1.2) implies easily

lim Iv(y,t) - u(z, tg)l =0

y—z, t—~tg
t>tg

and that (z,to) is a point of approximate continuity for the function v.
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Next, consider any point of jump z of the function u{ty). Since u is an admissible
solution the limits uy := uy(z,ty) determine a pair in the set ®. Call u the jump
propagating at the speed ¥(u_,uy). According to the consistency condition assumed
in Theorem 3.2 we have

S(h)u(to) =u(to+ h) for all h.

Using the Lipschitz continuity of the semi-group, for p = A°*°h we have

to+h pr+p—AT(t— to)
/ |v(y, t) — u(y, t)| dydt
T—p+A®(t—tg)

to+h pz+p—AT(t—to)
- IS(t — to)ulto) - St~ toyalto)| dydt (3.7
4 tg z—p+A>(t—tg)

SE ‘(to)—ut0|dy—>0,
P Jz—p

since z is a point of jump of the function u(tg). Thus (z,%;) is a point of approximate
jump for the function v.

This completes the proof that (z,tp) is a forward regular point of v for every
z € IR. In view of the preliminary observation above the conclusion in Theorem 2.1
holds for the two solutions u and v at time tg:

1 .1
};llgél) }L‘H“(to + h) - S(h)u(tU)HLl(m) = };ll;l% EHu(tO + h) - ’U(tg + h)HLl(IR) =0.

This proves that the integrand on the right-hand side of (3.3) vanishes at almost every
t. Thus u(T) := S(T)uo for every T > 0 which completes the proof of Theorem 3.2.
O

4. Applications

This section contains some important consequences to the uniqueness theory presented
in Section 3.
For strictly hyperbolic systems of conservation laws

Ou+0:f(u) =0, u=u(z,t)elU, (4.1)

it is natural to define the admissible speeds 4! from the standard Rankine-Hugoniot
relation, that is,

_7/}RH(U—’U+) (U+ - u—) + f(u+) - f(u—) =0, u_,uy€ u. (4'2)

The second ingredient in Definition 1.2, the set ®, determines which discontinuities
are admissible. Classical solutions are recovered by setting

o° = {(u_, u4) satisfies Rankine-Hugoniot relations and Liu entropy criterion}.

Another choice is to include, in the set ®, jumps violating Liu criterion in order to
recover nonclassical entropy solutions selected by a kinetic relation (applied to those
characteristic fields which are not genuinely nonlinear, only), more precisely:

®"¢ := {(u_,u4) satisfies Rankine-Hugoniot relations,

a single entropy inequality, and a kinetic relation}.
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So, to each of the classical or nonclassical solvers constructed in previous chapters
we can associate a set of admissible jumps, ®° or ®¢, while defining ¥*¥ by the
Rankine-Hugoniot relation.

Relying on Theorem IX-2.3 for classical entropy solutions and assuming the va-
lidity of Theorem IX-4.1 concerning nonclassical entropy solutions, we arrive at the
following uniqueness result, which is a corollary of Theorem 3.2.

THEOREM 4.1. (Uniqueness of classical and nonclassical entropy solutions.) Consider
the strictly hyperbolic system of conservation laws (4.1) under the following assump-
tions: The set U C IRY is a ball with sufficiently small radius and each characteristic
field of (4.1) 1s either genuinely nonlinear or concave-convez. To each concave-convez
field let us associate a kinetic relation as was done in Chapter VI. Let ® be the corre-
sponding family of classical or nonclassical shock waves occurring in the classical or
nonclassical Riemann solvers described in Chapter VI, respective. Let 1 = ¢YH bpe
the speed given by the Rankine-Hugoniot relation (4.2).

o Then, there exists a unique semi-group of (P, 1) -admissible entropy solutions.

o Any two (D,9)-admissible entropy solutions with tame variation satisfy the

L' continuous dependence property

flo(te) —u(t)liLigry < K llv(t) —ul)liimy, 0<t <t (4.3)
for some fized constant K > 0.

ProOF. Let uy and vy be some initial data and choose piecewise constant approx-
imations u"(0) and v"(0), with uniformly bounded total variation and converging
pointwise toward ug and wg, respectively. Consider the approximate solutions u”
and v" constructed by wave front tracking (Theorems IX-2.3 or IX-4.1) from from
the initial data u”(0) and v"(0). We rely on the continuous dependence estimate
(Chapter IX)

[v"(t2) = w”(t2) |1 amy < K 0" (81) — u*(t1)llram) + o(h),  t1,t2 € Ry,  (4.4)
where o(h) — 0 when h — 0. Extracting a subsequence if necessary we define

S(t) uo := Jim ul(t), t>0. (4.5)

The notation makes sense since the function limj_o u" is independent of the particular
discretization of the initial data and the particular subsequence. Indeed, if u*(0) — ug
and v"(0) — ug and (for some subsequence) u* — u and v* — v, we have the estimate
(4.4) with, say, s = 0, and after passing to the limit

[v(t) = u®)llLr@r) < K lluo — uollzr@m) =0, t€ Ry,

which implies that v = u. By a very similar argument one can check that the formula
(4.5) defines a semi-group, that is, the condition 1 in Definition 3.1 holds.

Furthermore, the solutions are known to remain uniformly bounded in the total
variation norm. It is not difficult to return to the argument of proof and, applying
the same arguments but now along space-like segments, to check the tame variation
estimate (1.2) for u”, where the constant & is independent of k. Fix a time ¢ > 0 and
select piecewise constant approximations z +— u"(x,t) such that

TV (u"(t); (a,)) — TV (u(t); (a, b))
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for every interval (a,b). Using the same notation as in Definition 1.1 the right-hand
side of the inequality

TV (u";T) < TV (u™;T) (4.6)
converges to TV (u; f‘) while (by the lower semi-continuity property of the total varia-
tion) the limit of the left-hand side is greater than or equal to TV (u;T"). This proves
the tame variation estimate (1.2) for the semi-group (4.5).

The first condition in Definition 1.2 is easy since (4.1) is conservative. The second
condition was the subject of Sections VII-4 and VIII-4: the approximate solutions
converge in a pointwise sense near each discontinuity and the traces of the solution
belong the set ® of admissible jumps and propagate with the speed given by the
Rankine-Hugoniot condition. This completes the proof that (4.5) defines a semi-
group of admissible solutions in the sense of Definition 3.1. The second property
stated in the theorem is immediate from Theorem 3.2. O

The framework presented in this chapter simplifies if one applies it to genuinely
nonlinear systems in conservative form.

DEFINITION 4.2. (Concept of entropy solution of genuinely nonlinear systems.) Con-
sider a system of conservation laws (4.1) whose characteristic fields are genuinely
nonlinear and endowed with a strictly convex entropy pair (U, F'). Then, a function
u with tame variation is called an entropy solution of (4.1) if the conservation laws
(4.1) and the entropy inequality

OU(u) + 0, F(u) <0
are satisfied in the weak sense. O

The conditions in Definition 4.1 are equivalent to saying

/ / Oyu+ 0, f(u) =0 for every Borel set B (4.7
B
and
// O U(u) + 0, F(u) <0 for every Borel set B. (4.8)
B

Under the assumption that (4.1) has only genuinely nonlinear fields, Definition 4.2
is fully equivalent to Definition 1.2. For instance, let us show that a solution in the
sense of Definition 4.2 is also a solution in the sense of Definition 1.2. One one hand,
from (4.7) we deduce that

/ /B Oyu+ Auy) Ou = / /B Byu+ 0y f(u) =0 for every Borel set B C C(u).
On the other hand, from (4.7) and (4.8) it follows that, at each (z,t) € J(u),
=X(@,1) (us (2, t) — u-(z,1)) + f(us(2,8)) — flu(2,1)) =0
and
=X*(z,t) (U(uy(z,t) — U(u=(z,1))) + F(uy(z,t)) — F(u_(z,t)) <0,

which, by definition of the families ® and 1, is equivalent to (1.9).
Theorem 4.1 is immediately restated as follows.
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THEOREM 4.3. (Uniqueness of entropy solutions of genuinely nonlinear systems.)
Consider a system of conservation laws (4.1) whose characteristic fields are genuinely
nonlinear and endowed with a strictly convexr entropy pair (U, F). Restrict attention
to solution taking their values in a ball U with sufficiently small radius.
e Then, there ezists a (unique) semi-group of entropy solutions in the sense of
Definition 4.2.
o Any two entropy solutions with tame variation satisfy the L' continuous de-
pendence property (4.3).

REMARK 4.4. The following example of admissible speeds v further illustrates the
interest of the general framework proposed in this chapter beyond the class of conser-
vative systems. For simplicity, suppose that N = 1 and consider the scalar equation

Oru + a(u) d,u = 0. (4.9)

This equation can be written in conservative form, namely

Ou+ 0, f(u) =0, f(u) = / " a(v) do. (4.10)

One may define the speed ¥ in agreement with the Rankine-Hugoniot relation asso-
ciated with the conservative form (4.10), that is,

f(u+)—f(u—)‘

Uy —U-

P(u-,uy) = (4.11)
However, this choice can be regarded to be somehow arbitrary if no conservative form
of (4.9) were specified in the first place.

One could set instead

h(us) = hu-)
Yu—,uy) = —————=, 4.12
() = ) o) 12
where the functions g, h : IR — IR are chosen so that
g () >0, h'(u)=g(v)a(u), uelR. (4.13)

Both choices (4.11) and (4.12) satisfy the consistency property (1.7). As a matter of
fact, the speed (4.12) corresponds also to the standard Rankine-Hugoniot relation,
but for another conservative form of (4.9), i.e.,

B:g(u) + Ozh(u) = 0. (4.14)

Of course, the admissible speeds need not correspond to a conservative form of
(4.9). In particular, it need not be a symmetric function in (u_,uy). For example,
suppose we are given two conservative forms of (4.9), like (4.14), associated with two
pairs (g1,h1), (g2, he) of conservative variables and flux-functions satisfying (4.13).
An admissible speed can be defined by

hi(uy) —ha(us) - -

) aluy) —gau-)’ T ’
e N O R
g2(uy) —ga(u)’ 7T



APPENDIX

FUNCTIONS WITH BOUNDED VARIATION

We first introduce some general notations of use throughout these lecture notes. Given
an open subset  C IR™ and p € [1, 00|, we denote by LP(2) the Banach space of all
Lebesgue measurable functions whose p-th power is integrable on € if p < oo or which
are bounded on Q2 if p = co. The corresponding norm is denoted by ||.|| 1»(q). For each
integer m € [0, 00], we denote by C™(Q) the space of all continuous functions whose
k-th derivatives (k < p) exist and are continuous on 2. The corresponding sup-norm
is denoted by ||.|lcm(q) Whenever it is bounded. The subspace of all functions with
compact support is denoted by CT*(Q). Similarly, for each real T € (0, 00), we can
define the space CI*(Q x [0, T)) of all functions v = v(z,t), z € Q, t € [0, T}, such that
for k < m all k-th derivatives of v exist and are continuous on 2 x [0, 7], while v is
compactly supported in © x [0,T]. When it is necessary to specify the range of the
functions, say U C RN, we write LP(Q;U), CP(Q;U), etc. We also set C(Q) := CO(),
etc.

Given some bounded or unbounded interval (a,b), a IR"-valued bounded mea-
sure is a real-valued, bounded linear map p defined on C.((a, b); IR"). The associated
variation measure || is defined by

¢
],u[{(a',b')} = sup T2l < >
v’GCc((i';,él:)’);IRN) "2 L ((a’,b');IRN)

for every a < a’ < b < b. The value |u|{(a,b)} is called the total mass of the measure
1. Recall the following compactness result.

THEOREM A.1. (Weak-star compactness of bounded measures.) Given a sequence
p* of bounded measures whose total mass on the interval (a,b) is uniformly bounded,

lu"|{(a,b)} < C,
there exists a bounded measure 1 and a subsequence (still denoted by u") such that
pt = weak-star,

that is,
(u",0) = (, ), ¢ €Ccl(a,b);RY).
0

Let (a,b) be a bounded or unbounded interval. A map  : (a,b) — IR™ defined at
every point x € (a,b) is called a function with bounded variation in one variable
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if its total variation

g—1

TV (u; (a, b)) := sup { 3 u(@esr) - ulen)l fa <@ < ... < 2q < b} (A1)
k=1

is finite. When (a,b) = IR we use the notation
TV (u) := TV (u; R).

We denote by BV ((a,b);IR") the Banach space of functions with bounded variation
for which (A.1) is finite, endowed for instance with the norm

lwll oo ((a,03;m M) + TV (45 (a, b))

It is well-known that a function with bounded variation admits countably many
points of discontinuity, at most, and at each point of discontinuity, left- and right-
limits u_(z) and v, (x) respectively. The value u(z) need not coincide with one of
these two traces, and it is often convenient to normalize u by selecting, for instance,
its right-continuous representative v, defined at every point x by

u(z)  at points of continuity,

uy (z) == { (A2)

u+(z)  at points of discontinuity.

The left-continuous representative u.. could be defined similarly.

An entirely equivalent definition of the notion of bounded variation is given as
follows. A function u : (a,b) — IRY, defined almost everywhere for the Lebesgue
measure, belongs to BV ((a,b); IRY) if its distributional derivative 8,u is a bounded
measure, the total variation of u being then

b
/ u- Oppdz
TV (u; (a,b)) = sup T e (A.3)
wecé((a;%);m”) ||<P||L°°((a,b);1RN)

One can check that (A.1) and (A.3) are equivalent, in the following sense: If u is a
function defined almost everywhere for which (A.3) is finite, then it admits a rep-
resentative defined everywhere such that (A.1) is finite and both quantities in (A.1)
and (A.3) coincide. Conversely, if u is a function defined everywhere for which (A.1)
is finite then the quantity (A.3) is also finite. Furthermore, from (A.3) it follows that
when v is smooth

TV (u; (a,)) = |10ztl| 11 ((a,5),m)
and, for all © with bounded variation

sup %I]u(. + k) = u( )2 (ap) =TV (y; (a,)), (A4)
h>0

provided we extend v by continuity by constants outside the interval (a, b).
The theory of hyperbolic conservation laws uses the following compactness result.
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THEOREM A.2. (Helly’s compactness theorem.) Given a sequence of functions with
bounded variation u" : (a,b) — IRYN (defined for every point ) satisfying, for some
constant C' > 0,

4"l oo a0y~ y + TV (u; (a,b)) < C,
there exist a subsequence (still denoted by u®) and a function with bounded variation,
u: (a,b) = RY, such that
uh(z) = u(z) at every z € (a,b).

Additionally, we have the lower semi-continuity property

TV (u;(a,b)) < liin_i(l)lf TV (u"; (a,b)). (A.5)

O

The compactness result in Theorem A.2 extends as follows to time-dependent
functions. The regularity assumed here is shared by solutions of hyperbolic conserva-
tion laws.

THEOREM A.3. (Time-dependent version of Helly’s theorem.) Given a sequence of
Lebesque measurable functions u® : (a,b) x IRy — IRY satisfying

I[w® ()| oo ((apy;m™) + TV (w(t); (a,0)) < C, teRy,

N N (A.6)

u”(t2) — v () L1 apymmy S Clta —tal,  t1,t2 € Ry,
for some constant C > 0, there erists a subsequence (still denoted by u") and a
function with bounded variation u : (a,b) x Ry — RN such that

uM(z,t) - u(z,t)  at almost all (z,t)
ub(t) - ut) inLi. forallte IR,

and
()l Lo ((a,0;m Ny + TV (u(t); (a,0)) < C, t€ Ry,

A7
lu(te) —ut)lir@pymyy S Cltz —tal, t1,t2 € R4 (A1)

PRrOOF. We only sketch the proof. Relying on the first assumptions in (A.6), for each
rational point ¢ we can apply Theorem A.1 and extract a subsequence of u”(¢) that
converges to some limit denoted by u(t). By considering a diagonal subsequence, we
construct a subsequence of u* such that

uh(t) — u(t) for all z € (a,b) and all rational times t.

Then, the second assumption in (A.6) implies that the limiting function u(¢) can be
extended to irrational times ¢ (in a unique way) and that the desired convergence
result holds. O

We now turn to functions with bounded total variation in two variables. By
definition, BV (IR x (0,T);IR™) is the Banach space of all locally integrable functions
u: R x(0,T) — IRN whose first-order distributional derivatives d,u and 8 u are
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vector-valued Radon measures in (z,t) and the mass of variation measures |0yu| and
|0z ul are finite in IR x (0,T). The variation measure |8 ul, for instance, is defined by

)
// 10,] = sup llu - Ozoll L1 ()
Q wECLIRX(0,T);IRN) H<P”L°°(Q)

w#0, supp (CQ

for every open set 2 C IR x (0,T). Recall that, by Riesz representation theorem,
Radon measures can be regarded as linear functionals on C2(IR x (0,T)).
The key theorem in the theory of such functions is now stated.

THEOREM A.4. (Regularity of functions with bounded variation in two variables.)
Given a function v € BV(IR x (0,T);IRY), there exist a representative of u (which
differs from u on a set with zero Lebesque measure and is still denoted by u) and a
decomposition

R % (0,T) = C(u) U J () UZ(u)

such that:
1. C(u) is the set of points of L'-approximate continuity (x,t) in the sense
that )
lim — / lu(y, ) — u(z,t)| dyds = 0, (A.8)
r=07% JB.(z,)

where B,(z,t) C IR* denotes the ball with center (x,t) and radius r > 0.

2. J(u) is the set of points of approximate jump discontinuity (z,t) at
which, by definition, there erists a propagation speed \“(z,t) and left-
and right-approximate limits u_(z,t) and uy(z,t), respectively, such that

lim lz /i lu(y, 8) — us(z,t)] dyds =0, (A.9)
B (z,t)

where

BZE(z,t) = Br(z,t) N {£(y — X\*(z,t) ) > 0}.
Moreover, the set J(u) is rectifiable in the sense of Federer, i.e., is the union
of countably many continuously differentiable arcs in the plane, and

/ [ug —u_|dH; < oo.
T (u)

3. Finally, the set of interaction points Z(u) has zero one-dimensional Haus-
dorff measure:

H1(Z(uw)) = 0.
O

In (A.8) and (A.9) we have tacitly extended the function u by zero outside its
domain of definition IR x {0,T). Based on the regularity properties in Theorem A.4
one has, for every Borel set B C IR x (0,T),

f/ 6tu=// 8tu—-/ )\”(u+-u_)d?'[1

B BnC(u) BnJ (u)

// Opu = // Bxu+/ (uy —u-)dH;.
B BNC(u) BNJ(w)

and
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It makes sense to define the right-continuous representative u, of a function with
bounded variation for H;-almost every (z,t) by

S oul=zt), (z,t) €C(u),
up(@,1) = { up(@,8), (2,8) € T(w).

The left-continuous representative u_ could be defined similarly. If g : RY — IR is
any smooth mapping, the product g(u4 ) d,u is a vector-valued Radon measure such
that

// o(us) By _//Bnc(u ) u-l—/BnJ(u)g(u+)(u+—u_)dH1. (A.10)

We now restrict attention to functions u = u(z,t) satisfying the conditions (A.7).
Since (A.7) implies
10wl L1 (0 pymyy S €, ¢ € Ry,

such a function clearly belongs to BV (IR x (0,T);IR™) for all T > 0 and it can be

checked that .
2

/ / 10,1 = / TV (u(t); (a, b)) dt. (A11)
(a,b)X(tl,tz) t1

Additionally, for all t; < t9, £1; < x2, and A € IR, provided the set
Bi={(z,t)/ti<t<tp, zi+A(t-t;)) <z <z2+A(t—11)}

is non-empty, the following Green formulas hold:

T2+ (t2—t1) T2
/ Otu—/ (:v,tg)dt—/ u(z,t1) dz
z14+A (t2—t1) T

2 t2
—/ )\u_(x2+)\(t—t1),t)dt+/ Aug (zy + At —t1),t) dt,
t1

31

tg t2
/ 6zu:/ u_(z2+)\(t—t1),t)dt—/ uy(zy +A(t—t1),t)dt
B t1

ty
Finally, we recall the chain rule

0:f(u) = (Df(u)) Byu (A.12)

valid for every function with bounded variation « : IR x (0,T) — IR" and every smooth
mapping f : IRN — IRY, where Volpert’s superposition is defined H;—almost ev-
erywhere by

Df(u(x,1)), (z,1) € C(u),
1

/0 Df(fu—(z,t) + (1 — ) uy(z,t)) db, (z,t) € T(u).

In particular, we have 9, f(u) = D f(u) Ozu on C{u).

(Df(w)(z,) =
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Chapter I. Smooth solutions to strictly hyperbolic systems of conservation laws were
studied by many authors; see, for instance, Hughes, Kato, and Marsden (1977), Majda
(1984) and the references cited therein. Fundamental notions about systems of con-
servation laws (Sections I-1 and I-2) were introduced and investigated by Lax (1954,
1957, 1971, 1973). The entropy condition was also studied by Oleinik (1963), Kruzkov
(1970), Volpert (1967), Dafermos (1973a), and Liu (1974, 1975, 1976), with many
other follow-up works. The existence of strictly convex entropy pairs for systems of
two conservation laws was established by Lax (1971) and Dafermos (1987). Friedrichs
and Lax (1971), Godunov (see the bibliography in Godunov (1987)), Harten (1983),
and Harten, Lax, Levermore, and Morokoff (1998) are good sources for a discussion
of the symmetrization of hyperbolic systems via entropy variables. The breakdown
of smooth solutions was investigated by Lax (1964, 1973), Liu (1979), John (1974),
and Hormander (1997), as well as, for instance, Chemin (1990ab), Alinhac (1995), Li
and Kong (1999), Dias and Figueira (2000), and Jenssen (2000).

The exposition given in Sections I-3 to I-5 follows Hayes and LeFloch (2000) and
LeFloch (1993). The kinetic relation for nonclassical shock waves of strictly hyperbolic
systems (Section I-5) was introduced and discussed by Hayes and LeFloch (1996a,
1997, 1998, 2000) and LeFloch (1999), and further studied in Bedjaoui and LeFloch
(2001, 2002ac) and LeFloch and Thanh (2000, 2001a). It represents a generalization
of a concept known in material science.

The examples from continuum physics in Section I-4 are taken from Korteweg
(1901), Courant and Friedrichs (1948) (a standard textbook on shock waves in fluids),
Landau and Lifshitz (1959), Serrin (1979, 1981, 1983), Slemrod (1983ab, 1984ab),
Hagan and Serrin (1984), Ericksen (1991}, Gurtin (1993ab), and Gavrilyuk and Gouin
(1999, 2000).

The modeling of propagating phase boundaries in solid materials undergoing
phase transformations has attracted a lot of attention. Various aspects of the cap-
illarity in fluids and solids and the study of a typical hyperbolic-elliptic system of
two conservation laws (Example I-4.5) are found in Abeyaratne and Knowles (1988,
1990, 1991ab, 1992, 1993), Asakura (1999, 2000), Bedjaoui and LeFloch (2002b), Fan
(1992, 1993abc, 1998), Fan and Slemrod (1993), Grinfeld (1989), Hagan and Serrin
(1984, 1986), Hagan and Slemrod (1983), Hattori (1986ab, 1998, 2000), Hattori and
Mischaikow (1991), Hsiao (1990ab), Hsiao and deMottoni (1990), James (1979, 1980),
Keyfitz (1986, 1991), LeFloch (1993, 1998), LeFloch and Thanh (2001b), Mercier and
Piccoli (2000), Pego (1987, 1989), Pence (1985, 1986, 1992, 1993), Shearer (1982,
1983, 1986), Shearer and Yang (1995), Slemrod (1983ab, 1984ab, 1987, 1989), and
Truskinovsky (1983, 1987, 1993, 1994ab). See also Benzoni (1998, 1999) and Freistuh-
ler (1996, 1998) for stability issues on multi-dimensional problems. Systems of three
equations (van der Waals fluids, thermo-elastic solids) were considered by Abeyaratne
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and Knowles (1994ab), Bedjaoui and LeFloch (2002¢), Hoff and Khodja (1993), and
LeFloch and Thanh (2002).

Numerical issues related to phase fransition dynamics and nonclassical shock
waves were discussed by Affouf and Caflisch (1991), Ball et al. (1991), Chalons and
LeFloch (2001ab, 2002), Cockburn and Gau (1996), Hayes and LeFloch (1998), Hou,
LeFloch, and Rosakis (1999), Hsieh and Wang (1997), Jin (1995), LeFloch (1996,
1998), LeFloch, Mercier, and Rohde (2002), LeFloch and Rohde (2000), Lowengrub
et al. (1999), Natalini and Tang (2000), Shu (1992), Slemrod and Flaherty (1986),
Vainchtein et al. (1998), and Zhong, Hou, and LeFloch (1996).

Vanishing diffusion-dispersion limits were studied by Schonbek (1982) for scalar
conservation laws using compensated compactness arguments (following Murat (1978)
and Tartar (1979, 1982, 1983)). Extensions of Schonbek’s work were given in Hayes
and LeFloch (1997), Correia and LeFloch (1998), LeFloch and Natalini (1999), and
Kondo and LeFloch (2002). See also LeFloch and Rohde (2001) for an approach by
Dafermos’ self-similar method (1973b).

Vanishing dispersion limits are covered by Lax and Levermore’s theory; see Lax
and Levermore (1983), Goodman and Lax (1988), Hou and Lax (1991), and Lax
(1991). Further relevant material on dispersive equations is found in Martel and
Merle (2001ab) and the references therein.

Chapter I1. The material in Sections II-1 and II-2 concerning the entropy condition
and the Riemann problem for one-dimensional conservation laws is standard and goes
back to the works by Lax and Oleinik. The Riemann problem with non-convex flux-
functions and single entropy inequality (Sections II-3 to II-5) was studied by Hayes
and LeFloch (1997) (cubic flux-function) and by Baiti, LeFloch, and Piccoli (1999)
(genersl flux-functions). A generalization to hyperbolic systems of two conservation
laws was given by Hayes and LeFloch (1996, 2000) and LeFloch and Thanh (2001a).
For results on Lipschitz continuous mappings (applied here to the function ), see
for instance the textbook by Clarke (1990).

Chapter III. Standard textbooks on ordinary differential equations are: Codding-
ton and Levinson (1955), Guckenheimer and Holmes (1983), Hales (1969), and Hart-
man (1964). Classical diffusive and diffusive-dispersive traveling waves for scalar
equations and systems were studied by many authors, especially Gilbarg (1951), Foy
(1964), Conley and Smoller (1970, 1971, 1972ab), Benjamin, Bona, and Mahoney
(1972), Conlon (1980), Smoller and Shapiro (1969), Antman and Liu (1979), Bona
and Schonbek (1985), and Antman and Malek-Madani (1988).

Nonclassical diffusive-dispersive traveling waves of conservation laws were dis-
covered by Jacobs, McKinney, and Shearer (1995) for the cubic flux-function (with
b= ¢ = ¢g = 1). This model is referred to as the modified Korteweg-de Vries-Burgers
(KdVB) equation. It is remarkable that its nonclassical trajectories can be described
by an explicit formula. The earlier work by Wu (1991) derived and analyzed the
KdVB equation from the full magnetohydrodynamics model. Theorem III-2.3 is a
reformulation of Jacobs, McKinney, and Shearer’s result (1995) but is based on the
concept of a kinetic relation introduced in Hayes and LeFloch {1997).

The effect of the nonlinear diffusion ¢ (uz| u)_ with the cubic flux-function was
studied by Hayes and LeFloch (1997). For this model too the nonclassical trajectories
are given by an explicit formula. As a new feature, the corresponding nonclassical
shocks may have arbitrary small strength, that is, the kinetic function de not coincide
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with the classical upper bound ¢! near the origin. Interestingly enough, this example
does enter the existence framework proposed in Section IV-3.

Hayes and Shearer (1999) and Bedjaoui and LeFloch (2001a) established the
existence of nonclassical traveling waves for general flux-functions. The exposition
in Sections I11-3 to III-5 follows Bedjaoui and LeFloch (2001a). The behavior of the
kinetic function in the large is also derived by Bedjaoui and LeFloch (2001b). Another
(fourth-order) regularization arising in driven thin film flows was studied by Bertozzi
et al. (1999ab, 2000).

Most of the results in this chapter remain valid for the 2 x 2 hyperbolic system of
elastodynamics (Example I-4.4); see Schulze and Shearer (1999) (cubic flux-functions)
and Bedjaoui and LeFloch (2001c) (general flux-functions). Traveling waves of the
hyperbolic-elliptic model of phase dynamics (Example 1-4.5) were studied by Shearer
and Yang (1995) (cubic flux-functions) and Bedjaoui and LeFloch (2001b) (general
flux-functions). See also Fan (1992, 1998), Fan and Slemrod (1993), Hagan and Serin
(1984, 1986), Hagan and Slemrod (1983), Slemrod (1983ab, 1984ab, 1987, 1989),
Truskinovsky (1987, 1993).

Chapter IV. The explicit formula in Theorem IV-1.1 is due to Hopf (1950) (Burg-
ers equation) and Lax (1954) (general flux-functions). Many generalizations of the
so-called Lax formula are known. See Lions (1985) and the references therein for
multi-dimensional Hamilton-Jacobi equations. An explicit formula for the initial and
boundary value problem for conservation laws was derived independently by Joseph
(1989) and LeFloch (1988b), and, for conservation laws with non-constant coeffi-
cients, by LeFloch and Nedelec (1985). The entropy inequality (1.2) was discovered
by Oleinik (1963). Interestingly enough, this inequality also holds for approximate
solutions constructed by finite difference schemes: Goodman and LeVeque (1986),
Brenier and Osher (1988). See also Tadmor (1991) for the derivation of local error
estimates. The uniqueness argument in the proof of Theorem IV-1.3 is taken from
LeFloch and Xin (1993).

There is an extensive literature on the existence and uniqueness of classical en-
tropy solutions, and to review it is out of the scope of these notes. We just men-
tion the fundamental papers by Conway and Smoller (1966), Volpert (1967), Kruzkov
(1970), and Crandall (1972). On the other hand, the wave front tracking scheme (also
called polygonal approzimation method) for scalar conservation laws (Section IV-2)
was introduced by Dafermos (1972). It leads to both a general strategy for prov-
ing the existence of discontinuous solutions for scalar conservation laws (as well as
for systems of equations, see Chapter VII) and an interesting method of numerical
approximation. General flux-functions were considered in Iguchi and LeFloch (2002).

The existence of nonclassical entropy solutions (Sections IV-3) was established by
Amadori, Baiti, LeFloch, and Piccoli (1999) (cubic flux-function) and Baiti, LeFloch,
and Piccoli (1999, 2000) (general flux-function). The concept of minimal backward
characteristics used in the proof of Theorem IV-3.2 goes back to the works by Filippov
(1960) and Dafermos (1977, 1982).

Theorem IV-4.1 is standard while Theorems 1V-4.2 and IV-4.3 are new and due
to the author.
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Chapter V. The L! contraction property for scalar conservation laws (Theorem V-
2.2) was originally derived by different methods by Volpert (1967), Kruzkov (1970),
Keyfitz (1971), and Crandall (1972). A non-increasing, weighted norm quantifying the
rate of decay of L! norm (along similar lines as our Theorem V-2.3) was discovered by
Liu and Yang (1999a}, for piecewise smooth solutions of scalar conservation laws with
convex flux. The approach presented here in Sections V-1 and V-2 and based on linear
hyperbolic equations was discovered by Hu and LeFloch (2000). The sharp estimate
for general solutions with bounded variation was established by Dafermos (2000)
using generalized characteristics and, then, by Goatin and LeFloch (2001a) using the
technique in Hu and LeFloch (2000). Further generalizations and applications to the
framework in this chapter are given in LeFloch (2002).

Chapter VI. Fundamental material on the entropy condition and Riemann problem
for strictly hyperbolic systems can be found in Lax (1957, 1970), Liu (1974, 1981), and
Dafermos (1978a). The Riemann problem described in Sections VI-2 and VI-3 was
solved by Lax (1957) and Liu (1974), respectively. Hyperbolic systems under non-
convexity assumptions were considered by Oleinik (1957), Ballou (1970), Wendroff
(1972ab, 1991), Liu (1974, 1975, 1976, 1981), Dafermos (1984), Menikoff and Plohr
(1989), and Zumbrun (1990, 1993).

The concept of a kinetic relation and the generalization of Liu’s construction
to encompass nonclassical solutions (Sections VI-3 and VI-4) is due to Hayes and
LeFloch (1997, 2000). See also the notes for Chapter I above for the references in ma-
terial sciences. Lipschitz continuous mappings are discussed in Clarke (1990), Correia,
LeFloch, and Thanh (2002), and Isaacson and Temple (1992). In Hayes and LeFloch
(1998), the authors argue that the range of the kinetic functions (enclosed by the
extremal choices ujh. and ,u';-o) may be very narrow in the applications, making partic-
ularly delicate the numerical investigation of the dynamics of nonclassical shocks. For
numerical works in this direction see Hayes and LeFloch (1998), LeFloch and Rohde
(2000), and Chalons and LeFloch (2001ab, 2002).

Important material on the Riemann problem for systems of conservation laws,
particularly undercompressive shocks in solutions of non-strictly hyperbolic systems,
is also found in Azevedo et al. (1995, 1996, 1999), Canic (1998), Hurley and Plohr
(1995), Hsiao (1980), Isaacson et al. (1992), Isaacson, Marchesin and Plohr (1990),
Keyfitz (1991, 1995), Keyfitz and Kranzer (1978, 1979), Keyfitz and Mora (2000),
Plohr and Zumbrun (1996), Schecter, Marchesin, and Plohr (1996), Schecter and
Shearer (1989), and Shearer, Schaeffer, Marchesin, and Paes-Lemme (1987).

Chapter VII. The wave interaction estimates and the general technique to derive
uniform total variation bounds go back to Glimm’s pioneering work (1965), based
on the so-called random-choice scheme. A deterministic version of this method was
obtained by Liu (1977). The wave front tracking scheme was initially proposed by
Dafermos (1972) for scalar conservation laws, then extended by DiPerna (1973) to
systems of two conservation laws, and generalized by Bressan (1992) and Risebro
(1993) to systems of N equations. The specific formulation adopted in this chapter
is due to Baiti and Jenssen (1998), as far as genuinely nonlinear fields are concerned.
Front tracking is also a powerful numerical tool developed by Glimm et al. (1985),
Chern et al. (1986), Lucier (1986), Klingenberg and Plohr (1991), and many others.
All of the above papers restrict attention to genuinely nonlinear or linearly degenerate
fields.
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The existence theory for non-genuinely nonlinear characteristic fields goes back
to the extended work by Liu (1981) (and the references therein), based on Glimm’s
scheme. The generalization of the wave front tracking scheme to concave-convex
characteristic fields (Theorem VII-2.1) is due to the author. The convergence of the
wave front tracking scheme for N x N systems with more general characteristic fields
was established by Iguchi and LeFloch (2002). They observed that wave curves of
such systems are only of class C* with second-order bounded derivatives (which is
sufficient to apply Glimm’s argument in the proof of Theorem VII-1.1).

For a non-convex system of two conservation laws arising in elastodynamics, the
existence of solutions with large total variation was established by Ancona and Marson
(2000). Other interesting developments on Glimm’s scheme and its variants (for phase
transition dynamics or solutions with a single strong shock, in particular) are found in
the following papers: Sablé-Tougeron (1988, 1998), Chern (1989), Temple (1990abc),
Schochet (1991ab), LeFloch (1993), Young (1993), Asakura (1994, 1999), Corli and
Sablé-Tougeron (1997ab, 2000), Cheverry (1998), and Corli (1999).

The regularity of the solutions of hyperbolic conservation laws (Section VII-4)
was investigated by Glimm and Lax (1970), Schaeffer (1973), DiPerna (1976, 1979a),
Dafermos (1977, 1982, 1985a), Liu (1981, 2000), and Bressan and LeFloch (1999).

Other approaches to the Cauchy problem for systems of conservation laws were
discussed, for instance, in Bereux, Bonnetier, and LeFloch (1996), Chen (1997), Chen
and LeFloch (2000, 2002), Chen and Wang (2002), Perthame (1999), Tartar (1979,
1982, 1983), and the many references therein.

Chapter VIII. All of the results in this chapter are based on Baiti, LeFloch, and
Piccoli (2002ab).

Chapter IX. The exposition here is based on Hu and LeFloch (2000), which was
motivated by the earlier results LeFloch (1990b) and LeFloch and Xin (1993). In
this approach, we basically extend Holmgren’s method (more precisely, here, the
dual formulation due to Haar) to nonlinear systems of conservation laws. Holmgren’s
method was known to be successful for linear PDE’s and, by Oleinik’s work (1957), for
scalar conservation laws. Finding a suitable generalization to systems was attempted
with some success by many authors, including Oleinik (1957), Liu (1976), and LeFloch
and Xin (1993), who treated piecewise smooth solutions or special systems, only.
Further generalizations and applications to the framework in Section IX-1 were given
in Crasta and LeFloch (2002) and LeFloch (2002).

The continuous dependence of solutions for genuinely nonlinear systems was ob-
tained first by Bressan and Colombo (1995ab) (for systems of two conservation laws)
and Bressan, Crasta, and Piccoli (2000) (for systems of N equations). These au-
thors developed an homotopy method to compare two (suitably constructed, piecewise
smooth) approximate solutions and show that the continuous dependence estimate
held ezactly for these approximate solutions. This strategy turned out to be very
technical. The method was also applied by Ancona and Marson (2000, 2002) to a
non-convex system of two conservation laws of elastodynamics.

Next, Liu and Yang (1999a) discovered a functional (equivalent to the L! norm
and strictly decreasing in time) for scalar conservation laws with convex flux, opening
the way to a possible investigation of systems of equations. The research on the
subject culminated with three papers announced simultaneously in 1998, by Bressan
et al. (1999), Hu and LeFloch (2000), and Liu and Yang (1999c). These papers
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provide now three simple proofs of the L' continuous dependence of solutions for
systems of conservation laws. A common feature of these proofs is the fact that the
continuous dependence estimate is satisfied by the approximate solutions up to some
error term.

The sharp L' estimate in Section IX-3 was obtained by Goatin and LeFloch
(2001b). The technique of nonconservative product was developed (with different
motivations) by Dal Maso, LeFloch, and Murat (1995) and LeFloch and Liu (1994).
Lemma IX-3.1 is due to Baiti and Bressan (1997). Theorem IX-3.3 on the convergence
of the wave measures was established by Bressan and LeFloch (1999) together with
further regularity results on entropy solutions. The L! continuous dependence of
entropy solutions with large total variation for the compressible Euler equations was
investigated by Goatin and LeFloch (2002).

Chapter X. The uniqueness of entropy solutions of genuinely nonlinear systems was
established by Bressan and LeFloch (1997), who introduced the concept of solutions
with tame variation. A generalization to solutions with tame oscillation was sub-
sequently obtained by Bressan and Goatin (1999). The notion of (®,)-admissible
entropy solution for general nonlinear hyperbolic systems (including conservative sys-
tems with non-genuinely nonlinear characteristic fields) was introduced by Baiti,
LeFloch, and Piccoli (2001). The earlier work by Bressan (1995) for systems of conser-
vation laws with genuinely nonlinear fields introduced the new concept of semi-group
of solutions and established the convergence of the Glimm scheme to a unique limit.
See also Colombo and Corli (1999) for a uniqueness result involving phase transitions.

It is an open problem to derive the tame variation property for arbitrary solutions
with bounded variation. However, based on Dafermos-Filippov’s theory of general-
ized characteristics, Trivisa (1999) established that the tame variation property is
always satisfied by “countably regular” BV solutions of strictly hyperbolic, genuinely
nonlinear, 2 x 2 systems of conservation laws.

Definition X-1.2 covers the concept of weak solutions to nonconservative systems
in the sense of Dal Maso, LeFloch, and Murat (1990, 1995). See also LeFloch and
Tzavaras (1996, 1999). For such systems, the existence of entropy solutions to the
Cauchy problem was established by LeFloch (1988a, 1990a, 1991) and LeFloch and
Liu (1993).

Among many earlier results on the uniqueness of entropy solutions, we quote
the important and pioneering work by DiPerna (1979b) for hyperbolic systems of two
equations, extended by LeFloch and Xin (2002) to a class of N x N systems. DiPerna’s
method is based on entropy inequalities and covers the case of one arbitrary entropy
solution and one piecewise smooth solution. It leads to an estimate in the L? norm,
to be compared with the L! estimate in Theorem X-1.6.

Appendix. For the properties of functions with bounded variation we refer to the
textbooks by Evans and Gariepy (1992), Federer (1969), Volpert (1967), and Ziemer
(1989).
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