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Preface 

This set of lecture notes was written for a Nachdiplom- Vorlesungen course given at 
the Forschungsinstitut fUr Mathematik (FIM), ETH Zurich, during the Fall Semester 
2000. I would like to thank the faculty of the Mathematics Department, and especially 
Rolf Jeltsch and Michael Struwe, for giving me such a great opportunity to deliver 
the lectures in a very stimulating environment. Part of this material was also taught 
earlier as an advanced graduate course at the Ecole Poly technique (Palaiseau) during 
the years 1995-99, at the Instituto Superior Tecnico (Lisbon) in the Spring 1998, and 
at the University of Wisconsin (Madison) in the Fall 1998. This project started in the 
Summer 1995 when I gave a series of lectures at the Tata Institute of Fundamental 
Research (Bangalore). 

One main objective in this course is to provide a self-contained presentation of 
the well-posedness theory for nonlinear hyperbolic systems of first-order partial 
differential equations in divergence form, also called hyperbolic systems of con­
servation laws. Such equations arise in many areas of continuum physics when 
fundamental balance laws are formulated (for the mass, momentum, total energy ... 
of a fluid or solid material) and small-scale mechanisms can be neglected (which are 
induced by viscosity, capillarity, heat conduction, Hall effect ... ). Solutions to hyper­
bolic conservation laws exhibit singularities (shock waves), which appear in finite time 
even from smooth initial data. As is now well-established from pioneering works by 
Dafermos, Kruzkov, Lax, Liu, Oleinik, and Volpert, weak (distributional) solutions 
are not unique unless some entropy condition is imposed, in order to retain some 
information about the effect of "small-scales". 

Relying on results obtained these last five years with several collaborators, I 
provide in these notes a complete account of the existence, uniqueness, and contin­
uous dependence theory for the Cauchy problem associated with strictly hyperbolic 
systems with genuinely nonlinear characteristic fields. The mathematical theory of 
shock waves originates in Lax's foundational work. The existence theory goes back 
to Glimm's pioneering work, followed by major contributions by DiPerna, Liu, and 
others. The uniqueness of entropy solutions with bounded variation was established 
in 1997 in Bressan and LeFloch [2]. Three proofs of the continuous dependence 
property were announced in 1998 and three preprints distributed shortly thereafter; 
see [3,4,9]. The proof I gave in [4] was motivated by an earlier work ([6] and, in col­
laboration with Xin, [7]) on linear adjoint problems for nonlinear hyperbolic systems. 

In this monograph I also discuss the developing theory of nonclassical shock 
waves for strictly hyperbolic systems whose characteristic fields are not genuinely 
nonlinear. Nonclassical shocks are fundamental in nonlinear elastodynamics and 
phase transition dynamics when capillarity effects are the main driving force be­
hind their propagation. While classical shock waves are compressive, independent of 
small-scale regularization mechanisms, and can be characterized by an entropy in­
equality, nonclassical shocks are undercompressive and very sensitive to diffusive 
and dispersive mechanisms. Their unique selection requires a kinetic relation, as I 
call it following a terminology from material science (for hyperbolic-elliptic problems). 

This book is intended to contribute and establish a unified framework encom­
passing both what I call here classical and nonclassical entropy solutions. 

ix 



x PREFACE 

No familiarity with hyperbolic conservation laws is a priori assumed in this course. 
The well-posedness theory for classical entropy solutions of genuinely nonlinear sys­
tems is entirely covered by Chapter I (Sections 1 and 2), Chapter II (Sections 1 and 
2), Chapter III (Section 1), Chapter IV (Sections 1 and 2), Chapter V (Sections 1 
and 2), Chapter VI (Sections 1 and 2), Chapter VII, Chapter IX (Sections 1 and 2), 
and Chapter X. The other sections contain more advanced material and provide an 
introduction to the theory of nonclassical shock waves. 

First, I want to say how grateful I am to Peter D. Lax for inviting me to New 
York University as a Courant Instructor during the years 1990-92 and for introducing 
me to many exciting mathematical people and ideas. I am particularly indebted to 
Constantine M. Dafermos for his warm interest to my research and his constant and 
very helpful encouragement over the last ten years. I also owe Robert V. Kohn for 
introducing me to the concept of kinetic relations in material science and encouraging 
me to read the preprint of the paper [1] and to write [6]. I am very grateful to Tai-Ping 
Liu for many discussions and his constant encouragement; his work [8] on the entropy 
condition and general characteristic fields was very influential on my research. 

It is also a pleasure to acknowledge fruitful discussions with collaborators and 
colleagues during the preparation of this course, in particular from R. Abeyaratne, F. 
Asakura, P. Baiti, N. Bedjaoui, J. Knowles, B. Piccoli, M. Shearer, and M. Slemrod. 
I am particularly thankful to T. Iguchi and A. Mondoloni, who visited me as post-doc 
students at the Ecole Poly technique and carefully checked the whole draft of these 
notes. Many thanks also to P. Goatin, M. Savelieva, and M. Thanh who pointed out 
misprints in several chapters. 

Special thanks to Olivier (for taming my computer), Aline (for correcting my 
English), and Bruno (for completing my proofs). Last, but not least, this book would 
not exist without the daily support and encouragement from my wife Claire. 

This work was partially supported by the Centre National de la Recherche Sci­
entifique (CNRS) and the National Science Foundation (NSF). 

Philippe G. LeFloch 
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CHAPTER I 

FUNDAMENTAL CONCEPTS 
AND EXAMPLES 

In this first chapter, we present some basic definitions and concepts which will be 
of constant use in this course. We also discuss the main difficulties of the theory and 
briefly indicate the main results to be established in the forthcoming chapters. 

1. Hyperbolicity, genuine nonlinearity, and entropies 

We are interested in systems of N conservation laws in one-space dimension: 

OtU + oxf(u) = 0, u(x, t) E U, x E JR, t > 0, (1.1) 

where U is an open and convex subset of JRN and f : U -+ JRN is a smooth mapping 
called the flux-function associated with (1.1). In the applications x and t correspond 
to space and time coordinates, respectively. The dependent variable u is called the 
conservative variable. To formulate the Cauchy problem for (1.1) one prescribes 
an initial condition at t = 0: 

u(x,O) = uo(x), x E JR, (1.2) 

where the function Uo : JR -+ U is given. In this section, we restrict attention to 
smooth solutions of (1.1) which are continuously differentiable, at least. 

Observe that (1.1) is written in divergence (or conservative) form. Hence, by 
applying Green's formula on some rectangle (Xl,X2) x (h,t2) we obtain 

(1.3) 

In models arising in continuum physics (compressible fluid dynamics, nonlinear elas­
todynamics, phase transition dynamics) the conservation laws (1.1) are in fact deduced 
from the local balance equations (1.3) which represent fundamental physical princi­
ples: conservation laws of mass, momentum, energy, etc. (Examples will be presented 
in Section 4, below.) 

When limlxl-++oo u(x, t) = 0 and the flux is normalized so that f(O) = 0, we can 
let Xl -+ -00 and X2 -+ +00 in (1.3) and obtain 

1+00 1+00 
-00 u(x, t) dx = -00 uo(x) dx, t 2 o. 

Hence, the integral of the solution on the whole space (that is, the total mass, mo­
mentum, energy, etc. in the applications) is independent of time. 

P. G. LeFloch 
© Birkhauser Verlag 2002

Hyperbolic Systems of Conservation Laws
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DEFINITION 1.1. (Hyperbolic systems.) We say that (1.1) is a first-order, hyper­
bolic system of partial differential equations if the Jacobian matrix A( u) := D f( u) 
admits N real eigenvalues 

Al(U) :S A2(U) :S ... :S AN(U), U E U, 

together with a basis of right-eigenvectors {rj(u) L«N. The eigenvalues are also _l_ 
called the wave speeds or characteristic speeds associated with (1.1). The system 
is said to be strictly hyperbolic if its eigenvalues are distinct: 

o 
In other words, we have Df(u)rj(u) = Aj(u)rj(u). The pair (Aj,rj) is referred 

to as the j-characteristic field. It is assumed that U ~ Aj(u),rj(u) are smooth 
mappings which for strictly hyperbolic systems follows from the regularity assumption 
already made on f. For strictly hyperbolic systems the eigenvectors are defined up to 
a multiplicative constant and, denoting by {lj( u) L< "<N a basis of left-eigenvectors, _l_ 
we will often impose the normalization 

where 6ij is the Kronecker symbol. By convention, rj(u) is a row-vector while li(u) 
is a column-vector. The transpose of a matrix B is denoted by BT , so the notation 
li(u? stands for the associated row-vector. A dot is used to denote the Euclidian 
scalar product in JRN. When N = 1, there is a single eigenvalue Al(U) = f'(u) and 
we set rl = h = 1. 

EXAMPLE 1.2. Linear advection equation. When N = 1 and f(u) = au where the 
wave speed a is a constant, (1.1) reduces to the linear advection equation 

(1.4) 

It is well-known that the solution of the Cauchy problem (1.2) and (1.4) admits the 
following explicit formula: 

U(x, t) = uo(x - a t), x E JR, t ;::: o. (1.5) 

o 

EXAMPLE 1.3. Inviscid Burgers-Hopf's equation. When N = 1 and f(u) = u2/2 in 
(1.1) we arrive at the (inviscid) Burgers equation 

(1.6) 

This is an important model for nonlinear wave propagation, originally derived by 
Burgers for the dynamics of (viscous and turbulent) fluids. Observe that, in (1.6), 
the wave speed f' ( u) truly depends on u. 

Comparing (1.6) with (1.4) we are tempted to extend the formula (1.5) found for 
constant speeds and, for the solution of the nonlinear equation (1.6), to write down 
the now implicit formula 

u(x, t) = uo(x - u(x, t) t), x E JR, t ;::: O. (1.7) 
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When the function Uo is of class C1 and 8xuo is uniformly bounded on IR we have 

8v (v - uo(x - vt)) = 1 + t(8xuo)(x - vt) > 0, (1.8) 

for all sufficiently small t. Therefore, by the implicit function theorem, (1.7) defines 
a unique function u. Interestingly enough, an elementary calculation shows that this 
function is the (unique) solution of (1.2) and (1.6) (for small times, at least). 0 

When N = 1, Example 1.2 is the prototype of a linear equation (I' being a 
constant) and Example 1.3 is the prototype of a genuinely nonlinear equation (I' 
being strictly monotone). These two examples exhibit distinguished behaviors which 
are observed in systems, as well. Turning our attention to systems, we now introduce 
some notions of linearity and nonlinearity for each j-wave family. We will confirm 
later on that the key quantity here is the rate of change in the wave speed .Aj along 
the direction of the eigenvector r j . 

DEFINITION 1.4. For each j = 1, ... , N we say that the j-characteristic field of (1.1) 
is genuinely nonlinear when 

and linearly degenerate when 

o 
For genuinely nonlinear fields we will often impose the normalization 

for the general theory. But different normalizations are often more convenient when 
dealing with specific examples. In view of Definition 1.4, when N = 1 the equation 
(1.1) is genuinely nonlinear if and only if f"(u) -=I- 0 for all u. It is linearly degenerate 
if and only if f" (u) = 0 for all u. 

Definition 1.4 will often be used in connection with the integral curves associated 
with the system (1.1). By definition, an integral curve of the vector-field rj is a 
solution S f-+ v( s) of the ordinary differential equation 

v'(S) = rj(v(s)). 

Relying on (1.9) we see that the j-characteristic field is genuinely nonlinear if 

.Aj is strictly monotone along the integral curves S f-+ v(s), 

and is linearly degenerate if 

.Aj remains constant along the integral curves S f-+ v(s). 

(1.9) 

This observation sheds further light on Definition 1.4. The above two properties 
are natural extensions of similar properties already noticed for scalar equations in 
Examples 1.2 and 1.3. 

It is important to keep in mind that, quite often in the applications, the examples 
of interest fail to be globally genuinely nonlinear. (See again Section 4.) The following 
scalar equation will serve to exhibit basic features of such models. 
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EXAMPLE 1.5. Conservation law with cubic flux. The equation 

8t u + 8x u3 = 0, (1.10) 

is genuinely nonlinear in U := {u > o} and in U := {u < o} but fails to be so in any 
neighborhood of U = O. 0 

When the function f is linear the explicit formula derived in Example 1.2 for the 
linear advection equation extends easily to the system (1.1), as follows. 

EXAMPLE 1.6. LineaT hyperbolic systems. When f(u) = A u, where A is a con­
stant matrix with real eigenvalues and a complete basis of eigenvectors, the system 
(1.1) is hyperbolic and has N linearly degenerate characteristic fields. By setting 
j3j(x, t) := lj u(x, t) (1 :::; j :::; N) the characteristic decomposition 

N 

u(x,t) = I:,6j(x,t)rj 
j=l 

transforms (1.1) into N decoupled linear advection equations (Example 1.1) for the 
characteristic variables ,6j: 

8t ,6j + Aj 8x ,6j = 0, 1:::; j :::; N. 

In view of (1.4) and (1.5) we see immediately that the solution of the corresponding 
Cauchy problem (1.1) and (1.2) is given by the explicit formula 

N 

u(x, t) = I: ,6J(x - Aj t) Tj, X Em, t ~ 0, 
j=l 

(1.11) 

where the coefficients ,6J := lj uo, 1 :::; j :::; N, are determined from the data uo. 0 

Now, turning our attention to the nonlinear system (1.1) and for a given contin­
uously differentiable solution u(x, t) we attempt to repeat the calculation in Exam­
ple 1.6. The variable u cannot be used directly for nonlinear equations, but we can 
decompose (1.1) into N scalar nonlinear equations for the characteristic variables 
defined now by CXj:= Ij(u)8x u, i.e., 

N 

8x u(x, t) = I: CXj(x, t) rj(u(x, t)). 
j=l 

Indeed, differentiating (1.1) with respect to x and using (1.12) we obtain 

N N 

8t I: D:j rj(u) + 8x I: D:j Aj(U) Tj(U) = O. 
j=l j=l 

(1.12) 

Multiplying the latter by each left-eigenvector li(u) and using the normalization 
li(U) rj(u) == Oij, we arrive at 

8t D:i + 8x (Ai(U) D:i) = I: Gijk(U) D:j D:k, 1:::; i :::; N, (1.13) 
l-:5.j<k-:5.N 

where the right-hand side depends on the interaction coefficients 

(1.14) 
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the Poisson bracket being defined by 

h(u), rk(u)]:= Drk(uh(u) - Drj(u)rk(u). 

In the special case that all of the coefficients Gijk(U) vanish, (1.13) provides N 
decoupled equations for the characteristic variables ai. This is the case in Example 1.6 
where [rj, rk] == 0 for all j, k, and, trivially, in the case of scalar conservation laws. 
However, in most examples of interest with N > 1 no such decoupling arises and 
one of the main difficulties in extending to systems the arguments of proof known for 
scalar equations is to cope with the quadratic terms Gijk(U) aj ak in (1.13). 

In the rest of this section we discuss a fundamental notion of the mathematical 
theory which will be essential to investigate the properties of weak solutions of systems 
of conservation laws (in Section 3, below). 

DEFINITION 1.7. (Mathematical entropies.) A smooth function (U, F) : U -+ IR? is 
called an entropy pair if any continuously differentiable solution of (1.1) satisfies 
the additional conservation law 

The functions U and F are called entropy and entropy-flux, respectively. 0 

Attempting to pre-multiply (1.1) by VU(u)Y it becomes clear that (U,F) is an 
entropy pair if and only if 

VF(uf = VU(uf Df(u), u E U. 

By differentiation with respect to u we obtain equivalently 

D2 F(u) = D2U(u) Df(u) + VU(uf D2 f(u). 

Since D2F(u) and VU(u)Y D2f(u) are symmetric matrices (which is obvious for the 
first one and can be checked for the second one by writing the matrix product com­
ponent by component), we see that the matrix D 2 U(u) Df(u) must be symmetric. 
(For the converse, one relies on the fact that the set of definition U is convex and, 
therefore, connected.) This discussion leads us to a useful criterion for the existence 
of an entropy, summarized as follows. 

THEOREM 1.8. (Characterization of the mathematical entropies.) A smooth function 
U is an entropy if and only if 

D2U(u) Df(u) is a symmetric N x N matrix, (1.15) 

which is equivalent to a linear system of N (N -1)/2 second-order partial differential 
equations. 0 

For each j = 1, ... ,N a (trivial) entropy pair is defined by 

U(u) = Uj, F(u) = fJ(u), u E U, (1.16) 

where u = (Ul,U2,'" ,UN)Y and f(u) = (!t(u), ... ,fN(U))Y. However, mathemat­
ical entropies of interest should be truly nonlinear in the conservative variable u. A 
central role will be played by entropies that are strictly convex, in the sense that 
D2 U (u) is a positive definite symmetric matrix, 

D2U(u) > 0, u E U, 



6 CHAPTER 1. FUNDAMENTAL CONCEPTS AND EXAMPLES 

which implies 

U(U) - U(v) - V'U(v) . (U - v) > 0, U i- v in U. 

Definition 1. 7 is illustrated now with some examples. 

EXAMPLE 1.9. Scalar conservation laws. When N = 1 and U = m (1.15) imposes 
no restriction on U, so that any (strictly convex) function U : U ----+ m is a (strictly 
convex) mathematical entropy. The entropy flux F is given by F'(u) = U'(u) f'(u), 
i.e., 

F(u) := F(a) + l u U'(v) f'(v) dv 

with a E U fixed and F(a) chosen arbitrarily. o 

EXAMPLE 1.10. Decoupled scalar equations. Consider a system (1.1) of the form 

u = (U1, U2,· .. , UN f, f(u) = (!I(U1), !2(U2), ... ,fN(UN)f· 

(For example, the linear systems in Example 1.6 have this form if they are written in 
the characteristic variables.) Such a system is always hyperbolic, with Aj (u) = fj (Uj), 
and the basis {rj(u)L«N can be chosen to be the canonical basis of mN. The 

_J_ 

system is non-strictly hyperbolic, unless for some permutation (j of {I, 2, ... , N} we 
have 

f~(1)(U(J"(l)) < f~(2)(U(J"(2)) < ... < f~(N)(U(J"(N))' U E U. 

The j-characteristic field is genuinely nonlinear (respectively linearly degenerate) if 
and only if fj' (Uj) i- 0 for all u E U (resp. fj'( Uj) == 0 for all u E U). A class 

of mathematical entropies is described by the general formula U(u) := 2::=1 Uj(Uj) 
where the functions Uj are arbitrary. All of the entropies have this form if, for 
instance, all the fields are genuinely nonlinear. The interaction coefficients (1.14) 
vanish identically. 0 

EXAMPLE 1.11. Symmetric systems. Consider next 

OtU + oxf(u) = 0, Df(u) symmetric, (1.17) 

which is hyperbolic but need not be strictly hyperbolic. Since the Jacobian D f 
is symmetric it coincides with the Hessian matrix of some scalar-valued mapping 
'l/J : U ----+ m. (Recall here that U E U where U is convex and therefore connected.) 
Thus f = V''l/J and a straightforward calculation shows that 

U(u) = t:f, F(u) = V''l/J(u) . u - 'l/J(u) 
2 

is a strictly convex entropy pair of (1.17). 

(1.18) 

o 

More generally, given any system of two conservation laws (Le., N = 2) the con­
dition (1.15) reduces to a single linear hyperbolic partial differential equation of the 
second order. (See the typical equation (4.9) in Section 4, below.) Based on standard 
existence theorem for such equations, one can prove that any strictly hyperbolic sys­
tem of two conservation laws admits a large family of non-trivial, entropy pairs. (See 
the bibliographical notes.) 
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For systems with three equations at least, (1.15) is generally over-determined 
so that an arbitrary system of N conservation laws need not admit a non-trivial 
mathematical entropy. The notion in Definition 1.7 plays an important role however, 
as every system arising in continuum physics and derived from physical conservation 
principles always admits one mathematical entropy pair at least, which often (but 
not always) is strictly convex in the conservative variable. Therefore, in this course, 
we will restrict attention mostly to strictly hyperbolic systems of conservation laws 
endowed with a strictly convex mathematical entropy pair. 

To close this section we observe that: 

THEOREM 1.12. (Symmetrization of systems of conservation laws.) Any system en­
dowed with a strictly convex entropy pair (U, F) may be put in the symmetric form 

Otg(u) + oxh(u) = 0, 

Dg(u), Dh(u) symmetric, Dg(u) positive definite. 
(1.19) 

Conversely, any system of the form (1.19) can be written in the general form (1.1) 
and admits a strictly convex mathematical entropy pair. 

We prove Theorem 1.12 as follows. On one hand consider the so-called entropy 
variable 

U f-+ U := \lU(u), (1.20) 

which is a one-to-one change of variable since U is strictly convex. Let us rewrite the 
conservative variable and the flux in terms of the entropy variable: 

u = g(u), f(u) = h(u). 

It is easily checked that 

(1.21 ) 

in which the first matrix is clearly symmetric and the second matrix is symmetric 
thanks to (1.15). This proves (1.19). 

On the other hand, given a system of the form (1.19), since Dg(u) and Dh(u) are 
symmetric matrices there exist two scalar-valued functions ¢ and 'IjJ such that 

g(u) = \l¢(u), h(u) = \l'IjJ(u). (1.22) 

We claim that the Legendre transform (G, H) of (¢, 'IjJ), defined as usual by 

G(u) := \l¢(u) . u - ¢(u), H(u):= \l'IjJ(u) . u - 'IjJ(u) , (1.23) 

is an entropy pair for the system (1.19). Indeed, this follows from 

and thus, with (1.19), 
OtG(u) + oxH(u) = o. 

The function G(u) is strictly convex in the variable u since D~G(u) = Dg(u) is 
positive definite. Note also that G(u) = U(u) and H(u) = F(u). This proves the 
converse statement in Theorem 1.12. D 
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2. Shock formation and weak solutions 

The existence and the uniqueness of (locally defined in time) smooth solutions of 
strictly hyperbolic systems of conservation laws follow from standard compactness 
arguments in Sobolev spaces. Generally speaking, smooth solutions u = u(x, t) of 
nonlinear hyperbolic equations eventually loose their regularity at some finite critical 
time, at which the derivative oxu tends to infinity. This breakdown of smooth solu­
tions motivates the introduction of the concept of weak solutions, which allows us to 
deal with discontinuous solutions of (1.1) such as shock waves. 

First of all, in order to clarify the blow-up mechanism, we study the typical 
case of Burgers equation, introduced in Example 1.3, and we discuss three different 
approaches demonstrating the non-existence of smooth solutions. Let u = u(x, t) be 
a continuously differentiable solution of (1.6) satisfying the initial condition (1.2) for 
some smooth function Uo. Suppose that this solution is defined for small times t, at 
least. 

ApPROACH BASED ON THE IMPLICIT FUNCTION THEOREM. Following the discussion 
in Example 1.3, observe that the implicit function theorem fails to apply to (1.7) 
when t is too large. More precisely, it is clear that the condition (1.8) always fails if 
t is sufficiently large, except when 

Uo is a non-decreasing function. (2.1) 

When (2.1) is satisfied, the transformation v f---+ v-uo(x-vt) remains one-to-one for 
all times and (1.7) provides the unique solution of (1.6) and (1.2), globally defined in 
time. 

GEOMETRIC APPROACH. Given Yo E JR, the characteristic curve t f---+ y(t) issuing 
from Yo is defined (locally in time, at least) by 

y'(t) = u(y(t), t), t 2 0, 

y(O) = Yo. 

The point Yo is referred to as the foot of the characteristic. Setting 

v(t) := u(y(t), t) 

and using (1.6) and (2.2) one obtains 

v'(t) = o. 

(2.2) 

So, the solution is actually constant along the characteristic which, therefore, must 
be a straight line. It is geometrically clear that two of these characteristic lines 
will eventually intersect at some latter time, except if the Uo satisfies (2.1) and the 
characteristics spread away from each other and never cross. 

ApPROACH BASED ON THE DERIVATIVE oxu. Finally, we show the connection with 
the well-known blow-up phenomena arising in solutions of ordinary differential equa­
tions. Given a smooth solution u, consider its space derivative oxu along a character­
istic t f---+ y(t), that is, set 

w(t) := (oxu) (y(t), t). 
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Using that 8xtu + u8xxu = _(8x U)2 we obtain Riccati equation 

w'(t) = -w(t)2. (2.3) 

Observe that the right-hand side of this ordinary differential equation is quadratic 
and that 

w(O) 
w(t) = 1 + t w(O) 

So, w tends to infinity in finite time, except if w(O) 2: 0 which is, once more, the 
condition (2.1). 

REMARK 2.1. General theorems on blow-up of smooth solutions with small amplitude 
are known for strictly hyperbolic systems. The proofs rely on the decomposition 
(1.12)-(1.14) and, in essence, extend to systems the third approach above presented 
on Burgers equation. Let us just sketch this strategy for a system with genuinely 
nonlinear fields. Given Yo E 1R, the i-characteristic curve issuing from the point 
Yo at the time t = 0 is, by definition, the solution of the ordinary differential equation 

y'(t) = Ai(U(y(t), t)), t 2: 0, 

y(O) = Yo. 

Using the notation (1.12) and setting 

w(t) = Cti(y(t), t), 

we deduce from (1.13) the generalized Riccati equation 

with 

w'(t) = a(t) w(t)2 + b(t) w(t) + c(t) 

N 

a(t) := -\7Ai(U(t)) . ri(u(t)), b(t):= - L Ctk(t) rk(u(t)) . \7Ai(U(t)), 

c(t) := L Gijk(U(t)) Ctj(t) Ctk(t). 
15.j<k5.N 

k=l 
k#i 

(2.4) 

(2.5) 

Here, u(t) := u(y(t), t) and Ctj(t) := Ctj(y(t), t). For genuinely nonlinear fields, after 
normalization we have a(t) == -1, the first term in the right-hand side of (2.5) co­
incides the right-hand side of (2.3). A rigorous proof of the breakdown for systems 
requires careful estimates for the remaining terms (particularly, Ctj Ctk with j, knot 
both equal to i) in order to establish that one of the i-characteristic components Cti 
blows-up. (See the bibliographical notes for a reference.) 0 

From the discussion above we conclude that the class of solutions must be enlarged 
and should include solutions that are not continuously differentiable and, in fact, 
are discontinuous. We consider solutions in the space £,X)(1R x 1R+,U) of bounded 
Lebesgue measurable functions u : IR x 1R+ --+ U. 
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DEFINITION 2.2. (Concept of weak solution.) Given some initial data Uo E LOO(IR,U) 
we shall say that u E LOO(IR x IR+,U) is a weak solution to the Cauchy problem 
(1.1) and (1.2) if 

1+
00 1m (ufM) + f(u) ax()) dxdt + 1m ()(O) Uo dx = 0 (2.6) 

for every function () E C':(IR x [0, +00)) (the vector space of real-valued, compactly 
supported, and infinitely differentiable functions). 

Of course, if u is a continuously differentiable solution of (1.1) in the usual sense, 
then by Green's formula it is also a weak solution. The interest of the definition 
(2.6) is that it allows u to be a discontinuous function. To construct weak solutions 
explicitly we will often apply the following criterion. 

THEOREM 2.3. (Rankine-Hugoniot jump relations.) Consider a piecewise smooth 
function u : IR x IR+ ----+ U of the form 

u x t = ( ) { 
u_(x, t), x < <p(t), 

, u+(x, t), x> <p(t), 
(2.7) 

where, setting n± := {x ~ <p(t)}, the functions u± : n± ----+ U and 'I' : IR+ ----+ IR are 
continuously differentiable. Then, u is a weak solution of (1.1) if and only if it is a 
solution in the usual sense in both regions where it is smooth and, furthermore, the 
following Rankine-Hugoniot relation holds along the curve '1': 

(2.8) 

where 

e>O e>O 

PROOF. Given any function () in C':(IR x (0, +00)) let us rewrite (2.6) in the form 

L Jr r (u±(x, t) at()(x, t) + f(u±(x, t)) ax()(x, t)) dxdt = O. 
± Jo± 

Applying Green's formula in each region of smoothness n± we obtain 

L± r+
oo 

(-<p'(t)u±(t) + f(u±(t))) ()(<p(t),t)dt = 0, 
± Jo 

which gives (2.8) since () is arbitrary. 

When u_ and u+ are constants and <pis linear, say <p(t) = At, 

( { 
u_, x < At, 

u x, t) = 
u+, x> At, 

o 

(2.9) 

Theorem 2.3 implies that (2.9) is a weak solution of (1.1) if and only if the vectors 
u± and the scalar A satisfy the Rankine-Hugoniot relation 

(2.10) 

When u_ t u+ the function in (2.9) is called the shock wave connecting u_ to u+ 
and A the corresponding shock speed. 
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We will be particularly interested in the Riemann problem which is a special 
Cauchy problem (1.1) and (1.2) corresponding to piecewise constant initial data, i.e., 

{ 
Ul, 

U(X,O) = UO(X) = 
U r , 

x < 0, 

X> 0, 
(2.11) 

where Ul, Ur E U are constants. This problem is central in the theory as it exhibits 
many important features encountered with general solutions of (1.1) as well. The 
Riemann solutions will also serve to construct approximation schemes to generate 
solutions of the general Cauchy problem. At this juncture observe that (2.9) and 
(2.10) already provide us with a large class of solutions for the Riemann problem 
(1.1) and (2.11). As we will see, the shock waves do not suffice to solve the Riemann 
problem and we will also introduce later on another class of solutions, the rarefaction 
waves, which are Lipschitz continuous solutions of (1.1) generated by the integral 
curves (1.9). We refer to Chapters II and VI below for the explicit construction of 
the solution of the Riemann problem, for scalar equations and systems respectively, 
under various assumptions on the flux of (1.1). 

When attempting to solve the Riemann problem one essential difficulty of the 
theory arises immediately. Weak solutions are not uniquely determined by their initial 
data. To illustrate this point we exhibit two typical initial data for which several weak 
solutions may be found. 

EXAMPLE 2.4. Non-uniqueness for Burgers equation (increasing data). Observe that, 
in view of (2.10), a shock wave connecting u_ to u+ (u_ =I- u+) and propagating at 
the speed A satisfies the Rankine-Hugoniot relation for Burgers equation (1.6) if and 
only if 

A = u_ +u+. 
2 

Hence, the Cauchy problem (1.2) and (1.6) with the initial condition 

u(x,O) = uo(x) := ' {
-I 

1, 

x < 0, 

x> 0, 

admits the (steady) solution 

u(x, t) = uo(x) for all (x, t). 

It also admits another solution, 

{ 
-1 

u(x, t) = x/t, 
1, 

x < -t, 
-t < x < t, 

x> t, 

which is a continuous function of (x, t) in the region {t > O}. 

(2.12) 

(2.13) 

(2.14) 

o 

EXAMPLE 2.5. Non-uniqueness for Burgers equation (decreasing data). A Riemann 
problem may even admit infinitely many solutions. Consider, for instance, the initial 
condition 

() { 
1, x < 0, 

Uo x := 
-1, x> O. 
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The corresponding Cauchy problem admits the trivial solution (2.13) again, as well 
as the following one-parameter family of solutions: 

{

I, 

-v 
u(x, t) = ' 

v, 
-1, 

x < -At, 
-At<X<O, 

0< x < At, 
x> At, 

(2.15) 

where v > 1 is arbitrary and A := (v - 1) /2. Here, the initial jump is split into three 
propagating jumps. For the same Cauchy problem, the formula (2.15) can be easily 
generalized and solutions having an arbitrary large number of jumps could be also 
constructed. 0 

EXAMPLE 2.6. Non-existence of weak solutions conserving both u and u2 • Consider 
a shock wave connecting u_ to u+ at the speed A given by (2.12). We claim that the 
(additional) conservation law 

satisfied by smooth solutions of Burgers equation, cannot be satisfied by weak solu­
tions. Otherwise, according to Theorem 2.3 (where u and f(u) should be replaced 
with u2 /2 and u3 /3, respectively) we would have 

contradicting (2.12) if u_ -::f. u+. 

2 22 _ u+ + u_ u+ + u_ 
3 u+ +u_ 

o 

To conclude this section, let us mention that one of the main objectives in this 
course will be to establish the existence of weak solutions (in a suitable sense to 
be discussed) to the Cauchy problem (1.1) and (1.2), and to prove uniqueness and 
continuous dependence results. In particular, we will derive the L1 continuous 
dependence estimate for any two "solutions" u and v (C being a fixed positive 
constant) 

(2.16) 

• The existence of solutions is established in Chapters IV, VII, and VIII, below. 
See Theorems IV-I. 1, IV-2.1, and IV-3.2 and Theorem VIII-1.7 for scalar 
equations and Theorems VII-2.1 and VIII-3.1 for systems. 

• The continuous dependence of solutions is the subject of Chapters V and 
IX. See Theorems V-2.2, V-3.1, V-3.2, and V-4.2 for scalar equations and 
Theorems IX-2.3, IX-3.2, and IX-4.1 for systems. 

• The uniqueness is established in Chapter X. See Theorems X-3.2, X-4.1, and 
X-4.3. 
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3. Singular limits and the entropy inequality 

Examples 2.4 and 2.5 show that weak solutions ofthe Cauchy problem (1.1) and (1.2) 
are generally non-unique. To single out the solution of interest, we restrict attention 
to weak solutions realizable as limits (E -+ 0) of smooth solutions of an augmented 
system 

OtU€ +oxf(u€) = R€, u€ = u€(x,t), (3.1) 

where E > 0 represents a small-scale parameter corresponding, in the applications, 
to the viscosity, capillarity, etc. of the physical medium under consideration. The 
right-hand side of (3.1) may contain a singular regularization RIO depending upon 
u€ , E u~, E2 u~x' . .. and (in a sense clarified by Definition 3.1 below) vanishing when 
E -+ O. 

We always assume that the system of conservation laws (1.1) is endowed with a 
strictly convex entropy pair (U, F) and that the singular limit 

u = lim U C 

c-tO 
(3.2) 

exists in a sufficiently strong sense. Precisely, there exists a constant C > 0 indepen­
dent of E such that (U contains the closed ball with center 0 and radius C and) 

(3.3) 

and the convergence (3.2) holds almost everywhere in (x, t). To arrive to a well-posed 
Cauchy problem for the hyperbolic system (1.1) we attempt to derive some conditions 
satisfied by the limit u, which are expected to characterize it among all of the weak 
solutions of (1.1). 

In the present section, under some natural conditions on the smoothing term 
R€, we derive the so-called entropy inequality associated with the entropy pair (U, F) 
(that is, (3.8) below). The entropy inequality plays a fundamental role in the mathe­
matical theory for (1.1). As will be further discussed in Section 5, it does not always 
completely characterize the limit of (3.1), however. 

First of all, we wish that the limit u be a weak solution of (1.1). For each function 
BE C;;o(IR x (0,+00)), relying on (3.1)-(3.3) we find 

Je { (uotB + f(u) oxB) dxdt = lim Je { (u€ OtB + f(u€) oxB) dxdt 
Jmxm+ €-tO Jmxm+ 

= lim Je { R€ B dxdt. 
c-tO Jmxm+ 

Therefore, we arrive at the following condition on RIO which is necessary (and suffi­
cient) for the limit u to be weak solution of (1.1). 

DEFINITION 3.1. (Conservative regularization.) The right-hand side R€ of (3.1) is 
said to be conservative (in the limit E -+ 0) if 

lim Je { R€ Bdxdt = 0, B E C~(IR x (0, +00)). (3.4) 
c-tO Jmxm+ 

o 
Next, we take advantage of the existence of an entropy pair (U, F). Multiplying 

(3.1) by "VU( u€) we observe that, according to Definition 1. 7, the left-hand side admits 
a conservative form, namely 

(3.5) 
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In view of (3.2) and (3.3) the left-hand side of (3.5) converges in the weak sense: For 
all e E cgo (m x (0, +(0)) we have 

J" r (U(ue) Ote + F(ue) oxe) dxdt -+ Jr r (U(u) Ote + F(u) oxe) dxdt. 
imxm+ imxm+ 

To deal with the right-hand side of (3.5), we introduce the following definition. 

DEFINITION 3.2. (Entropy dissipative regularization.) The right-hand side Re of 
(3.1) is said to be entropy dissipative for the entropy U (in the limit E -+ 0) if 

limsuPJ"r \lU(ue)·Reedxdt~O, eEC,:(mX(O,+oo)), e~o. (3.6) 
e---+O imxm+ o 
We summarize our conclusions as follows. 

THEOREM 3.3. (Derivation of the entropy inequality.) Let ue be a family of approx­
imate solutions given by (3.1). Suppose that ue remains bounded in the Loo norm 
as E -+ 0 and converges almost everywhere towards a limit Ui see (3.2) and (3.3). 
Suppose also that the right-hand side Re of (3.1) is conservative (see (3.4)) and en­
tropy dissipative (see (3.6)) for some entropy pair (U, F) of (1.1). Then, u is a weak 
solution of (1.1) and satisfies the inequality 

Jrr (U(u)ote+F(u)oxe)dxdt~O, eEC~(mX(O,+oo)), e~o. (3.7) 
imxm+ 

o 
By definition, (3.7) means that in the weak sense 

(3.8) 

which is called the entropy inequality associated with the pair (U, F). In the 
following we shall say that a weak solution satisfying (3.8) is an entropy solution. 

In the rest of this section we check the assumptions (3.4) and (3.6) for two classes 
ofregularizations (3.1). The uniform bound (3.3) is assumed from now on. Consider 
first the nonlinear diffusion model 

OtUe + oxf(ue) = E (B(ue) oxue)x' 

where the diffusion matrix B satisfies 

for all u under consideration and for some fixed constant K, > O. 

(3.9) 

(3.10) 

THEOREM 3.4. (Zero diffusion limit.) Consider a system of conservation laws (1.1) 
endowed with a strictly convex entropy pair (U, F). Let ue be a sequence of smooth 
solutions of the model (3.9) satisfying the uniform bound (3.3), tending to a constant 
state u* at x -+ ±oo, and such that the derivatives u~ decay to zero at infinity. 
Suppose also that the initial data satisfy the uniform L2 bound 

(3.11) 

where the constant C > 0 is independent of E. Then, the right-hand side of (3.9) is 
conservative (see (3.4)) and entropy conservative (see (3.6)). 
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Combining Theorem 3.4 with Theorem 3.3 we conclude that the solution of (3.9) 
can only converge to a weak solution of (1.1) satisfying the entropy inequality (3.8). 

PROOF. Let us first treat the case B = I. Then, (3.10) means that U is uniformly 
convex. It is easy to derive (3.4) since, here, 

If"f RCOdxdtl~frf ElucllOxxldxdt 
Jmxm+ Jmxm+ 

~ E Ilucllu'" IIOxxilu ~ e E ~ 0 

for all 0 E ergo (IR x IR+). 
On the other hand, for the general regularization (3.9) and for general matrices 

the identity (3.5) takes the form 

OtU(UC) + oxF(UC) = E (\7U(UC ). B(uC ) u~)x - EU~' D2U(uc) B(uc)u~. (3.12) 

When B = I we find 

OtU( UC) + ox F( uc) = E U( UC)xx - E u~ . D 2U( UC) u~. 

To derive (3.6) we observe that by integration by parts 

for all 0 E ergo with 0 2: O. Using the uniform bound (3.3), the first term of the 
right-hand side tends to zero with E. The second term is non-positive since 0 2: 0 
and the entropy is convex thanks to (3.10). We have thus established that, when 
B(u) = I, the right-hand side of (3.9) is conservative and entropy dissipative. 

To deal with the general diffusion matrix, we need to obtain first an a priori bound 
on the entropy dissipation. This step is based on the uniform convexity assumption 
(3.10). 

By assumption, U C decays to some constant state u* at x = ±oo and that u;' 
decays to zero sufficiently fast. Normalize the entropy flux by F( u*) = O. Since U 
is strictly convex and the range of the solutions is bounded a priori, we can always 
replace the entropy u f--+ U( u) with U( u) - U( u*) - \7U( u*)· (u-u*). The latter is still 
an entropy, associated with the entropy flux F( u) - F( u*) - \7U( u*) . (J( u) - f( u*)). 
Moreover it is not difficult to see that U is non-negative. To simplify the notation and 
without loss of generality, we assume that u* = 0 E U, U(u*) = 0, and \7U(u*) = O. 
Integrating (3.12) over the real line and a finite time interval [0, T] we obtain 

1m U(uc(T)) dx + E !aT 1m u~ . D2U(uC) B(uc)u~ dxdt = 1m U(UC(O)) dx ~ e, 

thanks to the bound (3.11) on the initial data uC(O). Using (3.10) and letting T ~ +00 
we conclude that the entropy dissipation is uniformly bounded: 

(3.13) 
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Relying on the uniform energy bound (3.13) we now prove (3.4) and (3.6). Relying 
on (3.13) we find that for each test-function () 

IJ"f R"()dxdtl = Ie J"f (B(u")u;)x()dxdtl 
Jmxm+ Jmxm+ 

which establishes (3.4). 

~ e Jr f IB( ute) u; II()x I dxdt 
Jmxm+ 

S GeIlOxllL'(m.m,) (fL.m, IB(U')U;12dxdt) 1/2 

< G' e1/ 2 --t 0 - , 

In view of (3.10) the second term in the right-hand side of (3.12) remains non­
positive. On the other hand, the first term in (3.12) tends to zero since following the 
same lines as above 

Ie f+oo f (\1U(u")B(u")u;)x()dxdtl~GeJrf IB(u")u;ll()xl dxdt h Jm Jmxm+ 
~ G' e1/ 2 --t O. 

Thus (3.6) holds, which completes the proof of Theorem 3.4. o 

Next, we discuss another general regularization of interest, based on the entropy 
variable u = \1U( u) introduced in the end of Section 1. Recall that u f---t U is a change 
of variable when U is strictly convex. Consider the nonlinear diffusion-dispersion 
model 

OtU" + oxf(u") = e u;x + 8 u;xx 

= e \1U( u")xx + 8 \1U( u")xxx, 
(3.14) 

where e > 0 and 8 = 8(c) E IR are called the diffusion and the dispersion parame­
ters. Diffusive and dispersive terms play an important role in continuum physics, as 
illustrated by Examples 4.5 and 4.6 below. Understanding the effect of such terms on 
discontinuous solutions of (1.1) will be one of our main objectives in this course. 

THEOREM 3.5. (Zero diffusion-dispersion limit.) Consider a system of conservation 
laws (1.1) endowed with a strictly convex entropy pair (U, F). Let ute be a sequence of 
smooth solutions of the diffusive-dispersive model (3.14) satisfying the uniform bound 
(3.3), tending to a constant u* at x --t ±oo, and such that u~ and u~x decay to zero 
at infinity. Suppose also that the initial data satisfy the uniform bound (3.11). Then, 
the right-hand side of (3.14) is conservative (see (3.4)) and entropy dissipative (see 
(3.6)) in the limit e,8 --t 0 with 8/e --t O. 

Again, combining Theorem 3.5 with Theorem 3.3 we conclude that solutions of 
(3.14) can only converge to a weak solution of (1.1) satisfying the entropy inequal­
ity (3.8). Note that (3.8) is derived here only for the entropy U upon which the 
regularization (3.14) is based. 
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PROOF. Using the uniform bound (3.3), for all () E Cgo(IR x IR+) we obtain 

11+00 1m Re()dxdtl S 1+00 1m(c:luell()xxl+8Iuell()xxxl)dXdt 

s c c: lI()xx 11£1 (ill xill+) + C 8 II()xxxII £1 (ill xill+) ~ 0 
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when c:, 8 ~ 0, which leads us to (3.4). Multiplying (3.14) by the entropy variable u, 
we find 

OtU( ue) + oxF( ue) = c: ue . u;x + 8 ue . u;xx 

= ~ (jueI2)xx - c: lu;12 + ~ ((iueI2)xx - 3Iu;12)x' 
(3.15) 

All but one (non-positive) term of the right-hand side of (3.15) have a conservative 
form. After normalization we can always assume that u* = 0 E U and, after normal­
ization, U(u) 2: 0, U(O) = 0, and F(O) = O. Integrating (3.15) over the whole real 
line and over a finite time interval [0, T], we obtain 

1m U(ue(T))dx+c: 1T 1mlu;12dXdt= 1m U(ue(O))dx. 

Provided that the initial data satisfy (3.11) we conclude that 

c: Jr r lu;1 2 dxdt S C. 
iillXill+ 

(3.16) 

To check (3.6) we rely on the identity (3.15) and the uniform bound (3.16), as 
follows. Taking the favorable sign of one entropy dissipation term into account we 
obtain for all non-negative () E cgo (IR x IR+): 

Je r \7U( ue) . Re () dxdt 
iillXill+ 

S ~ Jr r luel21()xxl dxdt + ~ J" r (lueI21()xxxl + lu;12 1()xl) dxdt 
iillXill+ iillXill+ 

S C c: lI()xx II £1 (ill xill+) + C 8 II ()xxx IILl (ill xill+) + C 811()xllu'" Jr r lu;12 dxdt 
iillXill+ 

s Cf (c: + 8 + 8/ c:) . 

As c:,8 ~ 0 with 8/c: ~ 0 we conclude that (3.6) holds, which completes the proof of 
Theorem 3.5. 0 

4. Examples of diffusive-dispersive models 

Systems of conservation laws arise in continuum physics a variety of applications. We 
introduce here several important examples that will be of particular interest in this 
course. 

EXAMPLE 4.1. Burgers equation. The simplest example of interest is given by the 
(inviscid) Burgers equation 

(4.1) 
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Given any convex function U let F be a corresponding entropy flux (Example 1.9). 
Multiplying (4.1) by U'(u) we obtain the entropy balance 

8t U(u) + 8xF(u) = E U(u)xx - E U"(u) u;, 

which, formally as E -+ 0, leads to infinitely many entropy inequalities 

8t U(u) + 8xF(u) ~ O. 

o 

EXAMPLE 4.2. Conservation law with cubic flux revisited. The equation in Exam­
ple 1.5 may be augmented with diffusive and dispersive terms, as follows 

8t u + 8xu3 = EUxx + c5uxxx · 

where E > 0 and c5 E JR. Using the quadratic entropy U(u) = u2 we obtain 

2 (3 u4 ) ( 2) 2 ( 2) 8t u + 8x -2- = E u xx - 2EUx + c5 2uuxx - Ux x 

= E (u2)xx - 2EU; + 8((u2)xx - 3u;)x 

which, in the limit E,8 -+ 0, yields the single entropy inequality 

2 3u4 
8t u + 8x - 2- ~ O. 

(4.2) 

(4.3) 

We will see later on (Theorem 1II-2.4 in Chapter III) that for solutions generated by 
(4.2) the entropy inequality (3.8) does not hold for arbitrary entropies! 0 

EXAMPLE 4.3. Diffusive-dispersive conservation laws. Consider next the model 

( 4.4) 

where b( u) > 0 is a diffusion coefficient and C1 (u), C2 (u) > 0 are dispersion coefficients. 
Let (U*, F*) a (strictly convex) entropy pair satisfying 

U"( ) = C2(U) JR 
* u ()' uE . 

C1 u 

(U* is unique up to a linear function of u.) Interestingly, the last term in the right­
hand side of (4.4) takes a simpler form in this entropy variable U = U; (u), indeed 

8 (C1(U) (C2(U) ux)x)x = 8 (C1(U) (C1(U) ux)x)x' 

Any solution of (4.4) satisfies 

8t U*( u) + 8xF*( u) = E (b( u) U;(u) uX)x - E b( u) U;'(u) lux l2 

+8 (C1(U)U(C1(U)Ux)x -IC2(U)uxI2j2)x' 

In the right-hand side above, the contribution due to the diffusion decomposes into a 
conservative term and a non-positive (dissipative) one. The dispersive term is entirely 
conservative. In the formal limit E,8 -+ 0 any limiting function satisfies the single 
entropy inequality 

o 
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EXAMPLE 4.4. Nonlinear elastodynamics. The longitudinal deformations of an elastic 
body with negligible cross-section can be described by the conservation law of total 
momentum and by the so-called continuity equation, i.e., 

OtV - oxa(w) = 0, 

OtW - oxv = 0, 
(4.5) 

respectively. The unknowns v and w > -1 represent the velocity and deformation 
gradient respectively, while the stress w f-t a( w) is a given constitutive function de­
pending on the material under consideration. The constrain w > -1 arises as follows. 
Denote by x f-t y(x, t) the Lagrangian variable, i.e., y(x, t) represents the location 
(at time t) of the material particle located initially at the point x. The functions v 
and ware defined from the Lagrangian variable by v = OtY, w = ox(Y - x). On the 
other hand, the mapping y(.,.) is constrained by the principle of impenetrability 
of matter, that is, oxY > ° or w > -1. The theoretical limit w ---7 -1 corresponds 
to an infinite compression of the material. 

Set u = (~), f(u) = - ( a~)) and U = IR x (-1, +(0), and define the sound 

speed as c(w) = Ja'(w). For typical elastic materials, we have 

a'(w) > ° for all w > -1 (4.6) 

so that the system (4.5) is then strictly hyperbolic and admits two distinct wave speeds, 
A2 = -A1 = c(w). Left- and right-eigenvectors are chosen to be 

Moreover, in view ofthe relation VAj ·rj = -c'(w) we see that the two characteristic 
fields of (4.5) are genuinely nonlinear if and only if 

a"(w) i= 0, w>-1. (4.7) 

However, many materials encountered in applications do not satisfy (4.7) but rather 

a"(w) ~ 0, w ~ 0. (4.8) 

Using the characterization (1.15) in Theorem 1.8, one easily checks that the en­
tropies U(v,w) of (4.5) satisfy the following second-order, linear hyperbolic equation 
with non-constant coefficients, 

Uww - a'(w) Uvv = 0. (4.9) 

One mathematical entropy pair of particular interest is provided by the total energy 

v2 (W 
U(v, w) = "2 + Jo a(s) ds, F(v, w) = -a(w) v, (4.10) 

which is strictly convex under the assumption (4.6). The change of variables v := v, 
W := a(w) clearly put (4.6) in a symmetric form, 

OtV - oxw = 0, Ota-1(w) - oxv = 0, 
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in agreement with (1.19) and (1.20). Finally, the functions if; and 1jJ introduced in 
(1.22) are found to be 

v2 (W 
if;(v,a(w)) = 2" +wa(w) - io a(s)ds, 1jJ(v,a(w)) = -a(w)v. (4.11) 

Furthermore, the interaction terms (1.13) and (1.14) are determined from the 
basic formula 

h, T2J = Dr2 . Tl - Drl . T2 = (2~') . 
For instance, G112 = -4 c c' = -2 a", which vanishes only at the points where the 
genuine nonlinearity condition (4.7) fails. Away from such points, the two equations 
in (4.5) are truly coupled. 0 

EXAMPLE 4.5. Phase transitions dynamics. For a model of phase transitions in solid 
materials, consider the two conservation laws of elastodynamics (4.5) in which, now, 
a is taken to be a non-monotone stress-strain function. For instance, for the modeling 
of a two-phase material one assumes that 

a'(w) > 0, wE (-1,wm) U (wM,+oo), 

a'(w) < 0, wE (wm,w M) 
(4.12) 

for some constants wm < wM. In the so-called unstable phase (wm, wM) the system 
admits two complex conjugate eigenvalues. All of the solutions of interest from the 
standpoint of the hyperbolic theory lie outside the unstable region. The system 

is hyperbolic for all u = (~) in the non-connected set U := (IR x (-1, w m )) U 

(IR x (wM , +00)), and most of the algebraic properties described in Example 4.4 
remain valid. One important difference concerns the mathematical entropies: the 
total mechanical energy (4.10) is convex in each hyperbolic region but (any extension) 
is not globally convex in (the convex closure of) U. Hence, the entropy variable (see 
(1.20)) no longer defines a change of variable. The conservative variable of (4.5) 
cannot be expressed in the entropy variable fj = v, 'Ii; = a(w), since w f--t a(w) fails 
to be globally invertible. However, we observe that the entropy variable can still be 
used to express the flux f(u) of (4.5) under the assumption (4.12). 0 

EXAMPLE 4.6. Nonlinear elastodynamics and phase transitions I. High-order effects 
such as viscosity and capillarity induce diffusion and dispersion effects which, for 
instance, have the form 

OtV - oxa(w) = cVxx -15 Wxxx , 

OtW - oxv = 0, 
(4.13) 

where the stress-strain function a satisfies the assumptions in Example 4.4 (hyper­
bolic) or in Example 4.5 (hyperbolic-elliptic). In the right-hand side of (4.13), c 
represents the viscosity of the material and 0 its capillarity. Observe that 

Ot (v; + 1w 
a(s) ds + ~ w;) - Ox (va(w)) 

= c (v vx) x - C v; + 15 (vx Wx - v wxx ) x· 
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Clearly the entropy inequality 

(4.14) 

is formally recovered in the limit 10, <5 -+ O. As for Example 4.2 one can check that, 
for limiting solutions generated by (4.13), the entropy inequality (4.14) does not hold 
for arbitrary entropies. 0 

EXAMPLE 4.7. Nonlinear elastodynamics and phase transitions II. Recall a notation 
introduced in Example 4.4: (x, t) f-t y(x, t) is the Lagrangian variable and the velocity 
and deformation gradient are determined by v = 8t y, w = 8x (y - x). We assume that 
an internal energy function of the form 

e = e(w,wx) = e(yx,Yxx) 

is prescribed. The general equations of elastodynamics are then derived (formally) 
from the postulate that the action 

(4.15) 

should be extremal among all "admissible" y. Here n c IR is the (bounded) interval 
initially occupied by the fluid and [0, T] is some given time interval. 

Let g : n x [0, T] -+ IR be a smooth function with compact support. Replacing 
in (4.15) y with y + g and keeping the first-order terms in g only, we obtain 

and, after integration by parts, 

Since the solution y should minimize the action J and that g is arbitrary, this formally 
yields 

8e 8e 
Ytt + ( - -8 (Yx, Yxx) + (-8 (Yx, Yxx)) ) = O. 

Yx Yxx x x 
(4.16) 

Returning to the unknown functions v and wand defining the total stress as 

(4.16) becomes 
8t v - 8xL.(w,wx ,wxx ) = 0, 

8t w - 8x v = O. 

(4.17) 
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Finally, if a nonlinear viscosity p,( w) is also taken into account, we arrive at a general 
model including viscosity and capillarity effects: 

OtV - oxE(w, wx, wxx ) = (I-l(w) vX)x' 

The total energy 
E(w,v,wx):= e(w,wx) +v2/2 

again plays the role of a mathematical entropy. We find 

(4.18) 

OtE(w,v,wx) -ox(E(w,wx,wxx)v) = (vx O~x (w,wx))x + (p,(w)vvx)x - p,(w) v;. 

Once more, the entropy inequality similar to (4.14) could be obtained. 
Finally, let us discuss the properties of the internal energy function e. A standard 

choice in the literature is for e to be quadratic in W x ' (Linear term should not appear 
because of the natural invariance of the energy via the transformation x f-+ -x.) 
Setting, for some positive capillarity coefficient A( w), 

w2 
e(w, wx) = c(w) + A(W) T' 

the total stress decomposes as follows: 

2 
E(w,wx, wxx ) = a(w) + A/(W) w; - (A(W) wx)x, a(w) = c/(w). 

The equations in (4.18) take the form 

OtV - oxa(w) = (A/(W) ~; - (A(W) wX)x) x + (p,(w) vX)x' 

OtW - oxv = O. 

In this case we have 

( v2 W2) 
c(w) + 2 + A(W) T t - (a(w) v)x 

(4.19) 

( 4.20) 

(4.21 ) 

= (p,( w) v vx) x - p,( w) v; + (v A/ ~ w) w; - v (A( w) wx) x + VX A( w) wx) x' 

Under the simplifying assumption that the viscosity and capillarity are both constants, 
we can recover Example 4.6 above. 0 

5. Kinetic relations and traveling waves 

We return to the general discussion initiated in Section 3 and we outline an important 
standpoint adopted in this course for the study of (1.1). The weak solutions of 
interest are primary those generated by an augmented model of the general form 
(3.1). When small physical parameters accounting for the viscosity, heat conduction, 
or capillarity of the material are negligible with respect to the scale of hyperbolic 
features, it is desirable to replace (3.1) with the hyperbolic system of conservation 
laws (1.1). Since the solutions of the Cauchy problem associated with (1.1) are not 
unique, one must determine suitable admissibility conditions which would pick up 
the solutions of (1.1) realizable as limits of solutions of (3.1) by incorporating some 
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large-scale effects contained in (3.1) without resolving the small-scales in details. As 
we will see, different regularizations may select different weak solutions! 

The entropy inequality (3.8) was derived for two large classes of regularizations 
(Section 3) as well as for several specific examples (Section 4). Generally speaking, 
when more than one mathematical entropy is available (N :::; 2), a single entropy 
inequality only is satisfied by the solutions of (1.1). See, for instance, the important 
Examples 4.2 and 4.6 above. This feature will motivate us to determine first weak 
solutions of (1.1) satisfying the single entropy inequality (3.8). (See Sections II-3 and 
VI-3, below.) 

For systems admitting genuinely nonlinear or linearly degenerate characteristic 
fields only, the entropy inequality (3.8) turns out to be sufficiently discriminating to 
select a unique weak solution to the Cauchy problem (1.1) and (1.2). In particular, for 
such systems, weak solutions are independent of the precise regularization mechanism 
in the right-hand side of (3.1). Such solutions will be called classical entropy 
solutions and a corresponding uniqueness result will be rigorously established in 
Chapter X (see Theorem X-4.3). 

On the other hand, for systems admitting general characteristic fields that fail 
to be globally genuinely nonlinear or linearly degenerate, the entropy inequality (3.8) 
is not sufficiently discriminating. Under the realistic assumptions imposed in the 
applications, many models arising in continuum physics fail to be globally genuinely 
nonlinear. For such systems, we will see that weak solutions are strongly sensitive to 
the small-scales that have been neglected at the hyperbolic level of physical modeling, 
(1.1), but are taken into account in an augmented model, (3.1). In Chapters II and 
VI we will introduce the corresponding notion of nonclassical entropy solutions 
based on a refined version of the entropy inequality, more discriminating than (3.8) 
and referred to as the kinetic relation. 

At this juncture, let us describe the qualitative behavior of the solutions of the 
nonlinear diffusion-dispersion model (3.14), which includes linear diffusive and disper­
sive terms with "strengths" E > 0 and 8, respectively. By solving the corresponding 
Cauchy problem numerically, several markedly different behaviors can be observed, 
as illustrated in Figure 1-1: 

• When 181 < < E2, the effect of the dispersion turns out to be negligible. The 
limiting solutions coincide with the ones generated by the zero-diffusion limit 
corresponding to 8 = 0 and E -> O. 

• When 181 > > E2, the dispersion dominates and wild oscillations with high 
frequencies arise as 8 -> O. The solutions converge in a weak sense only and 
the conservation laws (1.1) do not truly describe the singular limit in this case. 

• The intermediate regime 

8 = 'Y E2 , E -> 0 and 'Y fixed, (5.1) 

when diffusion and dispersion are kept in balance, is of particular interest in the 
present course. There is a subtle competition between the parameters E and 
8. The diffusion E has a regularizing effect on the propagating discontinuities 
while the dispersion 8 generates wild oscillations. It turns out that, in the limit 
(5.1), the solutions of (3.14) converge (from the numerical standpoint, at least) 
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to a limit which satisfies the conservation laws (1.1) and the entropy inequality 
(3.8). Mild oscillations and spikes are visible near jump discontinuities, only. 
Interestingly enough, the limiting solution strongly depends on the parameter 
'Y. That is, for the same initial data different values of 'Y lead to different 
shock wave solutions ! 

u(x, t) 

x 

Figure 1-1 : Numerical solution for 
181 < < C;2, 8 = 'Y C;2, and 181 > > C;2, respectively. 

From this discussion we conclude that no "universal" admissibility criterion can 
be postulated for nonlinear hyperbolic systems. Instead, some additional information 
should be sought and an admissibility condition should be formulated for each prob­
lem (or rather each class of problems) of interest. Before closing this section let us 
introduce a few more properties and definitions. First of all, for the entropy inequality 
(3.8) we have the obvious analogue of the Rankine-Hugoniot relation derived earlier 
in Section 2. 

THEOREM 5.1. (Jump relation for the entropy inequality.) We use the same notation 
as in Theorem 2.3. The piecewise smooth function (2.7) satisfies the entropy inequality 
(3.8) if and only if 

In particular, given a shock wave (2.9) connecting two constant states u_ and u+ and 
associated with the speed A, the entropy inequality reads 

(5.3) 

D 

When dealing with nonclassical solutions, the Rankine-Hugoniot relations (2.10) 
and the entropy inequality (5.3) will be supplemented with the following additional 
jump condition: 
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DEFINITION 5.2. (Kinetic relation.) A kinetic relation for the shock wave (2.9) is 
an additional jump relation of the general form 

(5.4) 

where <J> is a Lipschitz continuous function of its arguments. In particular, a kinetic 
relation associated with the entropy U is the following strengthened version of 
the entropy inequality (5.3) 

(5.5) 

where ¢ is a Lipschitz continuous function of its arguments. 

Two remarks are in order: 
• Not all propagating waves within a nonclassical solution will require a kinetic 

relation, but only the so-called undercompressive shock waves. 
• Suitable assumptions will be imposed on the kinetic functions <J> and ¢ in 

(5.4) and (5.5), respectively. For instance, an obvious requirement is that the 
right-hand side of (5.5) be non-positive, that is, ¢ :::; 0, so that (5.5) implies 
(5.3). 

The role of the kinetic relation in selecting weak solutions to systems of conservation 
laws will be discussed in this course. We will show that a kinetic relation is necessary 
and sufficient to set the Riemann problem and the Cauchy problem for (1.1): 

• We will establish that the Riemann problem has a unique nonclassical solution 
characterized by a kinetic relation (Theorems II-4.1 and II-5.4). 

• We will also investigate the existence (Theorems IV-3.2, VIII-1.7, and VIII-
3.2) and uniqueness (Theorem X-4.1) of nonclassical solutions to the Cauchy 
problem. 

To complete the above analysis, we must determine the kinetic function from a 
given diffusion-dispersion model like (3.1). The kinetic relation is introduced first in 
the following "abstract" way. Let us decompose the product \1U(uc) . Rc arising in 
(3.6) in the form 

(5.6) 
where Qe -" 0 in the sense of distributions and Jlc is a uniformly bounded sequence 
of non-positive L1 functions. We refer to Jle as the entropy dissipation measure 
for the given model (3.1) and for the given entropy U. (This decomposition was 
established for the examples (3.9) and (3.14) in the proofs of Theorems 3.4 and 3.5.) 
After extracting a subsequence if necessary, these measures converge in the weak-star 
sense to a non-positive bounded measure (Theorem A.l in the appendix): 

JlU(u):= limJlc:::; O. 
c-tO 

(5.7) 

The limiting measure Jlu (u) depends upon the pointwise limit u := limc-to uc, but 
cannot be uniquely determined from it. For regularization-independent shock waves 
the sole sign of the entropy dissipation measure Jlu (u) suffices and one simply writes 
down the entropy inequality (3.8). However, for regularization-sensitive shock waves, 
the values taken by the measure Jlu (u) playa crucial role in selecting weak solutions. 
The corresponding kinetic relation takes the form 

OtU(u) + oxF(u) = Jlu(u) :::; 0, (5.8) 
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where !1u( u) is a non-positive, locally bounded measure depending on the solution 
u under consideration. Clearly, the measure fLu (u) cannot be prescribed arbitrarily 
and, in particular, must vanish on the set of continuity points of u. 

DEFINITION 5.3. (Traveling waves.) Consider a propagating jump discontinuity con­
necting two states u_ and u+ at some speed A. A function ue(x, t) = w(y) with 
y := (x - A t)/c is called a traveling wave of (3.1) connecting u_ to u+ at the speed 
A if it is a smooth solution of (3.1) satisfying 

(5.9) 

and 
lim w'(y) = lim w"(y) = ... = o. 

IYI--->+oo IYI--->+oo 
(5.10) 

For instance consider, in (3.1), conservative regularizations of the form 

Re = (S(ue,cu~,c2u~x' ... ))x 

with the natural condition S( u, 0, ... ) = 0 for all u. Then the traveling waves w of 
(3.1) are given by the ordinary differential equation 

-A w' + f( w)' = S( w, w', w", ... )' 

or, equivalently, after integration over intervals (-00, y] by 

S(w, w', w", ... ) = f(w) - f(u-) - A (w - u_). 

It is straightforward (but fundamental) to check that: 

THEOREM 5.4. If w is a traveling wave solution, then the pointwise limit 

u(x, t) := lim w -- = ( X-At) {U_, x<At, 
e--->O c u+, x> At, 

(5.11) 

(5.12) 

is a weak solution of (1.1) satisfying the entropy inequality (3.8). In particular, the 
Rankine-Hugoniot relation (2.10) follows from (5.11) by letting y -+ +00. 

Moreover, the solution u satisfies the kinetic relation (5.8) where the dissipation 
measure is given by 

fLU(U) = M ox-)..t, 

M := - 1m S(w(y), w'(y), w"(y), ... ) . D2U(w) w'(y) dy, 

where ox-).. t denotes the Dirac measure concentrated on the line x - At = O. 0 

We will see in Chapter III that traveling wave solutions determine the kinetic 
relation: 

• For the scalar equation with cubic flux (Example 4.2) the kinetic relation can 
be determined explicitly; see Theorem 111-2.3. 

• For the more general model in Example 4.3 a careful analysis of the existence of 
traveling wave solutions leads to many interesting properties of the associated 
kinetic function (monotonicity, asymptotic behavior); see Theorem 111-3.3. 
This analysis allows one to identify the terms 1>, ¢, and !1u(u) in (5.4), (5.5), 
and (5.7), respectively. 

• Systems of equations such as those in Examples 4.6 and 4.7 can be covered by 
the same approach; see Remark 111-5.4 and the bibliographical notes. 



PART 1 

SCALAR CONSERVATION LAWS 



CHAPTER II 

THE RIEMANN PROBLEM 

In this chapter, we study the Riemann problem for scalar conservation laws. In 
Section 1 we discuss several formulations of the entropy condition. Then, in Section 2 
we construct the classical entropy solution satisfying, by definition, all of the entropy 
inequalities; see Theorems 2.1 to 2.4. Next in Section 3, imposing only that solutions 
satisfy a single entropy inequality, we show that undercompressive shock waves are 
also admissible and we determine a one-parameter family of solutions to the Riemann 
problem; see Theorem 3.5. Finally in Sections 4 and 5, we construct nonclassical 
entropy solutions which, by definition, satisfy a single entropy inequality together with 
a kinetic relation; see Theorem 4.1 for concave-convex flux-functions and Theorem 5.4 
for convex-concave flux-functions. 

1. Entropy conditions 

Consider the Riemann problem for the scalar conservation law 

8t u + 8x f(u) = 0, u = u(x, t) E JR, (1.1 ) 

where f : JR ~ JR is a smooth mapping. That is, we restrict attention to the initial 
data 

{ 
Ul, 

u(x, 0) = 
Un 

x < 0, 

x> 0, 
(1.2) 

where Ul and Ur are constants. Following the discussion in Sections 1-3 to 1-5 we seek 
for a weak solution of (1.1) and (1.2) satisfying some form of the entropy condition. 
As was pointed out in Theorem 1-3.4, solutions determined by the zero diffusion limit 
satisfy 

8t U( u) + 8x F( u) :S 0 for all convex entropy pairs (U, F), (1.3) 

while for more general regularizations (Examples 1-4.2 and 1-4.3) 

8t U( u) + 8x F( u) :S 0 for a single strictly convex pair (U, F). (1.4) 

Recall that , in (1.3) and (1.4), U is a convex function and F(u) = JU U'(v) f'(v) dv. 

First, we establish an equivalent formulation of (1.3), which is easier to work with. 

THEOREM 1.1. (Oleinik entropy inequalities.) A shock wave solution of (1.1) having 
the form 

{ 
u_, 

u(x, t) = 
u+, 

x < At, 
X> At, 

(1.5) 

P. G. LeFloch 
© Birkhauser Verlag 2002

Hyperbolic Systems of Conservation Laws
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for some constants u_, u+, and'\ with u_ =1= u+, satisfies the infinite set of entropy 
inequalities (1.3) if and only if Oleinik entropy inequalities 

f(v) - f(u-) > f(u+) - f(u-) 
for all v between u_ and u+ 

are satisfied. Moreover, (1.3) and (1.6) imply Lax shock inequalities 

l' (u_) 2 ,\ 2 f'(u+). 

(1.6) 

(1.7) 

According to the Rankine-Hugoniot relation (derived in Theorem I-2.3), the speed 
,\ in (1.5) is determined uniquely from the states u_ and u+: 

,\ = a( u_ , u+) : = f ( u+) - f (u_ ) 
u+ -u_ 

= 101 
a(u_ + s(u+ - u_)) ds, 

(1.8) 

where 
a(u) = f'(u), u E JR. 

The (geometric) condition (1.6) simply means that the graph of f is below (above, 
respectively) the line connecting u_ to u+ when u+ < u_ (u+ > u_, resp.). The 
condition (1.7) shows that the characteristic lines impinge on the discontinuity from 
both sides. The shock wave is said to be compressive and will be referred to as a 
classical shock. 

THEOREM 1.2. (Lax shock inequality.) When the function f is convex all of the 
conditions (1.3), (1.4), (1.6), (1.7), and Lax shock inequality 

(1.9) 

are equivalent. 

PROOFS OF THEOREMS 1.1 AND 1.2. For the function in (1.5) the inequalities in 
(1.3) are equivalent to (see Theorem 1-5.1) 

E(u_, u+) := -a(u_, u+) (U(u+) - U(u_)) + F(u+) - F(u_) :::; 0, 

that is, 

E(u_, u+) = 1~+ U'(v) (-,\ + f'(v)) dv 

= -1~+ U"(v) (-,\ (v - u_) + f(v) - f(u-)) dv 
(1.10) 

= _ 1~+ U" ( v)( V - u_) ( f ( v ~ = ~~ u_) _ f (u:; = ~~ u_ )) dv 

:::; 0, 

where (1.8) was used to cancel the boundary terms in the integration by parts formula. 
Since U" is arbitrary (1.10) and (1.6) are equivalent. 

On the other hand, it is geometrically obvious that (1.6) is also equivalent to 

for all v between u_ and u+. (1.11) 
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To derive the two inequalities in (1.7) we simply let v --t u_ in (1.6) and v --t u+ in 
(1.11). 

The particular case of a convex flux is straightforward from (1.6). We just observe 
that the single entropy inequality (1.4) provides a sufficient condition. Indeed, the 
integrand in (1.10) has a constant sign when f is convex and that this sign is favorable 
if and only if (1.9) holds. 0 

2. Classical Riemann solver 

The shock waves (1.5) and (1.8) form a special class of solutions for the Riemann 
problem (1.1) and (1.2). Given a left-hand state u_ let us define the (classical) shock 
set S ( u_) as the set of all right-hand states attainable by shock waves satisfying (1.3). 
When the flux is convex, in view of the characterization derived in Theorem 1.2 we 
find 

(2.1) 
In fact, by Theorem 1.2, a single entropy inequality is sufficient to characterize the 
solution. 

Next, we search for smooth solutions of (1.1) that are centered and of the self­
similar form 

u(x, t) = w(~), 
Necessarily we have 

thus (assuming that we(~) =I- 0) 

x 
~.= -. t' 

l' (w(~)) = ~ for all ~ under consideration. 

By differentiation we find 

1" (w(~)) we (~) = 1 for all ~ under consideration. 

(2.2) 

Therefore, w is well-defined and strictly monotone except if 1" (w(~)) vanishes at some 
point ~, i.e., if the genuine nonlinearity fails at some value w(~). In the latter case, 
wd~) becomes infinite at some finite value ~. 

Given u_ and u+, suppose that the function l' (u) is increasing when u varies 
from u_ to u+. Then, the inverse function of f', say g, is well-defined on the interval 
[f' (u_), l' (u+)], and the formula 

{ 
u_, x < t l' ( u_ ), 

u(x,t) = g(x/t), t1'(u_) < x < tf'(U+), 

u+, X > t l' ( u+) 

(2.3) 

defines a smooth and monotone solution of the conservation law (1.1). This solution 
is called a (centered) rarefaction wave connecting u_ to u+. By definition, the rar­
efaction set R( u_) is made of all right-hand states attainable through a rarefaction 
wave. Using the condition that x f---> l' ( u( x, t)) be increasing in the rarefaction fan 
(that is, in the interval x E [t1'(u_),t1'(u+)]), when the flux is convex we find 

(2.4) 

We are now ready to combine together elementary waves and construct a self­
similar solution of the Riemann problem. For clarity in the presentation, we call P 
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the class of piecewise smooth functions u = u(x/t) which are made of finitely 
many constant states separated with shock waves or rarefaction fans. In the present 
chapter, all the existence and uniqueness results will be stated in this class. Of course, 
much more general existence and uniqueness results will be established later in this 
course. 

THEOREM 2.1. (Riemann problem - Convex flux.) Suppose that the flux f is convex 
and fix some Riemann data Ul and ur . Then, the Riemann problem (1.1) and (1.2) 
admits a unique classical entropy solution (in the class P), composed of shock waves 
satisfying (1.3) and rarefaction waves, given as follows: 

(a) If U r ;::: Ul, the solution U is rarefaction wave connecting continuously and 
monotonically Ul to ur . 

(b) If Ur < Ul, the solution is a shock wave connecting Ul to Ur . 

In both cases the solution is always monotone. 

The construction when f is concave is completely analogous. 

PROOF. Observe that, obviously, for a wave pattern to be realizable in the physical 
space, one needs the wave speed to be a monotone increasing function of the self­
similar variable x/to It is clear that the function described in the theorem is an 
admissible weak solution of the Riemann problem. On the other hand, the following 
two claims are immediate: 

• A shock connecting a state u_ to a state u+ < u_ cannot be followed by 
another shock or by a rarefaction. 

• A rarefaction cannot be followed by a shock. (But a rarefaction can always be 
continued by attaching to it another rarefaction.) 

Hence, a Riemann solution contains exactly one wave and, therefore, the solution 
given in the theorem is the only possible combination of shocks and rarefactions. 
This establishes the uniqueness of the solution in the class P. D 

Next, we consider flux-functions having a single inflection point, normalized to 
be U = O. Suppose first that f is a concave-convex function, in the sense that (see 
Figure II-I) 

uf"(u) > 0 (u =1= 0), 1"'(0) =1= 0, 
lim f'(u) = +00. (2.5) 

lul~+oo 

The prototype of interest is the cubic flux f(u) = u3 + au with a E JR. With some 
minor modification the following discussion can be extended to functions f' having 
finite limits at infinity, and functions having several inflection points. Consider the 
graph of the function f in the (u, f)-plane. For any U =1= 0 there exists a unique line 
that passes through the point with coordinates (u,J ( u)) and is tangent to the graph 
at a point (cp~(u),J(cp~(u))) with cp~(u) =1= u. In other words we set (Figure II-I) 

1'( ~(u)) = f(u) - f(cp~(u)) 
cp U - cp~(u) (2.6) 

Note that ucp~(u) < 0 and define cp~(O) = O. Thanks to (2.5) the map cp~ : JR -. JR 
is monotone decreasing and onto, and so is invertible. Denote by cp-~ : JR -. JR 
its inverse function. Obviously, cp~ 0 cp-~ = cp-~ 0 cp~ = id. By the implicit function 
theorem, the functions cp~ and cp-~ are smooth. (This is clear away from U = 0, 
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while the discussion of the regularity at U = ° is postponed to Remark 4.4 below.) 
Moreover, we have <pQ' (0) = -1/2 and <p-Q' (0) = -2. 

u 

Figure II-I : Concave-convex flux-function 

When the flux is a concave-convex function and all of the entropy inequalities 
(1.4) are enforced, Oleinik entropy inequalities (1.6) in Theorem 1.1 imply 

(2.7) 

In passing we point out that, for functions having one inflection point (or none), 
Lax shock inequalities (1.7) and Oleinik entropy inequalities (1.6) are equivalent. 
On the other hand, following the general discussion given before the statement of 
Theorem 2.1, the rarefaction set is easily found to be 

{ 
[u_, +00), u_ > 0, 

R(u_)= (-00,+00), u_=O, 
(-00, u_J, u_ < 0. 

(2.8) 

THEOREM 2.2. (Riemann problem - Concave-convex flux.) Suppose that the function 
f is concave-convex (see (2.5)) and fix some Riemann data Uz and u r . Then, the 
Riemann problem (1.1) and (1.2) admits a unique classical entropy solution (in the 
class P ), made of shock waves satisfying (1.3) and rarefaction waves, given as follows 
when, for definiteness, Uz ~ 0: 

(a) If Ur ~ uz, the solution u is a rarefaction wave connecting continuously and 
monotonically Uz to ur . 

(b) If Ur E [<pQ ( uz), uz), the solution is a single (classical) shock wave. 
(c) If Ur < <pQ (uz), the solution is composed of a classical shock connecting to 

<pQ ( uz) followed by a rarefaction connecting to ur . The shock is a right-contact 
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wave, that is, the shock speed coincides with the right-hand characteristic speed: 

f(ul) - f(<pQ(ul)) = f'(<pQ(Ul)) , 
Ul - <pQ(Ul) 

(2.9) 

that is, the rarefaction is "attached" to the shock. 

It is obvious that, in Theorem 2.2 (as well as in Theorem 2.3 below) the Riemann 
solution is monotone and, when it contains two waves, the intermediate state (specif­
ically here <pQ(Ul)) depends continuously upon the data Ul and Ur and converges to 
Ul or to Ur when passing from one case to another. These important properties of 
classical solutions will no longer hold with nonclassical solutions. (See the weaker 
statement after Theorem 4.1, below.) 

PROOF. Observe that in Case (c) above, after a right-contact wave one can add a 
rarefaction fan, precisely because the left-hand of the rarefaction fan travels with 
a speed faster than or equal to (in fact, equal to) the shock speed; see (2.9). In 
view of (2.7) and (2.8), the function described in the theorem is an admissible weak 
solution of the Riemann problem. To establish that this is the unique solution made 
of elementary waves, we make the following observations: 

• After a shock connecting u_ to U+, no other wave can be added except when 
U+ = <pQ(u_). (The shock is then a right-contact and can be followed with a 
rarefaction preserving the monotonicity of the solution.) 

• After a rarefaction connecting u_ to u+, no other wave can be added except 
another rarefaction. 

We conclude that a Riemann solution is monotone and contains at most two 
elementary waves. This establishes the desired uniqueness result. D 

When the flux is a convex-concave function, in the sense that 

ul"(u)<O (ul-0), 1"'(0)1-0, 
lim f'(u) = -00 (2.10) 

lul-++oo 

and all of the entropies are enforced, we obtain 

_ { (-oo,<p-Q(u_)] U [U_, +00), u_ 2: 0, 
S(u_) - ( _Q ) -oo,u_] U [<p (u_),+oo, u-:S 0, 

(2.11) 

and 

{ 
[0, u_ ], u_ > 0, 

R(u_) = {O}, u_ = 0, 
[u_,O], u_<o. 

(2.12) 

We state without proof: 

THEOREM 2.3. (Riemann problem - Convex-concave flux.) Suppose that the func­
tion f is convex-concave (see (2.10)) and fix some Riemann data Ul and Ur . Then, 
the Riemann problem (1.1) and (1.2) admits a unique classical entropy solution in 
the class P, made of shock waves satisfying all of the entropy inequalities (1.3) and 
rarefaction waves which, assuming Ul 2: 0, is given as follows: 

(a) If Ur 2: Ul, the solution U is a (classical) shock wave connecting Ul to Ur · 
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(b) If Ur E [0, Ul), the solution is a rarefaction wave connecting monotonically Ul 
to U r . 

(c) If cp-Q(Ul) < Ur < 0, the solution is composed of a rarefaction connecting Ul to 
cpQ ( Ur ), followed by a shock wave connecting to Ur . The shock is a left-contact, 
that is, the shock speed coincides with the left-hand characteristic speed: 

(2.13) 

In particular, the rarefaction is attached to the shock. 
(d) Ifur E (-oo,cp-Q(ud), the solution is a (classical) shock wave connecting Ul 

to U r . 

o 

Finally, when the flux-function f admits more than one inflection point but, for 
clarity, has only finitely many inflection points, the Riemann problem (1.1)-(1.3) can 
also be solved explicitly. The construction is based on the convex hull (when Ul < ur ) 

or the concave hull (when Ul > ur ) of the function f in the interval limited by the 
Riemann data Ul and Ur . Denoting this envelop by J and assuming for instance that 
Ul > Ur we can decompose the interval [ur , ud in the following way: There exist states 

such that for all relevant values of p 

J(U) = f(u), U E (U2p, U2p+1) , 

J(u) < f(u), U E (u2p+l,U2p+3). 
(2.14) 

The intervals in which J coincides with f correspond to rarefaction fans in the solution 
of the Riemann problem, while the intervals where J is strictly below f correspond 
to shock waves. 

It is not difficult to check from Oleinik entropy inequalities (1.6) that: 

THEOREM 2.4. (Riemann problem - General flux.) Suppose that the function f has 
finitely many inflection points and fix some Riemann data Ul and Ur . Then, the 
Riemann problem (1.1) and (1.2) admits a unique classical entropy solution (in the 
class P), made of shock waves satisfying (1.3) and rarefaction waves which, when 
Ul :::: Ur , is given by 

x < t J(Ul), 

tJ(Ul) < x < tJ(ur ), 

x> tJ(ur ). 

(2.15) 

o 

Observe that J is convex and, therefore, (/) I is non-decreasing and its inverse is 
well-defined but may be discontinuous. 



36 CHAPTER II. THE RIEMANN PROBLEM 

3. Entropy dissipation function 

In the rest of this chapter we solve the Riemann problem (1.1) and (1.2) when the 
single entropy inequality (1.4) is imposed on the solutions. When the flux f : JR ---) JR 
is convex (or concave) the single inequality (1.4) is equivalent to the infinite list (1.3) 
and we immediately recover the solution in Theorem 2.1. Consequently, in the rest 
of this chapter we focus on non-convex flux-functions and explain how to construct 
nonclassical entropy solutions of the Riemann problem. 

Our general strategy is as follows. First, in the present section we describe the 
class of Riemann solutions satisfying (1.1), (1.2), and (1.4), and we exhibit a one­
parameter family of Riemann solutions, obtained by combining shock waves and rar­
efaction waves. Second, in the following section we explain how a kinetic relation may 
be imposed in order to formulate a well-posed Riemann problem. 

In this section and in Section 4 the function f is assumed to be concave-convex, 
in the sense (2.5). We will use the function cpQ : JR ---) JR defined in (2.6) together 
with its inverse denoted by cp-Q : JR ---) JR. Recall that, by (2.5), both cpQ and cp-Q are 
monotone decreasing and onto. 

Consider a shock wave of the general form (1.5) connecting two states u_ and 
u+, where the speed), = a( u_, u+) is given by the Rankine-Hugoniot relation (1.8). 
Recall that the entropy inequality (1.4) holds if and only if the entropy dissipation 

E(u_,u+) := -a(u_,u+) (U(u+) - U(u_)) + F(u+) - F(u_) (3.1) 

is non-positive. We can prove that u+ 1--+ E( u_, u+) achieves a maximum negative 
value at u+ = cpQ ( u_) and vanishes exactly twice. For definiteness we take u_ > 0 
in the rest of the discussion. Dealing with the other case is completely similar and 
can also be deduced from the forthcoming results, based on the skew-symmetry of 
the function E, i.e., E(u_,u+) = -E(u+,u_). 

THEOREM 3.1. (Entropy dissipation for concave-convex flux.) For any left-hand state 
u_ > 0 the function E( u_, .) is monotone decreasing in (-00, cpQ (u_)] and monotone 
increasing in [cpQ (u_), +00 ). More precisely, we have 

ou+ E( u_, .) < 0 in the interval (-00, cpQ (u_)), 

ou+ E ( u_ , .) > 0 in the intervals (cpQ ( u_ ), u_) U (u_, +00 ) , 

E(u_,u_) = 0, 

E(u_,cpQ(u_)) < 0, E(u_,cp-Q(u_)) > O. 

Therefore, for u > 0 there exists some value CPt ( u) satisfying 

E(u,cp~(u)) = 0, cp~(u) E (cp-Q(u),cpQ(u)). 

(3.2) 

The definition of CPt (u) for u ::; 0 is analogous, and the function cp~ : JR ---) JR is 
monotone decreasing with 

(3.3) 

and 
(3.4) 

We refer to Figure 11-2 for a graphical representation of the zero-entropy dis­
sipation function cpt. To motivate our notation we stress that CPt will determine a 
critical limit for the range of the kinetic functions cpP introduced later in Section 4. On 
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the other hand, in Chapter III the function CPt will also arise from diffusive-dispersive 
approximations when a diffusion parameter tends to O. 

Figure II-2 : Entropy dissipation function. 

To the function CPt we associate its companion function cp~ : m ........ m defined by 
(see Figure II-4 below) 

f(u) - f(cp~(u)) f(u) - f(cpt(u)) 
----;i----'--'-= 

u - cp~(u) u - cpt(u) 

so that the points with coordinates 

(cpt ( u),J(cpt( u))), (cp~(u), f( cp~( u))), (u, f(u)) 

are aligned. Since cp-Q(u) < cpt(u) < cpQ(u) we also have 

cp~(u) < cp~(u) < u, u> O. 

(3.5) 

More generally, when u+ =1= u_, <pQ (u_) it will be useful to define p( u_, u+) E m by 

f(p(u-,u+)) - f(u-) _ f(u+) - f(u-) ( )--t. 
( ) - , p u_, u+ r u_, u+, 

p u_, u+ - u_ u+ - u_ 
(3.6) 

and to extend the mapping p by continuity. 

PROOF OF THEOREM 3.1. Observe first that some of the properties (3.2) are obvious 
from the formula 

derived earlier in the proof of Theorem 1.1. For instance, when u+ :s: cp-Q (u_) or when 
u+ :::: u_, the term in the integrand of (3.7) have a constant sign and we see that 
E( u_, u+) > O. On the other hand, for values u+ near u_ the dissipation E( u_, u+) 
is equivalent to (u+ - U_)3 (up to a multiplicative constant). Thus, locally near u_, 
E(u_,u+) > 0 for u+ > u_ and E(u_,u+) < 0 for u+ < u_. 
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To show the first two statements in (3.2), note that the differentials of the func­
tions E ( u_, u+) and a( u_, u+) are closely related. Indeed, a calculation based on 
differentiating (1.8) and (3.1) with respect to u+ yields 

ou+E(u_, u+) = b(u_, u+) ou+a(u_, u+), 
b(u_,u+):= U(u_) - U(u+) - U'(u+) (u_ - u+) > 0 

In view of (3.8) and (2.5) it is clear that 

ou+a(u_,u+) < 0, u+ < <pQ(u_), 

ou+a(u_,u+) > 0, u+ > <pQ(u_). 

(3.8) 

This leads us to the conclusions listed in (3.2). Then, in view of (3.2) there exists 
<p~(u_) satisfying E(u_,<p~(u_)) = O. 

By definition, for any u -=I- 0 

and, since a similar result as (3.2) holds for negative left-hand side, 

Thus, (3.4) follows from the fact that the entropy dissipation has a single "non-trivial" 
zero and from the symmetry property 

E(<p~(u),u) = -E(u,<p~(u)) = O. 

Finally, by the implicit function theorem it is clear that the function <Pt is smooth, 
at least away from u = O. (The regularity at u = 0 is discussed in Remark 4.4 below.) 
U sing again the symmetry property E ( u_, u+) = - E ( u+, u_) we have 

(3.9) 

Thus, differentiating the identity E (u, <p~ (u)) = 0 we obtain 

d<p~( ) __ (ou_E)(u,<p~(u)) _ (ou+E)(<p~(u),u) 
du u - (ou+E)(u,<p~(u)) - (ou+E)(u,<p~(u))' 

where we used (3.9). For u > 0 we have already established (see (3.2)) that 

and since a similar result as (3.2) holds for negative left-hand side and that we have 
(<pt 0 <p~)(u) = u, we conclude that 

and therefore d<p~/ du < O. o 
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REMARK 3.2. For the choice U( u) = u2/2 the function CPt is given geometrically by 
an analogue of Maxwell's equal area rule. Namely, rewriting (3.1) in the form 

E ( u_, u+) = - 1~+ (f ( v) - f ( u_) - f (u:~ = ~~ u_) (v - u_ )) dv, 

we see that the line connecting (u-,f(u-)) to (cpt(u_),J(cpt(u_))) cut the graph 
of f in two regions with equal areas. This property arises also in the context of 
elastodynamics (Example 1-4.4) and phase transition dynamics (Example 1-4.5). 0 

~~ .. , _.,' 

/f'( u+) J'(u_) ........ . 
... " 

Figure II-3 : Compressive and undercompressive shock waves. 

Using the notation in Theorem 3.1 we reach the following conclusion. 

LEMMA 3.3. (Single entropy inequality.) A shock wave of the form (1.5) and (1.8) 
satisfies the single entropy inequality (1.4) if and only if 

{ 
[cpt(u_),u_], u_ ~ 0, 

u+ E [ I> ] u_,CPo(u_), u_:=:; o. (3.10) 

DEFINITION 3.4. Among the propagating discontinuities satisfying (3.10) some satisfy 
also Oleinik entropy inequalities (1.6) (and therefore Lax shock inequalities (1.7)) and 
will be called classical shocks or Lax shocks. They correspond to the intervals 

{ 
[cpQ(u_),u_J, u_ ~ 0, 

u+ E [ Q ] u_, cp (u_), u_:=:; O. 
(3.11) 

On the other hand, the propagating discontinuities satisfying (3.10) but violating 
Oleinik entropy inequalities, i.e., 

(3.12) 

will be called nonclassical shocks. 

Observe (see also Figure II-3) that nonclassical shocks are slow undercompres­
sive in the sense that characteristics on both sides of the discontinuity pass through 
the shock: 

(3.13) 
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This is in strong contrast with Lax shock inequalities which impose that the charac­
teristics impinge on the discontinuity from both sides. Undercompressive waves are a 
potential source of non-uniqueness, as will become clear shortly. 

The rarefaction waves associated with the equation (1.1) were already studied in 
Section 2. For concave-convex fluxes we found (see (2.8)): 

{ 
[u_, +00), u_ > 0, 

R(u_) = (-00, +00), u_ = 0, 

( -00, u_ ] , u_ < 0. 

(3.14) 

We are now in the position to solve the Riemann problem (1.1), (1.2), and (1.4). 

THEOREM 3.5. (One-parameter family of Riemann solutions for concave-convex func­
tions.) Suppose that the flux f is a concave-convex function (see (2.5)) and fix some 
Riemann data Ul and ur . Restricting attention to solutions satisfying the entropy 
inequality (1.4) for a given strictly convex entropy pair (U, F) and assuming for def­
initeness that Ul 2: 0, the Riemann problem (1.1) and (1.2) admits the following 
solutions in the class P: 

(a) If Ur 2: Ul, the solution is unique and consists of a rarefaction connecting 
continuously Ul to Ur . 

(b) If Ur E [<p~ (Ul), Ul), the solution is unique and consists of a classical shock 
connecting Ul to ur . 

(c) Ifur E [<pt(Ul),<P~(Ul))' there exist infinitely many solutions, consisting of a 
nonclassical shock connecting Ul to some intermediate state Um followed by 

- a classical shock if Um < p( Ul, ur ) (the function P being defined in (3.6)), 
- or a rarefaction if Um 2: ur . 

The values Ur E [<pq (Ul), <pg (Ul)] can also be attained with a single classical 
shock. 

(d) If Ur ::; <p~(uz), there exist infinitely many solutions, consisting of a nonclas­
sical shock connecting Ul to some intermediate state Um E [<pt ( uz), <Pq ( Ul)] 
followed by a rarefaction connecting continuously to Ur . 

In Cases (c) and (d) above there exists a one-parameter family of Riemann 
solutions. Note that, in Case (c), the solution at time t > ° may contain two shocks 
and have a total variation which is larger than the one of its initial data. 

PROOF. The functions described above are clearly solutions of the Riemann problem. 
The only issue is to see whether they are the only admissible solutions. The argument 
below is based on the two key properties (3.3) and (3.4). We recall that two wave 
fans can be combined only when the largest speed of the left-hand wave is less than 
or equal to the smaller speed of the right-hand one. 

Claim 1 : A nonclassical shock connecting u_ to u+ E [<pt ( u_ ), <Pq ( u_ ) ) 
can be followed only by a shock connecting to a value U2 E [u+, p( U_, u+)) 
or else by a rarefaction to U2 ::; U+. 

Indeed, each state U2 E [u+, p( U_, U+ )) is associated with a classical shock prop­
agating at the speed a( U2, u+), which is greater than a( U_, u+). These states are 
thus attainable by adding a classical shock after the nonclassical one. On the other 
hand, a state U2 E (<p~ (u+ ), <p~ ( u+)] cannot be reached by adding a second shock 
after the non-classical one since, by the property (3.4), <Pt ( u+) = u_ and therefore 
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any shock connecting u+ to some state U2 > 'P~ (u+) travels with a smaller speed: 
a( u+, U2) < a( u_ , u+ ). Finally, the states U2 < u+ cannot be reached since they are 
associated with rarefactions which travel faster than the nonclassical shock. 

Claim 2 : After a classical shock leaving from a state u_ and reaching 
u+, no other wave can be added except when u+ = 'PQ ( u_) and, in 
that case, a rarefaction only can follow the classical shock. 

It is easy to see using the condition on the ordering of waves that a classical 
shock cannot be added after another classical shock, nor a rarefaction except when 
u+ = 'PQ ( u_ ). Consider next a nonclassical shock issuing from u+ and reaching U2. 

Consider for instance the case u+ < 0. For the nonclassical shock to be admissible 
one needs 

but the speeds should be ordered, 

a(u+, U2) > a(u_, u+), 

and therefore U2 > u_. By combining the condition (3.4),the monotonicity property 
of 'P~, and the inequality u+ > 'P~ (u_) we find also 

u_ = 'P~('P~(u_)) 2: 'P~(u+) 2: U2, 

which is a contradiction. 
Claims 1 and 2 prevent us from combining together more than two waves and 

this completes the proof of Theorem 3.5. D 

4. Nonclassical Riemann solver for concave-convex flux 

In view of the results in Section 3 it is necessary to supplement the Riemann problem 
with an additional selection criterion which we call a "kinetic relation". The approach 
followed now, in particular the assumptions placed on the kinetic function, will be 
fully justified a posteriori by the results in Chapter III, devoted to deriving kinetic 
functions from a traveling wave analysis of diffusive-dispersive models. 

Imposing the single entropy inequality (1.4) already severely restricts the class 
of admissible solutions. One free parameter, only, remains to be determined and the 
range of nonclassical shocks is constrained by the zero-entropy dissipation function 
'P~ discovered in Theorem 3.l. 

Let 'Po : IR t---> IR be a kinetic function, i.e., by definition, a monotone decreasing 
and Lipschitz continuous mapping such that 

'P~(u) < 'P°(u) :S 'PQ(u), u > 0, 

'PQ(u) :S 'P°(u) < 'P~(u), u < 0, 
(4.1) 

The kinetic function will be applied to select nonclassical shock waves. Observe that 
(3.4) and (4.1) imply the following contraction property: 

1'P°('P°(u))I < lui, u i- 0. 

From 'Po we also define its companion function 'P" : IR -+ IR by 

f(u) - f('P"(u)) 
u - 'P"(u) 

f ( u) - f ( 'Po ( u) ) 
u - 'P°(u) 

(4.2) 

(4.3) 
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Note that, by (4.1), 
ipQ(U) ::; ip~(U) < ipg(U), U > 0, 

ipg(U) < ip~(U) ::; ipQ(U), U < 0. 

(See Figure II-4 for an illustration of the respective positions of these functions.) 

Figure II-4 : Concave-convex flux-function 

From Theorem 3.5 we easily reach the following conclusion. (See Figure II-5.) 

DEFINITION AND THEOREM 4.1. (Riemann solution for concave-convex flux - First 
formulation.) Let ip0 be a given kinetic function. Under the assumptions of Theo­
rem 3.5, a weak solution (in the class P) is called a nonclassical entropy solution 
(associated with the kinetic function ip0) if any nonclassical shock connecting two 
states u_ and u+ satisfies the kinetic relation 

u+ = ip0 (u_ ) for all nonclassical shocks, ( 4.4) 

The Riemann problem (1.1), (1.2), and (1.4) admits an (essentially unique) nonclas­
sical entropy solution (in the class P), given as follows when Ul > 0: 

(a) If Ur 2:: Ul, the solution is a rarefaction connecting Ul to Ur . 

(b) If Ur E [ip~ ( ud , Ul), the solution is a classical shock. 
(c) If Ur E [ip0 (Ul), ip~ (ut)), the solution consists of a nonclassical shock connecting 

Ul to ip°(UI) followed by a classical shock. 
(d) If Ur ::; ip°(UI), the solution consists of a nonclassical shock connecting Ul to 

ip0 (Ul) followed by a rarefaction connecting to Ur . 

In Cases (a), (b), and (d) the solution is monotone, while it is non-monotone in Case 
(c). The classical Riemann solution (Theorem 2.2) is also admissible as it contains 
only classical waves (for which (4.4) is irrelevant). 0 

Observe that the value ip~( Ul) determines an important transition from a one-wave 
to a two-wave pattern. The nonclassical Riemann solution fails to depend pointwise 
continuously upon its initial data, in the following sense. The solution in Case (c) 
contains the middle state ip°(uz) which does not converge to Uz nor Ur when the right 



4. NONCLASSICAL RIEMANN SOLVER FOR CONCAVE-CONVEX FLUX 43 

state converges to cp~ (uz). We point out that the Riemann problem with left data 
Uz < 0 is solved in a completely similar manner using the value cp~ (uz) > O. For Uz = 0 
the Riemann problem is simply a rarefaction wave connecting monotonically Uz to 
ur . Different kinetic functions yield different Riemann solver. This reflects the fact 
that different regularizations of the conservation law, in general, yield different limits. 
With the trivial choice cp~ = cpQ we recover the classical Riemann solution, while with 
the choice cpP = CPt we select nonclassical shocks with zero entropy dissipation. (See 
also Chapter III.) 

N+R N+C C R 

Figure 11-5 : The four wave patterns for the Riemann solution. 

REMARK 4.2. If, in addition to (4.1), the stronger condition 

cpQ(u) :s: cp~(u) < 0, u> 0, 

0< cp"(u) :s: cpQ(u), u < 0, 

is assumed on the kinetic function, then the solution of the Riemann problem is 
classical as long as the left- and right-hand states have the same sign. In particular, 
this is always the case when U = u2/2 and f(u) = u3 (or, more generally, f is a 
skew-symmetric function of u) since then cp~ == o. 0 

In the rest of this section we propose a reformulation of the kinetic relation (4.4), 
along the following lines: 

• Since the entropy dissipation E in (3.1) played a central role in restricting the 
range of nonclassical shocks (see (3.12)) it is natural to set the kinetic relation 
in terms of the function E, also. 

• Speaking loosely, we regard a nonclassical shock as a "propagating boundary" 
separating two "phases" of a material. In continuum physics, an analogue of 
E is called a driving force acting on the propagating discontinuity, and one 
typically postulates a one-to-one, monotonic relation between the driving force 
and the propagation speed. 
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• The (second) formulation in Theorem 4.3 below allows us to eliminate the 
classical Riemann solution still left out in the (first) formulation given in The­
orem 4.l. 

For a nonclassical shock connecting some states u_ and u+ at some speed A = 
a( u_, u+) we now write the kinetic relation in the form 

for all nonclassical shocks, ( 4.5) 

where, by definition, the kinetic functions q>± : [J'(O), +00) -dR_ are Lipschitz 
continuous mappings satisfying 

q>±(f'(O)) = 0, 

q>± is monotone decreasing, 

q>±(A) ~ E±(A). 
(4.6) 

In the latter inequality, the lower bounds E± are the maximum negative entropy 
dissipation function defined by 

(4.7) 

Observe that given A> f'(0) there are exactly one positive root and one negative root 
u such that A = f' (u). This is why we have to introduce two kinetic functions q>± 
associated with decreasing and increasing jumps, respectively. Note also that f'(0) 
is a lower bound for all wave speeds. As we will see shortly, (4.5) is equivalent to a 
relation 

u+ = (l(u-), 
from which we also define <p~(u_) as in (4.3). 

Finally, in order to exclude the classical entropy solution we impose the following 
nucleation criterion. For every shock connecting u_ to u+ we have 

(4.8) 

This condition enforces that a discontinuity having an entropy dissipation larger than 
the critical threshold E~ (u_) must "nucleate", that is, gives rise to nonclassical waves. 

THEOREM 4.3. (Riemann problem for concave-convex flux - Second formulation.) 
Fix some kinetic Junctions q>± : [f' (0), +00) -dR_ (satisfying, in particular, (4.6)). 
Then, under the assumptions oj Theorem 3.5 the kinetic relation (4.5) selects a unique 
nonclassical shock Jor each left-hand state u_. On the other hand, the nucleation cri­
terion (4.8) excludes the classical solution. As a consequence, the Riemann problem 
admits a unique nonclassical entropy solution (in the class P), described in Theo­
rem 4.1 above. 

PROOF. For u_ > 0 fixed we claim that there is a unique nonclassical connection to 
a state u+ satisfying the jump relation and the kinetic relation (4.5). Let us write 
the entropy dissipation as a function of the speed A: 
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Setting 

f(cp~(u-)) - f(u-) 
'\0:= I> ' CPO(U_) - u_ 

from Theorem 3.1 and the assumption (4.6) it follows that 

W is monotone increasing for ,\ E [,\ Q , '\0] , 
w(,\Q) = E+(,\Q) :::; <p+(,\Q), 
W('\o) = 0 ~ <p+(,\o). 

(4.9) 

All of the desired properties are obvious, except the fact that W is increasing. But, note 
that u+ f--t E ( u_, u+) is decreasing in the relevant interval u+ E [cp~ ( u_ ), cpQ (u_ ) ] . 
The mapping ,\ f--t u+(,\) is also decreasing for ,\ E (,\Q, '\0] since 

Thus 

Finally, in view of (4.9) and since <p+ is monotone decreasing the equation 

admits exactly one solution. (See also Figure II-6.) This completes the proof that the 
nonclassical shock is unique. 

We now deal with the nucleation criterion (4.8). By the monotonicity properties 
of the function E (Theorem 3.1) the condition (4.8) implies that the classical shocks 
connecting u_ to u+ E [ipQ (u_), cpU (u_)) are not admissible. On the other hand, since 
the speeds of the shock connecting u_ to ipl> ( u_) and the one of the shock connecting 
u_ to ipU ( u_) coincide, we have 

Moreover, the inequality above is a consequence of Theorem 3.1 and the fact that 
ipU (u_) < ipQ (ipl> (u_ )) (which is clear geometrically). So, we have 

(4.10) 

which means that the nonclassical value satisfies the nucleation criterion. In conclu­
sion, (4.8) excludes the classical solution precisely when the nonclassical solution is 
available. This completes the proof of Theorem 4.3. 0 
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1Ji('\) 

Figure 11-6 : Dissipation and kinetic functions versus shock speed. 

REMARK 4.4. 
• It easily follows from the implicit function theorem that, since the flux function 

f is smooth, all of the functions cpQ, cp-Q, cp~, and cp~ are smooth away from 
u = 0 at least. To discuss the regularity at u = 0 we will rely on the assumption 
made in (2.5) that the flux is non-degenerate at 0 in the sense that 

1'" (0) -=f. O. 

The regularity of the function cpQ at u = 0 is obtained by applying the implicit 
function theorem to the (differentiable) function 

H( ) = f(u) - f(cp) - (u - 'II) 1'('11) 
u, 'II ()2 u-cp 

= 11 11 1"('11 + ms (u - 'II)) msdsdm, 

which satisfies H(O,O) = 0 and (aH / a'll) (0,0) = 21'" (0) -=f. O. A similar ar­
gument would establish the regularity of cp-q. The regularity of the function 
cp~ follows also from the implicit function theorem by relying on the (differen­
tiable) function 

H(u, 'II) = F(u) - F(cp) -( (U(u\; U(cp))a(u, 'II), 
u-cp 

= 11111111 I"(cp+m(u-cp)+p(s-m)(u-cp)) 

U"(cp + qs (u - 'II)) (s - m) sdsdmdpdq, 

which satisfies H(O, 0) = 0 and (aH/acp) (0, 0) = 1"'(0) U"(0)/24 -=f. 0. 
• As we will see in the applications in Chapter III, it is natural to assume that 

the kinetic function 'liP is solely Lipschitz continuous. The Lipschitz continuity 
of the companion function cp~ follows from a generalization of the implicit 
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function theorem for Lipschitz continuous mappings. (See the bibliographical 
notes for a reference.) One should use here the function 

H( ) = a( u, cp) - a( u, cpb (u)) 
u, cp b ( ) 

U - cp u 

= 11 11 f" (cpb(u) + s (u - cpb(u)) + m (1 - s)(cp - cpb(u))) m (1 - s) dsdm, 

which satisfies H(O,O) = ° and (8H/8cp) (0, 0) = 1'''(0)/9 =f. 0. 
o 

5. Nonclassical Riemann solver for convex-concave flux 

In this last section we restrict attention to flux-functions satisfying the convex-concave 
property (2.10). Strictly speaking, the case (2.10) could be deduced from the case 
(2.5), provided the Riemann solution of (1.1) and (1.2) would be described by fixing 
the right-hand state U r and using UI as a parameter. We shall omit most of the proofs 
in this section since they are similar to the ones in Sections 3 and 4. First of all, the 
functions cpQ and cp-Q are defined as in Section 2. Again, we consider a shock wave of 
the form (1.5) and (1.8) connecting two states u_ and u+ at the speed A = a( u_, u+). 
We study the entropy dissipation E( u_, u+) (see (3.1)) by keeping u_ fixed. 

THEOREM 5.1. (Entropy dissipation for convex-concave flux.) Given u_ > 0, the 
function E(u_,.) is monotone increasing in (-00, cpQ(u_)] and monotone decreasing 
in [cpQ(u_),+oo). More precisely, we have 

8u+ E( u_, .) > ° in the interval (-00, cpQ (u_)), 

8u+E(u_,.) < ° in the intervals (cpQ(u_),u_)U(u_,+oo), 

E(u_,u_) = 0, E(u_,cpQ(u_)) > 0, E(u_,cp-Q(u_)) < 0. 

Hence, for each u > ° there exists cpt(u) E (cp-Q(u), cpQ(u)) such that E(u, cpt(u)) = 0. 
The definition of CPt (u) for u ~ ° is analogous and the function CPt : IR -> IR is 
monotone decreasing (as are both cpQ and cp-Q) with 

o 

To the function cp~ we associate the function cp~ : IR -> IR given by (4.3). It can 
be checked that 

cpQ(u) ~ cp~(u) < u, u > 0, 

u < cp~(u) ~ cpQ(u), u < 0. 

We conclude from Theorem 5.1 that: 

LEMMA 5.2. (Single entropy inequality.) A shock wave of the form (1.5) and (1.8) 
satisfies the single entropy inequality (1.4) if and only if 
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o 
With the terminology in Definition 3.4 classical shocks or Lax shocks correspond 

here to right states 

(5.1) 

while the nonclassical shocks correspond to 

(5.2) 

Observe that, now, nonclassical shocks are fast undercompressive: 

On the other hand, according to (2.12) the rarefaction waves for a convex-concave 
flux are 

{ 
[0, u_ ] , u_ > 0, 

R(u_) = {O}, u_ = 0, 
[u_, 0] , u_ < O. 

The Riemann problem admits a class of solutions, described as follows. Recall that 
the function p was defined earlier (after (3.6)). In addition, we denote by <Po~ the 
inverse of the zero-entropy dissipation function. 

THEOREM 5.3. (One-parameter family for convex-concave flux.) Suppose that f is a 
convex-concave function (see (2.10)) and fix some Riemann data Ul and ur . Restrict­
ing attention to solutions satisfying (1.4) for a given entropy pair (U, F), the Riemann 
problem (1.1) and (1.2) admits the following solutions (in the class P) when Ul 20: 

(a) If Ur 2 Ul, the solution is unique and consists of a classical shock wave con­
necting Ul to U r . 

(b) If Ur E [0, Ul), the solution is unique and consists of a rarefaction wave con­
necting monotonically Ul to ur . 

(c) Ifur E [<p-Q(Ul),O), there are infinitely many solutions, consisting of a rar­
efaction wave connecting Ul to some intermediate state Urn with 0 ~ Urn ~ 

<Po' (ur ) ~ Ul, followed with a classical or nonclassical shock connecting to ur . 

(d) If U r E (-00, <Pt( Ul)), the solution may contain a classical shock connecting 
Ul to some state Urn > Ul, followed with a classical or nonclassical shock con­
necting to U r . This happens when there exists Urn satisfying with p( Urn, u r ) < 
Ul < Urn < <PO~(Ur). 

(e) Finally, ifur E (-oo,<p-Q(Ul)), there exists a solution connecting Ul to Ur by 
a classical shock wave. 

o 

In Case (d), the solution contains two shocks and has a larger total variation than 
its initial data. Note that the intervals of right-hand states in Cases (c), (d), and (e) 
overlap. 
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The kinetic relation is based on a prescribed kinetic function cp~ : JR f-t JR which, 
by definition, is a monotone decreasing function such that 

CP-q(u) ::; cp~(u) < cp~(u), u > 0, 

cp~(u) < cp~(u) ::; CP-q(u), U < 0. 

We now have the property 

(5.3) 

(5.4) 

To the function cp~ we associate its companion function cp~ : JR -+ JR, as was defined 
in (4.3). Furthermore, relying on the monotonicity property of the kinetic function, it 
is not hard to see that, to any point Ul > 0, we can associate a point l(Ul) > Ul such 
that the speed of the classical shock connecting Ul to p~ ( Ul) be identical with the speed 
of the nonclassical shock connecting p~ ( Ul) to cp~ 0 p~ ( Ul). This latter corresponds to 
a transition in the Riemann solver described now. In addition, we denote by cp-~ the 
inverse of the kinetic function. (See Figure II-7.) 

o 

----------~--------~--------------~------~·~ur 

R+N CorC+N R C 

Figure 11-7 : The four wave patterns for the Riemann solution. 

THEOREM 5.4. (Riemann solution for convex-concave flux.) Under the assumptions 
of Theorem 5.3 let us prescribe that any nonclassical shock connecting two states u_ 
and U+ satisfies the kinetic relation 

U+ = cp~ (u_) for all nonclassical shocks, (5.5) 

where cp~ is a given kinetic function (satisfying (5.3)). Then, the Riemann problem 
(1.1), (1.2), (1.4), and (5.5) admits an (essentially unique) nonclassical entropy solu­
tion (in the class P), given as follows when Ul > 0: 

(a) If U r :2: Ul, the solution is unique and consists of a classical shock wave con­
necting Ul to Ur . 
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(b) If Ur E [0, Ul), the solution is unique and consists of a rarefaction wave con­
necting monotonically Ul to Ur . 

(c) If Ur E [cp~ ( Ul), 0), the solution contains a rarefaction wave connecting Ul to 
Urn = cp-~ (ur ), followed with a nonclassical shock connecting to Ur . 

(d) Ifur :::; ,l(Ul), the solution contains: 
- iful > p(cp-~(ur),ur)' a classical shock connecting Ul to Urn = CP-~(Ur) 

followed by a nonclassical shock connecting Urn to Ur , 
- iful < p(cp-~(ur),ur)' a single classical shock connecting Ul to Ur . 

In Cases (a), (b), and (c), the Riemann solution is monotone, while it is non­
monotone in Case (d). The solution depends continuously upon its initial data in 
the £1 norm. Furthermore, the classical Riemann solution (Theorem 2.3) is also 
admissible as it contains only classical waves. 0 

Note that the condition Ul > p(CP-~(Ur),Ur) precisely determines that the shock 
connecting Ul to Urn = cp - ~ ( ur ) is slower than the one connecting to Ur . Finally, by 
following the same lines as in Theorem 4.3 and imposing a nucleation criterion we 
can exclude the classical Riemann solution and select a unique nonclassical Riemann 
solution for convex-concave flux. 

REMARK 5.5. In Sections 3 to 5, to develop the theory of nonclassical solutions to the 
Riemann problem we have first set a strictly convex entropy pair (U, F) and determine 
the corresponding zero-entropy function cp~, which was then used to restrict the range 
of the kinetic function. This approach is justified by the examples discussed earlier 
in Chapter I (Examples 1-4.2 and 1-4.3). However, the theory can be extended to 
encompass even more general kinetic functions which need not arise from a regularized 
model. For concave-convex flux-functions (Section 4) it is sufficient to assume, instead 
of (4.1), that 

and 

cp-Q(U) < cpP(u) :::; cpQ(u), u> 0, 

cpQ(u) :::; cp~(u) < cp-Q(u), U < 0, 
(5.6) 

(5.7) 
For convex-concave flux-functions (Section 5) it is sufficient to assume, instead of 
(5.3), that (5.6) holds together with 

(5.8) 

o 



CHAPTER III 

DIFFUSIVE-DISPERSIVE TRAVELING WAVES 

In this chapter we study a large class of diffusive-dispersive equations associated with 
scalar conservation laws. We investigate the existence of traveling wave solutions 
which, as was pointed out earlier (Theorem 1-5.4), converge to shock wave solutions 
of (1.1) as the diffusion and the dispersion tend to zero. The corresponding shock 
set can be determined and compared with the one obtained in Chapter II by ap­
plying entropy inequalities. The present chapter demonstrates the relevance of the 
construction given in Chapter II. We confirm here that classical shock waves are in­
dependent of the small-scale mechanisms, while nonclassical shock waves require the 
kinetic relation determined by the given diffusive-dispersive operator. In Section 1 
we consider the effect of the diffusion only; see Theorem 1.2. In Section 2 we de­
termine the kinetic relation explicitly for the conservation law with cubic flux and 
linear diffusion-dispersion terms; see Theorem 2.3. The main result in this chapter 
for general flux-functions are stated in Section 3; see Theorem 3.3. The proofs of the 
results given in Section 3 are postponed to Sections 4 and 5. 

1. Diffusive traveling waves 

Consider the scalar conservation law 

(Au + 8x f(u) = 0, u = u(x, t) E JR, (1.1) 

where f : JR -+ JR is a smooth mapping. In this section we restrict attention to the 
nonlinear diffusion model 

(1.2) 

where e > ° is a small parameter. The diffusion function b : JR -+ JR+ is assumed to 
be smooth and bounded below: 

b(u)~b>O, (1.3) 

so that the equation (1.2) is uniformly parabolic. We are going to establish that 
the shock set associated with the traveling wave solutions of (1.2) coincides with the 
one described by Oleinik entropy inequalities (see (II-1.6)). 

Recall that a traveling wave of (1.2) is a solution depending only upon the 
variable 

x - At 
y:= -- (1.4) 

e 
for some constant speed A. Note that, after rescaling, the corresponding trajectory 
y f--* u(y) is independent of the parameter e. Fixing the left-hand state u_ we search 

P. G. LeFloch 
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for traveling waves of (1.2) connecting u_ to some state u+, that is, solutions 
y I--t u(y) of the ordinary differential equation 

-)..uy + f(u)y = (b(u)uy)y 

satisfying the boundary conditions 

(1.5) 

lim u(y) = u_, lim u(y) = u+, lim uy(Y) = O. (1.6) 
y--+-oo y--++oo Iyl--++oo 

In view of (1.6) the equation (1.5) can be integrated once: 

b(u(y)) uy(y) = -).. (u(y) - u_) + f(u(y)) - f(u-), Y E JR. (1.7) 

The Rankine-Hugoniot condition 

(1.8) 

follows by letting y -> +00 in (1.7). The equation (1.7) is an ordinary differential 
equation (O.D.E) on the real line. The qualitative behavior of the solutions is easily 
determined, as follows. 

THEOREM 1.1. (Diffusive traveling waves.) Consider the scalar conservation law (1.1) 
with general flux-function f together with the diffusive model (1.2). Fix a left-hand 
state u_ and a right-hand state u+ 1= u_. Then, there exists a traveling wave of (1.7) 
associated with the nonlinear diffusion model (1.2) if and only if u_ and u+ satisfy 
Oleinik entropy inequalities in the strict sense, that is: 

f(v) - f(u-) f(u+) - f(u-) 
.:........:...--'----~-'--...:.. > for all v lying strictly between u_ and u+. (1.9) 

v - u_ u+ - u_ 

PROOF. All the trajectories of interest are bounded, i.e., cannot escape to infinity. 
Namely, the shock profile satisfies the equation 

u' = u - u_ (f(U) - f(u-) _ f(u+) - f(U-)) . 
b( u) u - u_ u+ - u_ 

(1.10) 

It is not difficult to see that the solution exists and connects monotonically u_ to 
u+ provided Oleinik entropy inequalities hold and the right-hand side of (1.10) keeps 
(strictly) a constant sign (except at the end point y = ±oo where it vanishes). D 

By analogy with the approach followed in Chapter II, for each left-hand state u_ 
we define the shock set associated with the nonlinear diffusion model as 

S( u_) := {u+ / there exists a solution of (1.6)-(1.8)}. 

Combining Theorem 1.1 with the results obtained earlier in Section II-2 we reach the 
following conclusion. 

THEOREM 1.2. (Shock set based on diffusive limits.) Consider the scalar conserva­
tion law (1.1) when the flux f is convex, concave-convex, or convex-concave. (See 
Section IJ-2 for the definitions.) Then, for any u_, the shock set S( u_) associated 
with the nonlinear diffusion model (1.2) and (1.3) is independent of the diffusion func­
tion b, and the closure of S( u_) coincides with the shock set characterized by Oleinik 
entropy inequalities (or, equivalently, Lax shock inequalities). D 
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REMARK 1.3. The conclusions of Theorem 1.2 do not hold for more general flux­
functions. This is due to the fact that a strict inequality is required in (1.9) for the 
existence of the traveling waves. The set based on traveling waves may be strictly 
smaller than the one based on Oleinik entropy inequalities. 0 

2. Kinetic functions for the cubic flux 

Investigating traveling wave solutions of diffusive-dispersive regularizations of (1.1) 
is considerably more involved than what was done in Section 1. Besides proving the 
existence of associated (classical and nonclassical) traveling waves our main objective 
will be to derive the corresponding kinetic functions for nonclassical shocks, which 
were discovered in Chapter II. 

To explain the main difficulty and ideas it will be useful to treat first, in the 
present section, the specific diffusive-dispersive model with cubic flux (Exam­
ple 1-4.2) 

8tu+8xu3=Euxx+8uxxx, (2.1) 
which, formally as E, 8 --; 0, converges to the conservation law with cubic flux 

8t u + 8x u3 = o. 

We are interested in the singular limit E --; 0 in (2.1) when the ratio 
E 

a=-
/1J 

(2.2) 

(2.3) 

is kept constant. We assume also that the dispersion coefficient 8 is positive. Later, 
in Theorem 3.5 below, we will see that all traveling waves are classical when 8 < 0 
which motivates us to restrict attention to 8 > O. 

We search for traveling wave solutions of (2.1) depending on the rescaled variable 

X-At X-At 
y:= a -c;- = /1J . (2.4) 

Proceeding along the same lines as those in Section 1 we find that a traveling wave 
y ~ u(y) should satisfy 

-A uy + (u3)y = a Uyy + Uyyy , 

together with the boundary conditions 

lim u(y) = u±, 
y-+±oo 

lim uy(y) = lim Uyy(y) = 0, 
y-+±oo y-+±oo 

where u_ i= u+ and A are constants. Integrating (2.5) once we obtain 

(2.5) 

(2.6) 

auy(y) + Uyy(y) = -A (u(y) - u_) + u(y)3 - u~, Y E JR, (2.7) 

which also implies 
3 3 u+ - u_ 2 2 

A = = u_ + u_ u+ + u+. (2.8) 
u+ -u_ 

To describe the family of traveling waves it is convenient to fix the left-hand state 
(with for definiteness u_ > 0) and to use the speed A as a parameter. Given u_, 
there is a range of speeds, 
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for which the line passing through the point with coordinates (u_, u~) and with slope 
.\ intersects the graph of the flux f(u) := u3 at three distinct points. For the discussion 
in this section we restrict attention to this situation, which is most interesting. There 
exist three equilibria at which the right-hand side of (2.7) vanishes. The notation 

will be used, where U2 and Ul are the two distinct roots of the polynomial 

u2 + Uo u + u~ = .\. (2.9) 

Observe in passing that U2 + Ul + Uo = O. 
Consider a trajectory y f--t u(y) leaving from u_ at -00. We want to determine 

which point, among Ul or U2, the trajectory will reach at +00. Clearly, the trajectory 
is associated with a classical shock if it reaches Ul and with a nonclassical shock 
if it reaches U2. (See Section II-3 for the definitions). Accordingly, we will refer to it 
as a classical trajectory or as a nonclassical trajectory, respectively. 

We reformulate (2.7) as a differential system of two equations, 

:y (~) = K(u,v), (2.10) 

where 

K(u v) - ( v ) g(u,.\) = u3 - .\ u. , - -o:v+g(u,.\)-g(u_,.\) , (2.11) 

The function K vanishes precisely at the three equilibria (uo, 0), (Ul' 0), and (U2' 0) 
of (2.10). The eigenvalues of the Jacobian matrix of K(u, v) at any point (u,O) are 
-0:/2 ± J0:2/4 + g~(u,.\). So we set 

/!:.(u) = ~ (-0: - J0:2 +4(3u2 - .\)), 

Ji( u) = ~ (-0: + J 0:2 + 4 (3 u2 - .\)) • 

(2.12) 

At this juncture, we recall the following standard definition and result. (See the 
bibliographical notes for references.) 

DEFINITION 2.1. (Nature of equilibrium points.) Consider a differential system of 
the form (2.10) where K is a smooth mapping. Let (u*, v*) E 1R? be an equilibrium 
point, that is, a root of K( u*' v*) = O. Denote by I-" = 1-"( u*' v*) and Ji = Ji( u*' v*) the 
two (real or complex) eigenvalues of the J acobian ~atr~ of K at (u*, v*), and suppose 
that a basis of corresponding eigenvectors r.( u*' v*) and r( u*' v*) exists. Then, the 
equilibrium (u*, v*) is called 

• a stable point if Re(l-") and Re(Ji) are both negative, 
• a saddle point if Re(p,) and Re(Ji) have opposite sign, 
• or an unstable point if Re(l-") and Re(Ji) are both positive. 

Moreover, a stable or unstable point-is called a node if the eigenvalues are real and 
a spiral if they are complex conjugate. 
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THEOREM 2.2. (Local behavior of trajectories.) Consider the differential system 
(2.10) under the same assumptions as in Definition 2.1. If (u*,v*) is a saddle 
point, there are two trajectories defined on some interval (-00, y*) and two trajec­
tories defined on some interval (y*, +00) and converging to (u*,v*) at -00 and +00, 
respectively. The trajectories are tangent to the eigenvectors r( U*' v*) and r( u*' v*), 
respectively. D 

Returning to (2.11) and (2.12) we conclude that, since g~(U,A) 
positive at both U = U2 and u = uo, we have 

Thus both points U2 and Uo are saddle points. On the other hand, since we have 
g~ (Ul' A) < 0, the point Ul is stable: it is a node if 0:2 + 4 (3 uf - A) ;::: 0 or a spiral 
if 0:2 + 4 (3uf - A) < O. In summary, as illustrated by Figure Ill-I, for the system 
(2.10)-(2.11) 

U2 and Uo are saddle points and 

Ul is a stable point (either a node or a spiral). 
(2.13) 

f(u) 

Uo 

Figure Ill-I: Qualitative behavior when 0:2 + 4 (3 uf - A) > O. 

In the present section we check solely that, in some range of the parameters uo, 
A, and 0:, there exists a nonclassical trajectory connecting the two saddle points Uo 
and U2. Saddle-saddle connections are not "generic" and, as we will show, arise 
only when a special relation (the kinetic relation) holds between uo, A, and 0: or, 
equivalently, between uo, U2, and 0:; see (2.15) below. 

For the cubic model (2.1) an explicit formula is now derived for the nonclassical 
trajectory. Motivated by the fact that the function gin (2.11) is a cubic, we a priori 
assume that v = uy is a parabola in the variable u. Since v must vanish at the 
two equilibria we write 

v(y) = a (u(y) - U2)(U(y) - uo), yE JR, (2.14) 
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where a is a constant to be determined. Substituting (2.14) into (2.10)-(2.11), we 
obtain an expression of Vy: 

Vy = -a v + u3 - ug - A (u - uo) 
= -av + (u - U2)(U - uo) (u + Uo + U2) 

1 
= v (-a + - (u + Uo + U2)). 

a 

But, differentiating (2.14) directly we have also 

Vy = a uy (2 u - Uo - U2) 
= a v (2 u - Uo - U2). 

The two expressions of Vy above coincide if we choose 

1 
- = 2a, 
a 

So, a = 1/V2 (since clearly we need v < 0) and the three parameters uo, U2, and a 
satisfy the explicit relation 

V2 
U2 = -uo+ -aa. (2.15) 

Since Ul = -Uo - U2 we see that the trajectory (2.14) is the saddle-saddle connection 
we are looking for, only if U2 < Ul as expected, that is, only if 

2V2 
uo> -3- a . (2.16) 

Now, by integrating (2.14), it is not difficult to arrive at the following explicit 
formula for the nonclassical trajectory: 

( ) _ Uo + U2 _ Uo - U2 h (UO - U2 ) 
U Y - 2 2 tan 2V2 y 

= 3~ - ( u_ - 3~) tanh ( ( u_ - 3~) ~). 
(2.17) 

We conclude that, given any left-hand state Uo > 2V2 a/3, there exists a saddle­
saddle connection connecting Uo to -Uo + V2 a/3 which is given by (2.17). Later, in 
Section 3 and followings, we will prove that the trajectory just found is actually the 
only saddle-saddle trajectory leaving from Uo > 2V2 a/3 and that no such trajectory 
exists when Uo is below that threshold. 

Now, denote by Sa(u-) the set of all right-hand states u+ attainable through a 
diffusive-dispersive traveling wave of (2.1) with J > 0 and c:/viJ = a fixed. In the 
case of the equation (2.1) the results to be established in the following sections can 
be summarized as follows. (See also Figure 111-2.) 

THEOREM 2.3. (Kinetic function and shock set for the cubic flux.) The kinetic 
function associated with the diffusive-dispersive model (2.1) is 

{ 
-u_ - ii/2, u_:=; -ii, 

<p~(u_) = -u_/2, _ lu-I :=; ii, 
-u_ + a/2, u_ 2: ii, 

(2.18) 



2. KINETIC FUNCTIONS FOR THE CUBIC FLUX 

with a := 20:.;2/3, while the corresponding shock set is 

u_ ~ -a, 
-a ~ u_ ~ a, 
u_;::: a. 

57 

(2.19) 

In agreement with the general theory in Chapter II the kinetic function (2.18) 
is monotone decreasing and lies between the limiting functions <pP(u) := -u/2 and 
<p~(u) := -u. Depending on u_ the shock set can be either an interval or the union 
of a point and an interval. 

200'./3 
--~~------~--- ---~----~~ u 

cpQ(u) = -u/2 

cp~(u) 
cp&(u) = -u 

Figure 111-2 : Kinetic function for the cubic flux. 

Consider next the entropy dissipation associated with the nonclassical shock: 

E(u_;o:, U) := - (<p~(U_)2 + <p~(u_) u_ + u:") (U(<p~(u_)) - U(u_)) 

+ F(<p~(u_)) - F(u_), 
(2.20) 

where (U, F) is any convex entropy pair of the equation (2.2). By multiplying (2.5) 
by U' ( u(y)) and integrating over y E JR we find the equivalent expression 

E(u_;o:, U) = 1m U'(u(y)) (o:uyy(Y) + Uyyy(y)) dy 

= 1m (-o:U"(u) u~ + U"'(u) u~/2) dy. 
(2.21) 

So, the sign of the entropy dissipation can also be determined from the explicit form 
(2.17) of the traveling wave. 

THEOREM 2.4. (Entropy inequalities.) 
(i) For the quadratic entropy 

U(z) = z2/2, Z E JR, 

the entropy dissipation E( u_; 0:, U) is non-positive for all real u_ and all 
0:;::: O. 



58 CHAPTER III. DIFFUSIVE-DISPERSIVE TRAVELING WAVES 

(ii) For all convex entropy U the entropy dissipation E( u_; a, U) is non-positive 
for all a > 0 and alllu_1 ::; 2v'2 a/3. 

(iii) Consider lu-I > 2v'2 a/3 and any (convex) entropy U whose third derivative 
is sufficiently small, specifically 

(Iu-I- a/(3v'2)) 2 I UI1I (z) I ::; 2av'2U"(z), z E JR. (2.22) 

Then, the entropy dissipation E( u_; a, U) is also non-positive. 
(iv) Finally given any lu-I > 2v'2 a/3 there exists infinitely many strictly convex 

entropies for which E( u_; a, U) is positive. 

PROOF. When U is quadratic (with U" ~ 0 and UI1I == 0) we already observed 
that (i) follows immediately from (2.21). The statement (ii) is also obvious since the 
function rpb reduces to a classical value in the range under consideration. Under the 
condition (2.22) the integrand of (2.21) is non-positive, as follows from the inequality 
(see (2.14)) 

1 2 1 ( In )2 luy l ::;4v'2(uO -U2 ) = v'2 u_-a/(3v2) . 

This implies the statement (iii). Finally, to derive (iv) we use the (Lipschitz continu­
ous) Kruzkov entropy pairs 

Uk(Z) := Iz - kl, Fk(z):= sgn(z - k)(z3 - k3), z E JR, (2.23) 

with the choice k = -u_ /2. We obtain 

3 In 2 
E(u_; a, Uk) = 41u-1 (Iu-I- 2a v 2/3) > O. 

By continuity, E( u_; a, Uk) is also strictly positive for all k in a small neighborhood of 
-u_ /2. The desired conclusion follows by observing that any smooth convex function 
can be represented by a weighted sum of Kruzkov entropies. D 

REMARK 2.5. We collect here the explicit expressions of some functions associated 
with the model (2.1), introduced earlier in Chapter II or to be defined later in this 
chapter. From now on we restrict attention to the entropy pair 

U(u)=u2 /2, F(u)=3u4 /4. 

First of all, recall that for the equation (2.2) the following two functions 

rpQ(u) = -~, rp~(u) = -u, u E JR. (2.24) 

determine the admissible range of the kinetic functions. 
We define the critical diffusion-dispersion ratio 

(2.25) 

for Uo ~ 0 and U2 E (-uo, -uo/2) and for Uo ::; 0 and U2 E (-uo/2, -uo). In view 
of Theorem 2.3 (see also (2.15)), a nonclassical trajectory connecting Uo to U2 exists 
if and only if the parameter a = c/V8 equals A(UO,U2). The function A increases 
monotonically in U2 from the value 0 to the threshold diffusion-dispersion ratio 
(uo > 0) 

AQ( ) = 3uo Uo In' 
2v2 

(2.26) 
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For each fixed state Uo > 0 there exists a nonclassical trajectory leaving from Uo if 
and only if a is less than A ~ (uo). On the other hand, for each fixed a there exists a 
nonclassical trajectory leaving from Uo if and only if the left-hand state Uo is greater 
than A~-l(a). The function A~ is a linear function (for Uo > 0) with range extending 
therefore from A~ = 0 to Aq = +00. 0 

REMARK 2.6. It is straightforward to check that if (2.1) is replaced with the more 
general equation 

8t u + 8x (K u3 ) = E:Uxx + 8 C Uxxx , 

where C and K are positive constants, then (2.26) becomes 

(2.27) 

(2.28) 

o 

REMARK 2.7. Clearly, there is a one-parameter family of traveling waves connecting 
the same end states: If u = u(y) is a solution of (2.5) and (2.6), then the translated 
function u = u(y+b) (b E JR) satisfies the same conditions. However, one could show 
that the trajectory in the phase plane connecting two given end states is unique. 0 

3. Kinetic functions for general flux 

Consider now the general diffusive-dispersive conservation law 

where the diffusion coefficient b( u) > 0 and dispersion coefficients Cl ( u), C2 ( u) > 0 
are given smooth functions. Following the discussion in Chapter II we assume that 
f : IR -+ IR is a concave-convex function, that is, 

uJ"(u) > 0 

fill (0) -=I- 0, 
for all u -=I- 0, 

lim j'(u) = +00. 
lul-++oo 

(3.2) 

As in Section 2 above we are interested in the singular limit E: -+ 0 when 8 > 0 and 
the ratio a = E:/V8 is kept constant. The limiting equation associated with (3.1), 
formally, is the scalar conservation law 

8t u + 8x f(u) = 0, u = u(x, t) E JR. 

Earlier (see Example 1-4.3) we also proved that the entropy inequality 

holds, provided the entropy pair (U, F) is chosen such that 

U"( ).= C2(U) 
u. ()' Cl U 

F'(u) := U'(u) j'(u), u EJR, (3.3) 

which we assume in the rest of this chapter. Since Cl, C2 > 0 the function U is strictly 
convex. 
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Given two states u± and the corresponding propagation speed 

{ 
J(u±)-J(u_) --'-

\ __ ( ) ._ u± -u_ , u+ r u_, A-a u_,u+ .-
!'(u_), u+ = u_, 

we search for traveling wave solutions u = u(y) of (3.1) depending on the rescaled 
variable y:= (x - At)a/c. Following the same lines as those in Sections 1 and 2 we 
find that the trajectory satisfies 

Cl(U) (C2(U) uy)y + a b(u)uy = -A (u - u_) + f(u) - f(u-), u = u(y), (3.4) 

and the boundary conditions 

lim u(y) = u±, lim uy(Y) = O. 
y~±oo y~±oo 

Setting now 
v = C2(U) uy, 

we rewrite (3.4) in the general form (2.10) for the unknowns u = u(y) and v = v(y) 
(y E JR), i.e., 

d~ ( ~) = K (u, v) (3.5) 

with 

K(u,v) = (-a b(u) :2~)g(U'A)_9(U_'A))' g(U,A):= f(u) - AU, (3.6) 
Cl(U)C2(U) C1(U) 

while the boundary conditions take the form 

(3.7) 

The function K in (3.6) vanishes at the equilibrium points (u, v) E JR2 satis­
fying 

g(U,A)=g(U_,A), v=O. (3.8) 

In view of the assumption (3.2), given a left-hand state u_ and a speed A there 
exist at most three equilibria u satisfying (3.8) (including u_ itself). Considering a 
trajectory leaving from u_ at -00, we will determine whether this trajectory diverges 
to infinity or else which equilibria (if there is more than one equilibria) it actually 
connects to at +00. Before stating our main result (Theorem 3.3 below) let us derive 
some fundamental inequalities satisfied by states u_ and u+ connected by a traveling 
wave. 

Consider the entropy dissipation 

E(u_, u+) := -a(u_, u+) (U(u+) - U(u_)) + F(u+) - F(u_) 

or, equivalently, using (3.3) and (3.7) 

E(u_, u+) = 1-:00 U'(u(y)) (-AUy(Y) + f(u(y))y) dy 

= - 1-:00 U"(u(y)) (-A (u(y) - u_) + f(u) - f(u-)) uy(y) dy 

l u± - - C2(Z) 
= - (g(z,a(u_,u+)) - g(u_,a(u_,u+))) -(-) dz. 

u_ Cl Z 

(3.9) 

(3.10) 
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In view of 

E(u_, u+) = [:00 U'(u) (a (b(u) uy)y + (cI(u) (C2(U) uy)y)) dy 

= _ [:00 aU"(u)b(u)u~dy, 
we have immediately the following. 

LEMMA 3.1. (Entropy inequality.) If there exists a traveling wave of (3.4) connecting 
u_ to u+, then the corresponding entropy dissipation is non-positive, 

o 
We will use the same notation as in Chapter II. From the graph of the function 

f we define the functions <pQ and AQ by (see Figure III-3) 

AQ(U) := j'(<pQ(u)) = f(u) - f~~Q;U)), u =I O. 
u - <p u 

We have u<pQ(u) < 0 and by continuity <pQ(O) = 0 and, thanks to (3.2), the map 
<pQ : m - m is decreasing and onto. It is invertible and its inverse function is denoted 
by <p-Q. Observe in passing that, u_ being kept fixed, AQ(U_) is a lower bound for all 
shock speeds A satisfying the Rankine-Hugoniot relation 

for some u+. 
The properties of the entropy dissipation (3.9) were already investigated in Chap­

ter II where the zero-entropy dissipation function <p~ was introduced. Let us recall 
that: 

LEMMA 3.2. (Entropy dissipation function.) There exists a decreasing function <Pt : 
m - m such that for all u_ > 0 (for instance) 

and 

E(u_,u+) = 0 and u+ =I u_ if and only if u+ = <p~(u_), 

E(u_,u+) < 0 if and only if <p~(u_) < u+ < u_, 

o 
In passing, define also the function <p~ = <p~ ( u_) and the speed Ao = Ao ( u_) by 

A ( ) = f(u-) - f(<p~(u-)) = f(u-) - f(<p~(u-)) 
o u_ ~ ( ) ~' u_ - <Po u_ u_ - <Po(u_) 

(3.11) 

Combining Lemmas 3.1 and 3.2 together we conclude that, if there exists a traveling 
wave connecting u_ to u+, necessarily 

u+ belongs to the interval [<p~ (u_), u-l. (3.12) 

In particular, the states u+ > u_ and u+ < <p-Q( u_) cannot be reached by a traveling 
wave and, therefore, it is not restrictive to focus on the case that three equilibria exist. 
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Next, for each u_ > ° we define the shock set generated by the diffusive­
dispersive model (3.1) by 

Sa(u-) := {u+ / there exists a traveling wave of (3.4) connecting u_ to u+ }. 

Figure 111-3 : Concave-convex flux-function. 

THEOREM 3.3. (Kinetic function and shock set for general flux.) Given a concave­
convex flux-function f (see (3.2)), consider the diffusive-dispersive model (3.1) in 
which the ratio Q = E: / VJ > ° is fixed. Then, there exists a locally Lipschitz continuous 
and decreasing kinetic function cp~ : IR --+ IR satisfying 

and such that 

ipQ(u) ::; ip~(u) < ip~(u), u < 0, 

cp~(u) < ip~(u) ::; ipQ(u), u > 0, 

Here, the function ip~ is defined from the kinetic function ip~ by 

with the constraint 

f ( u) - f ( ip~ ( u ) ) 

u - ip~(u) 

f(u) - f(ip~(u)) 

u - ip~(u) 

ipg(u) < ip~(u) ::; ipQ(u), u < 0, 

ipQ(u) ::; ip~(u) < ipg{u), u> 0. 
Moreover, there exists a function 

AQ : IR ----+ [0, +00), 

u =1= 0, 

(3.13) 

(3.14) 

(3.15) 

called the threshold diffusion-dispersion ratio, which is smooth away from u = 0, 
Lipschitz continuous at u = 0, increasing in u > 0, and decreasing in u < ° with 

(3.16) 
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(where C > 0 depends upon f, b, Cl, and C2 only) and such that 

(3.17) 

Additionally we have 

'P~(U) ---t 'P~(u) as a ---t 0 for each u Em. (3.18) 

u 

Figure 111-4 : Kinetic function for general flux. 

The proof of Theorem 3.3 will be the subject of Sections 4 and 5 below. The 
kinetic function cp~ : IR ---t IR (sketched on Figure 1II-4) completely characterizes the 
dynamics ofthe nonclassical shock waves associated with (3.1). In view of Theorem 3.3 
the theory in Chapter II applies. The kinetic function 'P~ is decreasing and its range 
is limited by the functions 'PQ and 'P~' Therefore we can solve the Riemann problem, 
uniquely in the class of nonclassical entropy solutions selected by the kinetic function 

I> 
'Per.' 

The statements (3.17) and (3.18) provide us with important qualitative properties 
of the nonclassical shocks: 

• The shocks leaving from u_ are always classical if the ratio a is chosen to be 
sufficiently large or if u_ is sufficiently small. 

• The shocks leaving from u_ are always nonclassical if the ratio a is chosen to 
be sufficiently small. 

Furthermore, under a mild assumption on the growth of f at infinity, one could also 
establish that the shock leaving from u_ are always nonclassical if the state u_ is 
sufficiently large. (See the bibliographical notes.) 

In this rest of this section we introduce some important notation and investigate 
the limiting case when the diffusion is identically zero (a = 0). We always suppose 
that u_ > 0 (for definiteness) and we set 
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The shock speed A is regarded as a parameter allowing us to describe the set of 
attainable right-hand states. Precisely, given a speed in the interval 

there exist exactly three distinct solutions denoted by uo, Ul, and U2 of the equation 
(3.8) with 

(3.19) 

(Recall that no trajectory exists when A is chosen outside the interval [Aq( uo), f'( uo)].) 
From Lemmas 3.1 and 3.2 (see (3.12)) it follows that a trajectory either is classical 

if Uo is connected to 

(3.20) 

or else is nonclassical if Uo is connected to 

(3.21 ) 

For the sake of completeness we cover here both cases of positive and negative 
dispersions. For the statements in Lemma 3.4 and Theorem 3.5 below only we will set 
Q: := E / Ji8f and T] = sgn( 8) = ±l. If (u, v) is an equilibrium point, the eigenvalues 
of the Jacobian matrix of the function K(u, v) in (3.6) are found to be 

So, we set 

T] Q: b(u) ( 
p,( u; A, Q:) = -2 () () - 1 - T] 
- Cl U C2 U 

1 + ~ Cl~~~)22(U) (J'(u) - A) ), 

1 + ~~ Cl~~~)22(u) (J'(u) - A) ). 

(3.22) 

LEMMA 3.4. (Nature of equilibrium points.) Fix some values u_ and A and denote 
by (u*, 0) anyone of the three equilibrium points satisfying (3.8). 

• 1fT] = +1 and !'(u*) - A < 0, then (u*,O) is a stable point. 
• If T] (J'( u*) - A) > 0, then (u*, 0) is a saddle point. 
• If T] = -1 and!, (u*) - A > 0, then (u*, 0) is an unstable point. 

Furthermore, in the two cases that T] (J' ( u*) - A) < ° we have the additional result: 
When Q:2 b(u*)2 + 4T] Cl(U*) C2(U*) (J'(u*) - A) 2 ° the equilibrium is a node, and is 
a spiral otherwise. 0 

For negative dispersion coefficient 8, that is, when T] = -1, we see that both Ul 

and U2 are unstable points which no trajectory can attain at +00, while Ul is a stable 
point. So, in this case, we obtain immediately: 

THEOREM 3.5. (Traveling waves for negative dispersion.) Consider the diffusive­
dispersive model (3.1) where the flux satisfies (3.2). If E > ° and <5 < 0, then only 
classical trajectories exist. 0 
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Some additional analysis (along similar lines) would be necessary to establish the 
existence of these classical trajectories and conclude that 

when t5 < 0, 

which is the shock set already found in Section 1 when t5 = o. 
We return to the case of a positive dispersion which is of main interest here. 

(From now on TJ = +1.) Since g~(u, >.) is positive at both u = U2 and u = uo, we have 

and both points U2 and Uo are saddle. On the other hand, since g~ (ut, >.) < 0, the 
equilibrium Ul is a stable point which may be a node or a spiral. These properties 
are the same as the ones already established for the equation with cubic flux. (See 
Figure III-I.) The following result is easily checked from the expressions (3.22). 

LEMMA 3.6. (Monotonicity properties of eigenvalues.) In the range of parameters 
where !!:.( u, >., a) and M( u; >., a) remain real-valued, we have 

OM 
a~(u; >., a) > 0, 

OM 87i 
a~(u;>.,a) < 0 a>. (u;>.,a) < 0, 

and, under the assumption l' ( u) - >. > 0, 

87i 
aa(u;>.,a) < O. 

o 
To the state Uo and the speed >. E (>. ~ (uo), >'0 ( uo)) we associate the following 

function of the variable u, which will play an important role throughout, 

lu C2(Z) 
G( u; uo, >.) := (g(z,..\) - g( uo,..\)) -(-) dz. 

Uo Cl Z 

Observe, using (3.10), that the functions G and E are closely related: 

G(u; uo, >.) = -E(uo, u) when >. = a(uo, u). (3.23) 

Note also that the derivative auG( U; un, >.) vanishes exactly at the equilibria un, Ut, 
and U2 satisfying (3.8). Using the function G we rewrite now the main equations 
(3.5)-(3.6) in the form 

C2(U) uy = v, 

b(u) , 
C2(U)Vy = -a-(-) v+Gu(u;uo,..\), 

Cl u 
which we will often use in the rest of the discussion. 

(3.24a) 

(3.24b) 

We collect now some fundamental properties ofthe function G. (See Figure III-5.) 
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THEOREM 3.7. (Monotonicity properties of the function G.) Fix some Uo > 0 and 
oX E (oXQ(uo), f'(uo)) and consider the associated states Ul and U2. Then, the function 
u f-+ G(u):= G(u;uo, oX) satisfies the mono tonicity properties 

G'(u) < 0, u < U2 or u E (Ul,UO), 

G'(u) > 0, u E (U2' uI) or u > Uo. 

Moreover, if oX E (oXQ(uo),oXo(uo)) we have 

G(uo) = 0 < G(U2) < G(Ul), 

while, if oX = oXo(uo), 
G(uo) = G(U2) = 0 < G(Ul) 

and finally, if oX E (oXo(uo),f'(uo)), 

G(U2) < 0 = G(uo) < G(uI). 

Figure 1II-5 : The function G 
when oX E (oXQ(uo),oXo(uo)); oX = oXo(uo); oX = (oXo(uo),f'(uo)). 

PROOF. The sign of G' is the same as the sign of the function 

( f(u) - f(uo) ) g(u, oX) - g(uo, oX) = (u - uo) - oX • 
u-uo 

(3.25i) 

(3.25ii) 

(3.25iii) 

So, the sign of G' is easy determined geometrically from the graph of the function 
f. To derive (3.25) note that G(uo) = 0 and (by the monotonicity properties above) 
G(Ul) > G(uo). To complete the argument we only need the sign of G(U2)' But by 
(3.23) we have G(U2) = -E(UO,U2) whose sign is given by Lemma 3.2. 0 

We conclude this section with the special case that the diffusion is zero. Note 
that the shock set below is not the obvious limit from (3.14). 

THEOREM 3.8. (Dispersive traveling waves.) Consider the traveling wave equation 
(3.4) in the limiting case a = 0 {not included in Theorem 3.3} under the assumption 
that the flux f satisfies (3.2). Then, the corresponding shock set reduces to 
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PROOF. Suppose that there exists a trajectory connecting a state u_ > 0 to a state 
u+ i= u_ for the speed'>' = a(u_, u+) and satisfying (see (3.24)) 

C2(U)Uy = V, 
Cl(U)Vy = g(u,.>.) - g(u_,.>.). 

(3.26) 

Multiplying the second equation in (3.26) by V/Cl(U) = C2(U) Uy/Cl(U), we find 

1 (2) ( ) C2 (U) - v = g(u,.>.)-g(u_,'>') -(-)uy 
2 y Cl U 

and, after integration over some interval (-00, y], 

(3.27) 

Letting y --t +00 in (3.27) and using that v(y) --t 0 we obtain 

which, by (3.23), is equivalent to 

Using Lemma 3.2 we conclude that the right-hand state u+ is uniquely determined, 
by the zero-entropy dissipation function: 

(3.28) 

Then, by assuming (3.28) and u_ > 0, Theorem 3.7 implies that the function 
u ~ G(u; u_,.>.) remains strictly positive for all u (strictly) between u+ and u_. 
Since v < 0 we get from (3.27) 

V(y) = -J2G(u(y);u_,.>.). (3.29) 

In other words, we obtain the trajectory in the (u, v) plane: 

supplemented with the boundary conditions 

Clearly, the function v is well-defined and satisfies v (u) < 0 for all u E (u+, u_ ). 
Finally, based on the change of variable y E [-00,+00] ~ u = u(y) E [u+,u_] given 
by 

d _c2(u)d 
y- v(u) u, 

we immediately recover from the curve v = v( u) the (unique) trajectory 

y ~ (u(y),v(y)). 

This completes the proof of Theorem 3.8. o 
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4. Traveling waves for a given speed 

We prove in this section that, given Uo, U2, and A = a(uo, U2) in the range (see (3.21)) 

( 4.1) 

a nonclassical connection always exists if the ratio a is chosen appropriately. As we 
will show in the next section this result is the key step in the proof of Theorem 3.3. 
The main existence result proven in the present section is stated as follows. 

THEOREM 4.1. (Nonclassical trajectories for a fixed speed.) Consider two states 
Uo > 0 and U2 < 0 associated with a speed 

A = a( Uo, U2) E (AQ( uo), AO(UO)], 

Then, there exists a unique value a ~ 0 such that uo is connected to U2 by a diffusive­
dispersive traveling wave solution. 

By Lemma 3.4, Uo is a saddle point and we have li(uo) > 0 and from Theorem 2.2 
it follows that there are two trajectories leaving from uo at y = -00, both of them 
satisfying 

. v(y) _ 
hm () = J.L(Uo;A,a)C2(UO). (4.2) 

y->-oo U Y - Uo 
One trajectory approaches (uo,O) in the quadrant Ql = {u > uo, v> O}, the other 
in the quadrant Q2 = {u < uo, v < O}. On the other hand, U2 is also a saddle point 
and there exist two trajectories reaching U2 at y = +00, both of them satisfying 

. v(y) 
hm () =J.L(u2;A,a)c2(u2). 

y->+oo U y - U2 -
(4.3) 

One trajectory approaches (U2, 0) in the quadrant Q3 = {u > U2, V < O}, the other 
in the quadrant Q4 = {u < U2, V > o}. 
LEMMA 4.2. A traveling wave solution connecting Uo to U2 must leave the equilibrium 
(uo,O) at y = -00 in the quadrant Q2, and reach (U2'0) in the quadrant Q3 at 
y = +00. 

PROOF. Consider the trajectory leaving from the quadrant Ql, that is, satisfying 
U > Uo and v > 0 in a neighborhood of the point (uo, 0). By contradiction, suppose 
it would reach the state U2 at +00. Since U2 < Uo by continuity there would exist Yo 
such that 

u(yo) = Uo· 
Multiplying (3.24b) by u y = V/C2(U) we find 

( 2/ ) b( u) 2 I ( ) v 2 +a () ()v =GuU;Uo,A uy • 
y Cl U C2 U 

Integrating over (-00, Yo] we arrive at 

v2(yo) jYO 2 b(u) 
--+a v () ()dy=G(u(yo);uo,A)=O. 

2 -00 Cl U C2 U 
(4.4) 

Therefore v(yo) = 0 and, since u(yo) = Uo, a standard uniqueness theorem for the 
Cauchy problem associated with (3.24) implies that u == Uo and v == 0 on JR. This 
contradicts the assumption that the trajectory would connect to U2 at +00. 
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The argument around the equilibrium (U2' 0) is somewhat different. Suppose that 
the trajectory satisfies U < U2 and v> 0 in a neighborhood of the point (U2' 0). There 
would exist some value YI achieving a local minimum, that is, such that 

U(YI) < U2, uy(Yd = 0, Uyy(yJ) 2: o. 
From (3.24a) we would obtain V(YI) = 0 and, by differentiation of (3.24a), 

Vy(Yl) = Uyy(Yl) c2(u(Yd) 2: o. 
Combining the last two relations with (3.24b) we would obtain 

G~(U(Yl);UO,A) 2: 0 

which is in contradiction with Theorem 3.7 since u(Yd < U2 and G~(U(Yl); Uo, A) < O. 
o 

Next, we determine some intervals in which the traveling waves are always mono­
tone. 

LEMMA 4.3. Consider a trajectory U = u(y) leaving from Uo at -00 and denote by ~ 
the largest value such that Ul < u(y) :S Uo for all Y E (-oo,~) and u(~) = UI. Then~ 
we have 

Uy < 0 on the interval (-00, ~). 

Similarly, if U = u(y) is a trajectory connecting to U2 at +00, denote by ~ the smallest 
value such that U2 :S u(y) < Ul for all Y E (~, +00) and u(~) = Ul. Then, we have 

uy < 0 on the interval (~, +00). 

In other words, a trajectory cannot change its monotonicity before reaching the 
value Ul. 

PROOF. We only check the first statement, the proof of the second one being similar. 
By contradiction, there would exist Yl E (-00, {) such that 

Uy(Yl) = 0, Uyy(Yl) 2: 0, UI < U(YI) :S Uo. 

Then, using the equation (3.24b) would yield G~(u(yd;Uo,A) 2: 0, which is in con­
tradiction with the monotonicity properties in Theorem 3.7. 0 

PROOF OF THEOREM 4.1. For each 0: 2: 0 we consider the orbit leaving from Uo and 
satisfying U < Uo and v < 0 in a neighborhood of (uo, 0). This trajectory reaches the 
line {u = ut} for the "first time" at some point denoted by (Ul, V_(o:)). In view of 
Lemma 4.3 this part of trajectory is the graph of a function 

[Ul,Uo!3UI->V_(U;A,0:) 

with of course V_(Ul;A,o:) = V_(o:). Moreover, by standard theorems on differential 
equations, v_ is a smooth function with respect to its argument (u; A, 0:) E [UI' uo! x 
(AQ(UO)' AO(UO)] x [0, +00). 

Similarly, for each 0: 2: 0 we consider the orbit arriving at U2 and satisfying U > U2 
and v < 0 in a neighborhood of (U2' 0). This trajectory reaches the line {u = UI} for 
the "first time" as Y decreases from +00 at some point (Ul, V+(o:)). By Lemma 4.3 
this trajectory is the graph of a function 

[U2,UI!3 U I-> V+(U; A, 0:). 
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The mapping v+ depends smoothly upon (u,>.,O::) E [U2,Ul] x (>'Q(uo),>'o(uo)] x 
[0, +00). 

For each of these curves u 1-+ v_(u) and u 1-+ v+(u) we derive easily from (3.24) 
a differential equation in the (u, v) plane: 

dv b(u) I 
v(u) -d (u) + 0:: -(-) v(u) = Gu(u, Uo, >.). 

u Cl u 

Clearly, the function 

[0, +00) :1 0:: 1-+ W(o::) : = V+(Ul; >., 0::) - V-(Ul; >., 0::) 

= V+(o::) - V_(o::) 

( 4.5) 

measures the distance (in the phase plane) between the two trajectories at u = Ul. 
Therefore, the condition W (0::) = 0 characterizes the traveling wave solution of interest 
connecting Uo to U2. The existence of a root for the function W is obtained as follows. 

Case 1: Take first 0:: = O. 
Integrating (4.5) with v = v_ over the interval [Ul, uo] yields 

1 2 
2(V-(0)) = G(Ul;UO,>') - G(uo;uo,>') = G(Ul;UO,>'), 

while integrating (4.5) with v = v+ over the interval [U2, Ul] gives 

1 2 (V+(0))2 = G(Ul;UO,>') - G(U2;UO,>'). 

When>. =F >'o(uo), since G(U2;UO,>') > 0 (Theorem 3.7) and V±(o::) < 0 (Lemma 4.3) 
we conclude that W(O) > O. When>. = >'o(uo) we have G(U2;UO,>') = 0 and 
W(O) = O. 

Case 2: Consider next the limit 0:: -+ +00. 
On one hand, since v_ < 0, for 0:: > 0 we get in the same way as in Case 1 

1 2 
2(V-(0::)) < G(Ul; Uo, >.). (4.6) 

On the other hand, dividing (4.5) by v = v+ and integrating over the interval [U2, Ul] 
we find 

V ( ) - l u1 b(u) d l u1 G~(u;uo,>') d + 0:: - -0:: -- U + U. 
U2 Cl(U) U2 v+(u) 

Since v = C2 (u) uy ::; 0 and G~ (u) ~ 0 in the interval [U2, Ul] we obtain 

V+(o::) ::; -1'\,0:: (Ul - U2), (4.7) 

where I'\, = infuE [u2,ul] b(U)jCl(U) > O. Combining (4.6) and (4.7) and choosing 0:: to 
be sufficiently large, we conclude that 

Hence, by the intermediate value theorem there exists at least one value 0:: such 
that 

W(o::) = 0, 

which establishes the existence of a trajectory connecting Uo to U2. Thanks to 
Lemma 4.3 it satisfies u y < 0 globally. 
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The uniqueness of the solution is established as follows. Suppose that there would 
exist two orbits v = v( u) and v* = v* (u) associated with distinct values a and a* > a, 
respectively. Then, Lemma 3.6 would imply that 

t:t(uoiA,a*) <t:t(uoiA,a), l:(u2iA,a*) <l:(u2iA,a). 

So, there would exist U3 E (U2' uo) satisfying 

Comparing the equations (4.5) satisfied by both v and v*, we get 

( dv dv*) * b(U3) 
V(U3) du (U3) - du (U3) = (a - a) C1(U3) V(U3)' (4.8) 

Now, since V(U3) i:- 0 (the connection with the third critical point (U1' 0) is impossible) 
we obtain a contradiction, as the two sides of (4.8) have opposite signs. This completes 
the proof of Theorem 4.1. 0 

REMARK 4.4. It is not difficult to see also that, in the proof of Theorem 4.1, 

a 1-+ V_ (a) is non-decreasing 

and 
a 1-+ V+(a) is decreasing. 

In particular, the function W(a) := V+(a) - V_(a) is decreasing. 

( 4.9i) 

( 4.9ii) 

o 

THEOREM 4.5. (Threshold function associated with nonclassical shocks.) Consider 
the function A = A( Uo, U2) which is the unique value a for which there is a nonclassical 
traveling wave connecting Uo to U2 {Theorem 4.1}. It is defined for Uo > 0 and U2 < 0 
with U2 E [<p~(uo),<pQ(uo)) or, equivalently, Uo E [<p~(U2),<p-Q(U2))' Then we have 
the following two properties: 

• The function A ( Uo, U2) is increasing in U2 and maps [<p~ ( uo), <pQ ( uo)) onto 
some interval of the form [0, AQ(uo)) where AQ(uo) E (0, +00]. 

• The function A is also increasing in uo and maps the interval [<pt(U2), <p-Q( U2)) 
onto the interval [0, AQ(<p-Q(U2)))' 

Later (in Section 5) the function A will also determine the range in which classical 
shocks exist. From now on, we refer to the function A as the critical diffusion­
dispersion ratio. On the other hand, the value AQ(uo) is called the threshold 
diffusion-dispersion ratio at Uo. Nonclassical trajectories leaving from Uo exist if 
and only if a < AQ( uo). 

Observe that, in Theorem 4.5, we have A(UO,U2) -f 0 when U2 -f <Pt(uo), which 
is exactly the desired property (3.18) in Theorem 3.3. 

PROOF. We will only prove the first statement, the proof of the second one being 
completely similar. Fix Uo > 0 and u2 < U2 < Uo so that 

AQ(UO) < A = f(u2) - f(uo) < A* = f(u2~ - f(uo) ~ AO(UO)' 
U2 - Uo u2 - Uo 

Proceeding by contradiction we assume that 

a* := A(uo,u;) ::::: a:= A(UO,U2). 
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Then, Lemma 3.6 implies 

Let v = v(u) and v* = v*(u) be the solutions of (4.5) associated with a and a*, 
respectively, and connecting Uo to U2, and Uo to U2' respectively. Since u2 < U2, by 
continuity there must exist some state U3 E (U2, uo) such that 

dv* dv 
du (U3) ~ du (U3). 

On the other hand, in view of (4.5) which is satisfied by both v and v* we obtain 

which leads to a contradiction since the left-hand side is non-positive and the right­
hand side is positive. This completes the proof of Theorem 4.5. 0 

We complete this section with some important asymptotic properties (which will 
establish (3.16)-(3.17) in Theorem 3.3). 

THEOREM 4.6. The threshold diffusion-dispersion ratio satisfies the following two 
properties: 

• AQ(uo) < +00 for all uo. 
• There exists a traveling wave connecting Uo to U2 = <pQ ( uo) for the value a = 

AQ( uo). 

PROOF. Fix Uo > O. According to Theorem 4.1, given A E (>,Q(UO),AO(UO)] there 
exists a nonclassical trajectory, denoted by u I--t v( u), connecting Uo to some U2 with 

(4.10) 

On the other hand, choosing any state un > Uo and setting 

A* - f(un) - f(ui) ui = <pQ(uo), 
- u* - u* ' o 1 

it is easy to check from (3.22) that, for all a* sufficiently large, M(ui;A*,a*) remains 
real with -

L::(ui;A*,a*) < O. 

Then, consider the trajectory u I--t v* (u) arriving at ui and satisfying 

v*(u) 
lim -- = M(u*;A*,a*)c2(u*) < O. 
U~Ul U _ u* _ 1 1 
11.>11.1 1 

Two different situations should be distinguished. 

Case 1: The curve v* = v*(u) crosses the curve v = v(u) at some point U3 where 

dv dv* 
du (U3) ~ du (U3). 
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Using the equation (4.5) satisfied by both v and v* we get 

V(U3) (~~ (U3) - ~~ (u3)) + (a* - a) !~~;) V(U3) = G~(U3; un, A*) - G~(U3; UO, A) 

< O. 

In view of our assumptions, since v( U3) < 0 we conclude that a < a* in this first case. 

Case 2: v* = v*(u) does not cross the curve v = v(u) on the interval (ui,uo). 
Then, the trajectory v* crosses the u-axis at some point U4 E (ui, uo]. Integrating 

the equation (4.5) for the function von the interval [U2' uo] we obtain 

1112 b(u) 
a -( -) v(u) du = G(U2; UO, A) - G(uo; uo, A). 110 Cl U 

On the other hand, integrating (4.5) for the solution v* over [ui, U4] we get 

Since, by our assumption in this second case, 

1 112 b(u) 111~ b(u) 
-- v(u)du > -- v*(u)du, 

110 Cl ( U ) 114 Cl ( U ) 

we deduce from the former two equations that 

* G(U2; UO, A) - G(uo; uo, A) C * 
a::; a *. * * . * * ::; a, G(Ul>UO,A ) - G(U4,UO,A ) 

where C is a constant independent of U2. More precisely, U2 describes a small neigh­
borhood of <pQ(uo), while u(j, u!, U4, and A* remain fixed. 

Finally, we conclude that in both cases 

A(UO,U2)::; c' a*, 

where a* is sufficiently large (the condition depends on Uo only) and C' is independent 
of the right-hand state U2 under consideration. Hence, we have obtained an upper 
bound for the function U2 1-+ A( uo, U2). This completes the proof of the first statement 
in the theorem. 

The second statement is a consequence of the fact that A( uo, U2) remains bounded 
as U2 tends to <pQ ( uo) and of the continuity of the traveling wave v with respect to 
the parameters A and a, i.e., with obvious notation 

D 

The function AQ = AQ(uo) maps the interval (0,+00) onto some interval [AQ,AQ] 
where 0 ::; AQ ::; AQ ::; +00. The values AQ and AQ correspond to lower and upper 
bounds for the threshold ratio, respectively. The following theorem shows that the 
range of the function A Q ( uo), in fact, has the form [0, A Q] . 
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THEOREM 4.7. With the notation in Theorem 4.5 the asymptotic behavior oj AQ(uo) 
as Uo --+ 0 is given by 

(4.11) 

Note that of course (3.2) implies that JIII(O) > O. In particular, Theorem 4.7 
shows that AQ(O) = AQ(O) = O. Theorem 4.7 is the only instance where the assumption 
JIII(O) =I- 0 (see (3.2)) is needed. In fact, if this assumption is dropped one still have 
AQ(uo) --+ 0 as Uo --+ O. (See the bibliographical notes.) 

PROOF. To estimate AQ near the origin we compare it with the corresponding crit­
ical function A~ determined explicitly from the third-order Taylor expansion f* of 
J = J(u) at u = O. (See (4.16) below.) We rely on the results in Section 2, especially 
the formula (2.26) which provides the threshold ratio explicitly for the cubic flux. 

Fix some value Uo > 0 and the speed), = ).Q(uo) so that, with the notation 
introduced earlier, U2 = Ul = <pQ(uo). Since J"'(O) =I- 0 it is not difficult to see that 

U2 = <pQ(uo) = -(1 + O(uo)) ~o 

(as is the case for the cubic flux J(u) = u3 ). A straightforward Taylor expansion for 
the function 

yields 

G(u) - G(U2) = G(u) - G(<pQ(uo)) 

= (u ~:2)3 (1"'(0) ~:~~~ (3 U2 + u) + O(IU21 2 + IUI2)). 

Since, for all u E [U2' uo] 

4U2 < u + 3U2 < Uo + 3U2 = U2 (1 + O(uo)), 

we arrive at 

Now, given E > 0, we can assume that Uo is sufficiently small so that 

( i) 

( ii) 

( iii) 

Uo Uo - 2 (1 + E) ~ U2 ~ -2 (1- E), 

(1 - E) b(O) < b(u) < (1 + E) b(O) u E [U2' uo], 
Cl(O) - Cl(U) - Cl(O)' 

Cj(O) (1 - E) ~ Cj(u) ~ Cj(O) (1 + E), u E [U2' uo], j = 1,2. 

Introduce next the flux-function 

u3 
J*(u)=k 6 , k=(l+E)I"'(O), uEIR. 

Define the following (constant) functions 

(4.13) 

(4.14) 
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To these functions we can associate a function G* by the general definition in Section 3. 
We are interested in traveling waves associated with the functions f*, b*, ci, and c2' 
and connecting the left-hand state Uo given by 

to the right-hand state U2 (which will also correspond to the traveling wave associated 
with J). 

The corresponding function 

satisfies 

(4.15) 

In view of Remark 2.6 the threshold function A~ associated with f*, b*, ci, and c2 is 

(4.16) 

By Theorem 4.6, for the value a* := A~(uo) there exists also a traveling wave trajec­
tory connecting Uo to U2 := U2, which we denote by v* = v* (u). By definition, in the 
phase plane it satisfies 

* dv* () * b* (u) * () G' ( ) v -d u +a --;;--()v u = *u, 
U c1 U 

( 4.17) 

with 

G:(u) = U*(u) - f*(u'Q) - f;(U2) (u - u'Q)) c~((u)). 
c1 u 

We consider also the traveling wave trajectory u f-+ v = v(u) connecting Uo to U2 
which is associated with the data f, b, Cl, and C2 and the threshold value a := A ~ (uo). 
We will now establish lower and upper bounds on A~(uo); see (4.23) and (4.24) below. 

Case 1: First of all, in the easy case that A ~ (uo) (1 - c) :::; A~ (uo), we immediately 
obtain by (4.16) and then (4.13) 

A~(uo) :::; (1 + 2 c) A~(uo) = (1 + 2 c) v'3k Cl~Oi~~)(O) Uo 

:::; (1 + 2c) v'3k Cl~Oi~~t) Uo (1 + c) 

< (1 + C c) . 131"'(0) Cl(0)C2(0) u 
- V 4b(0) 0, 

which is the desired upper bound for the threshold function. 

Case 2: Now, assume that A ~ ( uo) (1 - c) > A~ ( uo) and let us derive a similar 
inequality on A~(uo). Since G'(U2) = G:(U2) = 0, G"(U2) = G~(U2) = 0, and 
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it follows from the equation 

dv (u) + a b(u) = G~(u; Uo, .\) 
du CI(U) v(u) 

by letting u ---+ U2 that 

dv _ Q b(U2) -1 Q * b(O) _ dv* 
-d (U2) - -A*(uo) -( -) < -1 - A*(uo) -(0) (1- c:) - -d (U2)' u CI U2 - c: CI U 

This tells us that in a neighborhood of the point U2 the curve v is locally below the 
curve v*. 

Suppose that the two trajectories meet for the "first time" at some point U3 E 

(U2' uo], so 
. dv dv* 

V(U3) = V*(U3) wIth du (U3) 2: d;;;(u3). 

From the equations (4.5) satisfied by v = v(u) and v* = v*(u), we deduce 

and 

1 * ()2 * l u3 * ( ) b( u) G () () -2 V U3 + a v u -( -) du = * U3 - G * U2 , 
U2 CI U 

respectively. Subtracting these two equations and using (4.12) and (4.15), we obtain 

(4.18) 

But, by assumption the curve v is locally below the curve v* so that the left-hand side 
of (4.18) is negative, while its right-hand side of (4.18) is positive if one chooses Uo 
sufficiently small. We conclude that the two trajectories intersect only at U2, which 
implies that Uo ::; Uo and thus 

lUO Iv(u)ldu > lu~ Iv*(u)ldu. 
U2 U2 

(4.19) 

On the other hand we have by (4.13) 

Now, in view of the property (i) in (4.13) we have 

Based on these inequalities we deduce from (4.12) that 

G(U2) - G(uo) ::; 1"'(0) ~~~~~ 91~214 (1 + C c:). (4.21) 
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Concerning the second curve, v* = v*(u), we have 

( 4.22) 

by using (4.15). 
Finally, combining (4.19)-(4.22) we conclude that for every c and for all suffi­

ciently small Uo: 

A ~ ( uo) :S (1 + C c) A~ ( u~) 

< (1 + C c) y'3flll (0) Cl (0)C2 (0) U 
- 4b(0) 0, 

(4.23) 

which is the desired upper bound. Exactly the same analysis as before but based on 
the cubic function f * ( u) = k u3 with k = (1 - c) 1'" (0) (exchanging the role played 
by f* and f, however) we can also derive the following inequality 

(4.24) 

The proof of Theorem 4.7 is thus completed since c is arbitrary in (4.23) and (4.24). 
o 

5. Traveling waves for a given diffusion-dispersion ratio 

Fixing the parameter Ct, we can now complete the proof of Theorem 3.3 by identifying 
the set of right-hand state attainable from Uo by classical trajectories. We rely here 
mainly on Theorem 4.1 (existence of the nonclassical trajectories) and Theorem 4.5 
(critical function). 

Given Uo > 0 and Ct > 0, a classical traveling wave must connect u_ = Uo to 
u+ = Ul for some shock speed A E (A~(UO), f'(uo)). According to Theorem 4.5, 
to each pair of states (uo, U2) we can associate the critical ratio A( Uo, U2). Equiva­
lently, to each left-hand state Uo and each speed A, we can associate a critical value 
B(A,Uo) = A(UO,U2). The mapping 

A f--+ B(A, uo) 

is defined and decreasing from the interval [A ~ (uo), AO (uo) ] onto [0, A q (uo) J. It admits 
an inverse 

Ct f--+ An ( Uo ) , 

defined from the interval [0, A ~ (uo) ] onto [A q (uo), AO (uo) J. By construction, given 
any Ct E (0, A ~ (uo)) there exists a nonclassical traveling trajectory (associated with 
the shock speed An (uo)) leaving from Uo and solving the equation with the prescribed 
value Ct. 

It is natural to extend the definition of the function An (uo) to arbitrary values Ct 

by setting 
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The nonclassical traveling waves are considered here when ex is a fixed parameter. So, 
we define the kinetic function for nonclassical shocks, 

(Uo, ex) I-t <p~ ( Uo) = U2, 

where U2 denotes the right-hand state of the nonclassical trajectory, so that 

f( uo) - f( U2) = Aa( uo). 
Uo - U2 

Note that <p~ ( uo) makes sense for all Uo > 0 but ex < A q ( uo). 

THEOREM 5.1. For all Uo > 0 and ex > 0 and for every speed satisfying 

Aa ( uo) < A ::; f' ( Uo ) , 

(5.1) 

there exists a unique traveling wave connecting u_ = Uo to u+ = Ul. Moreover, for 
ex 2 A q ( uo) there exists a traveling wave connecting u_ = Uo to U+ = Ul for all 

PROOF. We first treat the case ex ::; A q (uo) and A E (Aa (uo), f' (uo)]. Consider the 
curve U I-t V_(U;A,ex) defined on [UI,UO] that was introduced earlier in the proof 
of Theorem 4.1. We have either V-(UI; A, ex) = 0 and the proof is completed, or 
else V_(Ul;A,ex) < O. In the latter case, the function v_ is a solution of (4.5) that 
extends further on the left-hand side of u_ in the phase plane. On the other hand, 
this curve cannot cross the nonclassical trajectory U I-t v(u) connecting u_ = Uo to 
u+ = <p~(uo). Indeed, by Lemma 3.6 we have 

7l(Uoi.A., ex) < 7l(UOi Aa(uo), ex). 

If the two curves would cross, there would exist u* E (<p~(uo),ud such that 

V(U*) = v_(u*) and dv( *) dv_( *) -u <-U . du - du 

By comparing the equations (4.5) satisfied by these two trajectories we get 

v(u*) (~~ (u*) - d;: (u*)) = (A - Aa(uo)) (u* - uo) ~~~~:~. (5.2) 

This leads to a contradiction since the right-hand side of (5.2) is positive while the 
left-hand side is negative. We conclude that the function v_ must cross the u-axis 
at some point U3 with U2 < <p~ (uo) < U3 < Ul' The curve u I-t v_ (u, A, ex) on the 
interval [U3, uo] corresponds to a solution y I-t u(y) in some interval (-00, Y3] with 
UY (Y3) = 0 and 

Uyy (Y3) = g(U(Y3)' A) - g(uo, A) = G~(U3i Uo, A), 
CI (U(Y3)) C2( U(Y3)) C2( u3)2 

(5.3) 

which is positive by Theorem 3.7. Thus UYY (Y3) > 0 and necessarily u(y) > U3 for 
Y > Y3· Indeed, assume that there exists Y4 > Y3, such that U(Y4) = U(Y3) = U3· 
Then, multiplying (3.24b) by V-/C2 and integrating over [Y3,Y4], we obtain 

1 l Y4 b(u) -V~(Y4)+ex () ()v~dy=G(U3;UO,A)-G(U3;UO,A)=O. 
2 Y3 CI U C2 U 
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This would means that u(y) = U3 for all y, which is excluded since u_ = Ul. 

Now, since U S Uo we see that U is bounded. Finally, by integration over the 
interval (-00, y] we obtain 

1 2 jY b(u) 2 
-2 v_(y) + a () () v_ dy = G(u(y)) - G(uo), 

-00 Cl U C2 U 

which implies that v is bounded and that the function u is defined on the whole real 
line IR. When y --+ +00 the trajectory (u, v) converges to a critical point which can 
only be (U1.0). 

Consider now the case a > A Q ( uo). The proof is essentially same as the one given 
above. However, we replace the nonclassical trajectory with the curve u 1--+ v+ (u) 
defined on the interval [U2' Ul]. For each A fixed in (A Q (uo), f' (uo)) (since a > A Q (uo)) 
and thanks to Remark 4.4, the function, W = v+ - V_ (defined in the proof of 
Theorem 4.1, with V_(u;A,a) and V+(u;A,a) and extended to A E (f'(u2),f'(uo))) 
satisfies W(o:) < O. On the left-hand side of Ul, with the same argument as in the 
first part above, we can prove that the extension of v_ does not intersect V+ and 
must converge to (U1.0). Finally, the case A = AQ(UO) is reached by continuity. This 
completes the proof of Theorem 5.1. 0 

THEOREM 5.2. If A Q ( uo) < A < Aa (uo) there is no traveling wave connecting u_ = Uo 
tOU+=Ul' 

PROOF. Assume that there exists a traveling wave connecting Uo to Ul. As in 
Lemma 4.2, we prove easily that such a curve must approach (Uo, 0) from the quad­
rant Ql and coincide with the function v_ on the interval [Ul, uo]. On the other hand, 
as in the proof of Theorem 5.1, we see that this curve does not cross the nonclassical 
trajectories. On the other hand, Lemma 3.7 gives 

thus, the classical curve remains "under" the nonclassical one. So we have 

where U 1--+ (u, v( u)) denotes the nonclassical trajectory. Assume now that the curve 
(u, v_ ( u)) meets the u-axis for the first time at some point (U3, 0) with U3 < 'P~ ( uo) < 
U2. The previous curve defined on [U3, uo] corresponds to a solution y 1--+ u(y) defined 
on some interval (-00, Y3] with UY (Y3) = 0 and UYY (Y3) ?: O. Thus Vy (Y3) satisfies (5.3) 
and is negative (Lemma 4.3). This implies that U yy (Y3) < 0 which is a contradiction. 
Finally, the trajectory remains under the u-axis for U < U2, and cannot converge to 
any critical point. 0 

According to Theorem 5.1 the kinetic function can now be extended to all values 
of 0: by setting 

(5.4) 

Finally we have: 

THEOREM 5.3. (Monotonicity of the kinetic function.) For each a> 0 the mapping 
Uo 1--+ 'P~ ( uo) is decreasing. 
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PROOF. Fix Uo > 0, a > 0, A = Aa(uo) and U2 = tp~(uo). First suppose that 
a ~ AQ(uo). Then, for all Uo > Uo, since tpQ is known to be strictly monotone, it is 
clear that 

tp~(u(;) :::; tpQ(u(;) < tpQ(uo) = tp~(uo). 
Suppose now that a < AQ(uo). Then, for Uo > Uo in a neighborhood of Uo, the speed 
A* = f(uii=~;U2) satisfies A* E (AQ(UO)' AO(UO»)' Then, there exists a nonclassical 

traveling wave connecting Uo to U2 for some a* = A(UO,U2). The second statement in 
Theorem 4.5 gives a* > a. Since the function Aa is decreasing (by the first statement 
in Theorem 4.5) we have Aa.(uO) < Aa(uo) and thus tp~(uo) < U2 = tp~(uo) and the 
proof of Theorem 5.3 is completed. 0 

PROOF OF THEOREM 3.3. Section 4 provides us with the existence of nonclassical 
trajectories, while Theorems 5.1 and 5.2 are concerned with classical trajectories. 
These results prove that the shock set is given by (3.14). By standard theorems 
on solutions of ordinary differential equations the kinetic function is smooth in the 
region {a:::; AQ(uo)} while it coincides with the (smooth) function tpQ in the region 
{ a ~ A Q ( uo) }. Additionally, by construction the kinetic function is continuous along 
a = A Q ( uo). This proves that tpP is Lipschitz continuous on each compact interval. On 
the other hand, the monotonicity of the kinetic function is provided by Theorem 5.3. 
The asymptotic behavior was the subject of Theorem 4.7. 0 

REMARK 5.4. To a large extend the techniques developed in this chapter extend to 
systems of equations, in particular to the model of elastodynamics and phase transi­
tions introduced in Examples 1-4.7. With the notation of Examples 1-4.7, the corre­
sponding traveling wave solutions (v, w) = (v(y), w(y» must solve 

-svy - ~(w,wy,wYY)y = (f-L(w)Vy)y' 

sWy +Vy = 0, 

where s denotes the speed of the traveling wave, ~ is the total stress function, and 
f-L(w) is the viscosity coefficient. When ~ is given by the law (1-4.20) and after some 
integration with respect to y we arrive at 

A'(W) 
-s (v - v_) - O'(w) + O'(w_) - f-L(w) Vy = -2- w~ - (A(W) wy)y' 

s (w - w_) + v - v_ = 0, 

where (v_, w_) denotes the upper left-hand limit and A( w) the capillarity coefficient. 
Using the second equation above we can eliminate the unknown v(y), namely 

A(W)1/2 (A(w)1/2 wy)y + f-L(w) Vy = s2 (w - w_) - O'(w) + O'(w_), (5.5) 

which has precisely the structure of the equation (3.4) studied in the present chapter! 
Additionally, the hypothesis (3.2) in this chapter is very similar to the hypotheses (1-
4.8) and (1-4.12) in Examples 1-4.4 and 1-4.5, respectively. All the results in the present 
chapter extend to the equation (5.5) under the hypothesis (1-4.8) (monotonicity of 
the kinetic function, threshold diffusion-dispersion ratio, asymptotic properties) and 
most of them extend to (5.5) under the hypothesis (1-4.12). See the bibliographical 
~~. 0 



CHAPTER IV 

EXISTENCE THEORY 
FOR THE CAUCHY PROBLEM 

This chapter is devoted to the general existence theory for scalar conservation laws 
in the setting of functions with bounded variation. We begin, in Section 1, with an 
existence result for the Cauchy problem when the flux-function is convex. We exhibit 
a solution given by an explicit formula (Theorem 1.1) and prove the uniqueness of 
this solution (Theorem 1.3). The approach developed in Section 1 is of particular 
interest as it reveals important features of classical entropy solutions. However, it 
does not extend to non-convex fluxes or nonclassical solutions, and an entirely differ­
ent strategy based on Riemann solvers and wave front tracking is developed in the 
following sections. In Sections 2 and 3, we discuss the existence of classical and of 
nonclassical entropy solutions to the Cauchy problem, respectively; see Theorems 2.1 
and 3.2 respectively. Finally in Section 4, we derive refined estimates for the total 
variation of solutions (Theorems 4.1 to 4.3) which represent a preliminary step toward 
the forthcoming discussion of the Cauchy problem for systems (in Chapters VII and 
VIII). 

1. Classical entropy solutions for convex flux 

The main existence result in this section is: 

THEOREM 1.1. (An explicit formula.) Let f : JR -+ JR be a convex function satisfying 

f" > 0 and lim f' = ±oo, 
±oo 

and let Uo be some initial data in LOO(JR). Then, the Cauchy problem 

u = u(x, t) E JR, x E JR, t > 0, 
(1.1) 

u(X,O) = uo(x), x E JR, 

admits a weak solution u E LOO(JR x JR+) satisfying Oleinik's one-sided inequality 
(Xl :S X2, t > 0): 

(1.2) 

In particular, for almost all t > 0 the function x f-+ u(x, t) has locally bounded total 
variation. 

Denote by j the Legendre transform of f and by g the inverse function of f'. 
Then, the solution of (1.1) is given by the explicit formula 

() (X - y(x, t)) 
u x, t = g t ' (1.3a) 

P. G. LeFloch 
© Birkhauser Verlag 2002
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where y(x, t) is a point that achieves the minimum value of the function 

l y - x - Y 
yl--+ G(X,tiY) = uodx+tf(--). 

o t 
(1.3b) 

A discussion of the initial condition at t = 0 is postponed to Theorem 1.2 below. 
Some important remarks are in order: 

1. Recall that the Legendre transform of f is 

j(m) = sup(mv - f(v)) , mE JR. 
v 

Since f is strictly convex and grows faster than any linear function, the supre­
mum above is achieved at the (unique) point v such that 

J'(v) = m or, equivalently, v = g(m). 

Thus for all reals m 

j(m) = mg(m) - f(g(m)), and so l' = g, (1.4) 

which implies j"(m) = 1/ f"(g(m)) > O. Hence, the function j is strictly con­
vex and we also have lim±oo l' = lim±oo 9 = ±oo. For instance, if f(u) = u2 /2, 
then g(u) = u, j(u) = u2/2, and 

{Y (x y)2 
G(X,tiY) = Jo uo(z)dz+ 2t 

2. The formula in Theorem 1.1 should be regarded as a generalization to dis­
continuous solutions of the implicit formula (1-1.7) of Chapter I. The value 
y(x, t) can be interpreted as the foot of the characteristic line passing through 
the point x at the time t. It is not difficult to deduce from the property that 
y(x, t) minimizes G that, when the function Uo has bounded variation, 

uo-(y(x, t)) S u(x, t) S uo+(y(x, t)). (1.5) 

3. Setting E := 1/ min f" where the minimum is taken over the range of the 
solution under consideration, (1.2) implies that (Xl i= X2) 

U(X2' t) - U(Xl' t) < E 
X2 - Xl - t 

(1.2') 

and, by taking the limit Xl - X2 --+ 0, 

E 
Oxu s T' 

In particular, the solution u has bounded variation in X (since the function 
X 1--+ u(x, t) - E x/t is non-increasing) and u satisfies Lax shock inequality (see 
(II-log)): 

u_(x,t) 2:: u+(x,t), 

where we use the notation u±(x, t) := u(x±, t). 
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PROOF. We consider the Cauchy problem (1.1) and, to begin with, we show that the 
formula (1.3) is valid for any piecewise smooth solution with compact support satisfying 
Lax shock inequality. 

Define 

w(x, t) = [Xoo u(y, t) dy, wo(x) = [Xoo uo(y) dy, 

and normalize the flux so that f(O) = O. By integration of the equation in (1.1) we 
get 

OtW + f(oxw) = O. 
Since f is convex we have for all v E JR 

f(v) + 1'(v) (oxw - v) ::::: f(oxw) = -OtW, 

thus by re-ordering the terms 

OtW + 1'(v) oxw ::::: 1'(v) v - f(v). (1.6) 

Fix a point (x, t) and some real v. The line passing through (x, t) and with slope 
l' (v) intersects the initial axis at some point y with, clearly, 

y = x - t f' (v). 

Integrating (1.6) along this straight line yields 

w(x, t) - wo(y) ::::: t (J'(v) v - f(v)) = t j 0 1'(v), 

since the right-hand side is a constant. When v describes the whole of JR the parameter 
y also describes JR. We thus arrive at the fundamental inequality (y E JR) 

w(x, t) ::::: wo(y) + t j (x ~ y) = [°00 uo dx + G(x, t; y). (1.7) 

Since the left-hand side does not depend on y it is natural to minimize the right-hand 
side over all y. 

Since u is piecewise smooth, from any point (x, t) (not on a shock curve) we can 
trace backward the (characteristic) line with slope 

v = u(x, t). 

Since u satisfies Lax shock inequality this line cannot meet a shock curve of u and, 
therefore, must eventually intersects the initial line at some point y = y(x, t). Plug­
ging this specific value in (1.6), we see that (1.6) and (1.7) become equalities. As a 
consequence, the minimum value of the right-hand side of (1.7) is achieved, precisely 
for the choice v = u(x, t): 

w(x, t) -1° uo dx = G(x, t; y(x, t)) = min G(x, t; y). 
-00 yEm 

Finally, in view of the relation 

y(x, t) = x - t l' (u(x, t)), 

the value u(x, t) is recovered from y(x, t) and (1.3a) holds. This establishes the explicit 
formula (1.3), at least for piecewise smooth solutions. 

Conversely, consider now the function u given by the explicit formula (1.3). 
Note that the minimizer y(x, t) always exists since j grows faster than any linear 
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function (indeed, lim±oo l' = ±oo) while the term J~ Uo dx grows at most linearly 
(uo E LOO(m)). It need not be unique and, to begin with, we consider any (measur­
able) selection. However, we claim that the function x 1---* y(x, t) is increasing (but 
not necessarily strictly increasing). Indeed fix Xl < X2 and Y < Yl := Y(Xb t) and let 
us check that 

G(X2, tj Yl) < G(X2, tj y). (1.8) 

This will prove that y( X2, t) ;:::: Yl. Indeed, we have 

G(Xl,tjYl):S G(XbtjY) 

for all Y, and especially for Y < Yl. On the other hand, the function j being strictly 
convex we have 

Multiplying the latter inequality by t and adding to the former, we arrive at (1.8). 
Therefore, for each t, the function x 1---* y(x, t) has locally bounded total variation 

and so is continuous at all but (at most) count ably many points. Hence, for each 
t, excluding (at most) countably many x at most the minimizer y(x, t) is uniquely 
defined. 

Consider next the following approximation of u, 

1m g ( T) e-~ G(x,t;y) dy 

ue(x, t) = ( 
1IR e-~ G(x,t;y) dy 

and similarly for I ( U ) 

1m (f 0 g) (T) e-~ G{x,t;y) dy 

Ie(x, t) = ( 
1IR e-~ G(x,t;y) dy 

Set also 

Ve(X, t) := log 1m e-~ G(x,t;y) dy. 

(The functions under consideration are integrable, as can be checked easily from the 
estimates to be derived below.) A simple calculation using (1.3b) yields 

( X-y) OtG=-(fog) -t- , ( X-y) oxG=g -t- , 

and thus Ue = -c OXve and Ie = C OtVe, from which it follows that 

OtUe + oxIe = o. (1.9) 

Consider a point (x, t) at which the function y(., t) is continuous in space (again, 
only count ably many points are excluded). The minimizer is unique and the function 
y 1---* G(x,tjy) achieves its minimum solely at y = y(x,t). We claim that, as C -+ 0, 
ue(x, t) converges to the value of the integrand computed at a point that achieves the 
minimum of G(x, tj .). We now provide a proof of this fact. 
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Normalize G by G(x, t; y(x, t)) = O. (Adding a constant to G does not modify 
ue(x, t).) Fix 8> O. Since G is Lipschitz continuous in y there exists C1 > 0 (de­
pending on the point (x, t)) such that 

G(x, t; y) :S C1 Iy - y(x, t)l, y E [y(x, t) - 8, y(x, t) + 8], 

which implies 1 l Y(X,t)H 
e-G(x,t;y)/e dy ~ e-C1 ly-y(x,t)l/e dy 

Hi y(x,t)-Ii 

= 2 11i e-C1 y/e dy 

{Ii/e 
= 2 E io e-C1 y dy ~ C2 E 

for all E < 8 and for some C2 independent of E. 

On the other hand, in the region Iy - y(x, t)1 ~ 8 the function G is bounded away 
from zero (since y(x, t) is the unique minimum of G). Since it tends to infinity at 
infinity there exists a constant C3 = C3 (8) (depending also on the point (x, t)) such 
that 

e-G(x,t;y)/e :S cC3Iy-y(x,t)l/e, Iy - y(x, t)1 ~ 8. 

Collecting the above inequalities and denoting by C4 the Lipschitz constant of 
g(·)jt, we arrive at 

1m Iy - y(x, t)1 e-G(x,t;Y)/e dy 

Iue(x, t) - u(x, t)1 :S C4 1 . 
e-G(x,t,Y)/e dy 

Hi 

:S C4 8 + C4 { Iy - y(x, t)1 e-C3Iy-y(x,t)l/e dy 
C2 E i {ly-y(x,t)I~Ii} 

= C4 6 + __ 4 ye-C3Y!'" dy 2C 1+00 

C2 E 0 

:S C4 8 + C5 E, 

for some constant C5 > O. 
As E -> 0 we find 

lim sup lu",(x, t) - u(x, t)1 :S C48. 
",->0 

Since 8 was arbitrary and the arguments for fe(x, t) are completely similar we conclude 
that at each point (x, t) where the function y(., t) is continuous 

lim u",(x, t) = u(x, t), lim fe(x, t) = f(u(x, t)). 
e->O e->O 

Passing to the limit in (1.9), we deduce that the function u is a weak solution of the 
conservation law in (1.1). 

To show that u is an entropy solution, we derive the stronger statement (1.2). 
By using the explicit formula (1.3) and the monotonicity of the function x f---+ y(x, t) 
established earlier, we see that 

f'(U(X2, t)) _ f'(U(X1' t)) = X2 - ~(X2' t) _ Xl - ~(X1' t) :S X2 ~ Xl. 

This completes the proof of Theorem 1.1. o 
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Concerning the initial condition we can now prove the following result. 

THEOREM 1.2. (Initial condition.) When Uo E L1(JR) n BV(JR) (with bounded vari­
ation denoted by TV(uo)), the solution u = u(x, t) obtained in Theorem 1.1 assumes 
its initial data Uo in the L1 sense: 

Ilu(t) - uoll£1(m) --t 0 as t --t o. 
If the Legendre transform of f satisfies the lower bound 

j(v) ;::: Co (Ivl1+a - 1), v E JR 

(1.10) 

(1.11) 

for some constants Co, a> 0, then for each T > 0 there exists a constant C = C(T) 
such that 

Ilu(t) -uoll£1(m) ~ CTV(uo) t a /(1+a ) , t E [O,T]. (1.12) 

PROOF. Since y minimizes the function G we have 

l Y (X,t) - x - y(x t) 
G(x,t;y(x,t)) = uodx+tf( ') 

o t 

~ fox uodx+tj(O) ~ C1. 

Therefore, we have the following upper bound for Iy(x, t) - xl: 
- x - y(x t) 

t f( t ' ) ~ C1 + Iluoll£1(m) =: C2 • 

(1.13) 

(1.14) 

Under the assumption of Theorem 1.1 (I" > 0 and lim±oo f' = ±oo) it follows that 
for all x 

y(x, t) --t X as t --t o. 
In view of (1.5) we deduce that u(x, t) --t uo(x) at all x but the points of jump of Uo 
and, by Lebesgue theorem, we conclude that (1.10) holds. 

Now, with the stronger condition (1.11) we deduce from (1.14) that 

I x - y(x, t) l1+a < C2 1 
t - Cot + 

thus, for C = C(T) and t E [0, T], 

Iy(x, t) - xl ~ C ta /(1+a ) =: C tf3. 

Thus, from (1.5) it follows that 

lu(x, t) - uo(x)1 ~ TV( uo; (x - Ct f3 , x + Ct(3 )) , 

hence 

lIu(t) - uoll£1(m) ~ 1m TV(uo; (x - Ct f3 ,x + Ct(3 )) dx. 

When u~ E L1(JR), by commuting the orders of integration we find 

r lx+Cti3lu~1 dydx = 2Ct f3 r lu~1 dy. 
1m x-Cti3 1m 

Clearly, Uo can be realized as the limit of functions whose derivatives are in L1, and 
therefore Ilu(t)-uoll£1(m) ~ 2CTV(uo) t f3 , which completes the proof of Theorem 1.2. 
o 
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We now turn to the uniqueness of solutions for conservation laws with convex 
flux. We provide a proof based on the inequality (1.2) discovered in Theorem 1.1, 
rather than on the (weaker) entropy conditions stated in Section II-I. A more general 
uniqueness result will be established in Chapter V using a different approach. 

THEOREM 1.3. (Uniqueness of entropy solutions.) Let f : JR ---t JR be a strictly convex 
flux-function. Let U1 and U2 be weak solutions of the problem (1.1) with 

Ub U2 E £OO(JR x JR+) n £00 (JR+ , £1 (JR)), 

satisfying Oleinik one-sided entropy inequality (x -I- y) 

U1(X) - U1(y) < E U2(X) - U2(y) < E 
x-y -t' x-y -t' (1.15) 

where E is a positive constan,t. Suppose that U1 and U2 share the same initial data 
Uo E £00 (JR) n £1 (JR) with 

Ilu1(t) - uoll£1(lR) + Ilu2(t) - uoll£1(lR) ~ Ct(3, t > 0 (1.16) 

for some C, f3 > O. Then, we have 

U2(t) = U1(t) for all t ~ O. 

In fact, in Chapter V we will derive the £1 contraction property (Theorem V-
5.2) 

Ilu2(t) - u1(t)II£1(lR) ~ Ilu2(S) - u1(s)II£1(lR), s ~ t, (1.17) 
and see that the solution is actually Lipschitz continuous in time with values in £1. 

PROOF. Since U1 and U2 are weak solutions, the function <p := U2 - U1 satisfies the 
linear equation 

(1.18) 
where a = a(x, t) is defined by 

f(u2) - f(ud = 10 1 !,(BU1 + (1- B) U2) dB (U2 - U1) =: a<p. 

Setting M:= max!" we deduce from (1.15) that 

a(x) - a(y) = (1 f'(Bu1(x) + (1 - B) U2(X)) - !'(BU1(y) + (1 - B) U2(y)) dB 
x - y io x - y 

= (1 !,,(v(x,y,B)) (B Ul(X) - U1(Y) + (1- B) U2(X) - U2(y)) dB 
h x-y x-y 

. a(x) - a(y) ME 
for some pomt v(x, y, B), thus ~ --. So, letting y ---t X in the above 

x-y t 
inequality we arrive at 

ME 
8x a < --. 

- t 

In view of (1.18) the function 'IjJ(x, t):= iXoo <p(y, t) dy satisfies 

8t 'IjJ + a8x 'IjJ = O. 

(1.19) 

(1.20) 

By definition, 8x 'IjJ is bounded and so is 8t 'IjJ in view of (1.20). Therefore, the function 
'IjJ is Lipschitz continuous and the calculations below make sense. 
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Next, given any even integer p we multiply (1.20) by 'ljJp-l and obtain 

or equivalently, using the weight rm (m> 0 being a real number), 

The inequality above follows from (1.19) when m is chosen so that m ~ ME. 
Fix now two constants L, A> 0 and integrate the equation (1.21) on the trape­

zoidal domain -L + At < x < L - At. Noticing that the boundary terms have a 
favorable sign when A is larger than the sup-norm of the coefficient a we arrive at 

that is, 

em 11'ljJ(t)llip(-L+At,L-At) ::; s-m 1!'ljJ(s)llip(-L+As,L-As)' s < t. (1.22) 

Since, by (1.16), the two solutions assume the same initial data we find 

11'ljJ(s)IILP(-L+As,L-As) ::; (2L)I/p 11'ljJ(s) II u<> (lR) 

::; (2L)I/p Ilu2(S) - ul(s)II£l(lR) 

::; (2L)I/p (1Iul(S) - uoll£l(lR) + Ilu2(S) - uoll£l(lR)) 
::; (2L )1/P C sf3. 

Finally, combining (1.22) with (1.23) we deduce that (s ::; t) 

em 11'ljJ(t) IliP( -L+At,L-At) ::; s-m 11'ljJ(s) Iliv( -£+As,L-As) 
::; C' s-m+pf3 ~ 0 when s ~ 0, 

(1.23) 

provided p is chosen so large that p(3 > m. Therefore, we have proven that 'ljJ(x, t) = 0 
and thus Ul(X, t) = U2(X, t), for all x E (-L + At, L - At). Since L is arbitrary this 
establishes the desired uniqueness property. 0 

2. Classical entropy solutions for general flux 

We now turn to the existence of classical entropy solutions for the Cauchy problem 

(2.1) 

u(x,O) = uo(x), x E JR, (2.2) 
where the flux f : JR ~ JR is a smooth function which need not be convex but, for 
simplicity, has only finitely many inflection points. The initial data Uo : JR ~ JR 
are supposed to be integrable and with bounded total variation (denoted by TV ( uo)), 
that is, Uo E Ll (JR) n BV(JR). We restrict attention to weak solutions satisfying all of 
the entropy inequalities and we establish the existence of a classical entropy solution 
to the Cauchy problem (2.1) and (2.2). Later, in the following two sections, we shall 
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extend the analysis to nonclassical entropy solutions selected by a kinetic relation. It 
will be convenient to use the following notation (U_, U+ E JR) 

a(u_,u+):= 11 !'((I-())u_+()u+)d() 

{ 
f(u+)-f(u-) ...J.. 

= u+-u_' u_ T u+, 
!'(u_), u_ = u+. 

The classical Riemann solver was defined explicitly in Theorem II-2.4. It corre­
sponds to the solution of the Cauchy problem associated with (2.1) and 

{ Ul, 
U(x, 0) = 

U r , 

x < 0, 

x> 0, 
(2.3) 

for constant data Ul and Ur . Recall that the classical entropy solution of the Riemann 
problem is easily determined by using Oleinik entropy inequalities (II-1.6)), and is 
defined from the convex (respectively, concave) hull of the flux f on the interval 
limited by Ul and Ur when Ul < Ur (resp., Ul > ur ). Based on the Riemann solver, 
the wave front tracking method allows us to construct a sequence of piecewise 
constant approximate solutions of the Cauchy problem (2.1) and (2.2), as explained 
now. 

Fixing a sequence h -+ 0+ and the initial data uo, we consider piecewise constant 
approximations uS : JR -+ JR that have compact support and at most Ilh jump 
discontinuities and satisfy 

inf Uo :::; uS :::; sup uo, 

TV(uS) :::; TV(uo), 

U~ -+ Uo in the L1 norm, as h -+ 0. 

For instance, one can choose finitely many points Xl < X2 < ... < X K and set 

{

O' X<X1, 

l xk+1 

u~(x) := Xk+:-Xk Xk Uo dx, X E (Xk' Xk+1) 

0, x> XK. 

(1 :::; k :::; K - 1), 

(2.4) 

(2.5) 

Then, at each jump point x of uS we can solve (at least locally in time) the Rie­
mann problem associated with the initial data uS(x±). A Riemann solution is not 
truly piecewise constant and may contain both shock waves and rarefaction fans (The­
orem II-2.4). Therefore, any rarefaction fan centered at some point (x, t) = (xo,O) 
and connecting two states Ul and U2, say, will be replaced with a single rarefaction 
front, i.e., 

{ 
Ul, X - Xo < ta(u1,u2), 
U2, x - Xo > ta(ul, U2), 

if its strength IU2 - u11 is less than or equal to h, while if IU2 - ull > h the rarefaction 
fan will be replaced with several rarefaction fronts with small strength, i.e., 

{ 
U1, x - Xo < ta(u1' wt), 
Wj, ta(Wj_l'W~) <x-xo <ta(wj,wj+1) 
U2, x - Xo > ta(wN-l,U2), 

(1 :::; j :::; N - 1), 
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where IU2 - ulliN < hand 

j 
Wj := Ul + N (U2 - ud for j = 0, ... ,N. 

Each small jump travels with the speed determined by the Rankine-Hugoniot relation. 
We can patch together these local solutions and we obtain an approximate solution 
uh = uh(x, t) defined up to the first interaction time tl when two waves from different 
Riemann solutions meet. 

At the first interaction point we face again a Riemann problem which is solved by 
several shock waves and rarefaction fans. Again, rarefaction fans are replaced with 
small rarefaction fronts with strength less than or equal to h and traveling with the 
Rankine-Hugoniot speed. At the second interaction time t2 we proceed similarly and 
continue the construction inductively. 

We point out that the number of outgoing waves in each Riemann solution is 
finite, since f has finitely many inflection points so there are always finitely many 
rarefaction fans. However, it is not clear, at this stage, that our construction can be 
continued for all times since the number of waves may well increase at interactions 
and, in principle, could become infinite in finite time. The number of interaction 
points as well could be unbounded. In fact, we will show below that this is not the 
case and that the construction can be continued for all times. 

By modifying slightly the initial approximation uS if necessary, we can always 
assume that, at any given time, there are at most one interaction point and only two 
waves interacting. The condition is not essential but simplify our presentation. 

Finally, since every front propagates at the Rankine-Hugoniot speed it is obvious 
that the functions uh are exact solutions of (2.1) with the initial condition (2.2) 
replaced with 

uh(x, O) = u~(x), x E JR. 

However, uh does not quite satisfy the entropy inequalities since our construction 
introduces rarefaction fronts violating the entropy requirement (but having small 
strength). In fact, the correct solution is recovered in the limit h -+ 0, as stated now. 

We refer to uh as the sequence of wave front tracking approximations 
generated by the sequence of initial data uS and based on the classical Riemann 
solver. 

THEOREM 2.1. (Existence of classical entropy solutions.) Consider the Cauchy prob­
lem for a scalar conservation law, (2.1) and (2.2), associated with a flux-function f 
having finitely many inflection points and some initial data Uo E Ll(JR) n BV(JR). 

(i) Then, the wave front tracking approximations uh = uh(x, t), based on the 
classical Riemann solver determined by Oleinik entropy inequalities, are well 
defined globally in time. In particular, the total number of waves in uh(t) is 
uniformly bounded in t (but tends to infinity when h tends to 0). 

(ii) The approximate solutions satisfy the uniform estimates 

(a) infuo:S uh(x,t):S supUo, 
(b) TV(uh(t)):S TV(uo), 
(c) Iluh(t) - uh(s)II£1(m) :S TV(uo) sup 1f'llt - sl, 

x E JR, t > 0, 
t ~ 0, 
s, t ~ 0, 

where the sup-norm of f' is taken over the range determined by (2.6a). 

(2.6) 
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(iii) The sequence uh (or a subsequence of it, at least) converges strongly to a 
classical entropy solution u = u(x, t) of the Cauchy problem (2.1) and (2.2), 
i.e., 

uh(t) -t u(t) in Lroc for all t, 
and for every convex entropy pair (U, F) 

with, moreover, 

(a) inf Uo :::; u(x, t) :::; sup uo, 
(b) TV(u(t)):::; TV(uo), 
(c) Ilu(t) - u(s)II£1(lR) :::; TV(uo) sup 1f'llt - sl, 

and, concerning the initial condition, 

x E IR, t > 0, 
t 2: 0, 
s, t 2: 0, 

Ilu(t) - uoll£1(lR) :::; tTV(uo) sup If'l, t 2 0. 

(2.7) 

(2.8) 

(2.9) 

PROOF. First of all, we check that the total number of waves in uh remains finite 
(h being kept fixed). Consider an arbitrary interaction, involving a left-hand wave 
connecting UI to Urn and a right-hand wave connecting Urn to ur . We distinguish 
between two cases: 

• monotone incoming patterns when (urn - UI) (ur - urn) 2 0, 
• non-monotone incoming patterns when (urn - UI) (ur - urn) < 0. 

For each time t excluding interaction times we denote by Nl (t) the total number of 
changes of monotonicity in uh(t). Observe that the function N 1(t) diminishes at all 
interactions associated with a non-monotone pattern, precisely: 

[Nl(t)] := N1(t+) - Nl(t-) 

= {~1 if there is a monotone incoming pattern at time t, 
if there is a non-monotone incoming pattern at time t. 

Since Nl (0+) is obviously finite, this implies that the number of "non-monotone inter­
actions" is finite. On the other hand, we observe that at each "monotone interaction" 
we have only the following three possibilities: 

• Both incoming waves are shocks and the outgoing pattern is a single shock. 
• The incoming pattern contains a shock and a rarefaction and the outgoing 

pattern contains a single shock. 
• The incoming and outgoing patterns both contain exactly one shock and one 

rarefaction. 
Therefore, "monotone interactions" cannot increase the number of waves. In turn, 
we deduce that the total number of waves is finite. 

Call N2(t) the total number of waves in uh(t). Suppose that there exists a point 
(xo, to) at which infinitely many interactions take place. As noted above, the total 
number of "non-monotone interactions" is also finite , so only "monotone interactions" 
take place in a backward neighborhood of the point (xo, to). Since a Riemann solution 
contains at most two waves, it is clear geometrically that one wave must be cancelled 
and the number of waves must decrease strictly at that point, that is, 

N2 (to) < lim N2 (t). 
t-to 
t<to 
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Therefore, there can be at most finitely many points at which infinitely many interac­
tions take place. Finally, we can "pass through" any of these interactions by observing 
that since the singularity is localized at isolated points, on any given line t = to we 
have 

lim uh(x, t) = u(x, to) 
t-to 
'<'0 

for all x#- Xo. This completes the proof that the approximations ue,h are well-defined 
globally in time. 

We now derive uniform bounds on uh. The properties (2.6a) and (2.6b) are clearly 
satisfied by the classical Riemann solver as well as by the approximate one. This is 
due to the facts that the classical Riemann solution is a monotone function of the 
space variable and that replacing the rarefaction fans by propagating fronts does not 
change the Loo nor the total variation norms. 

The Lipschitz estimate (2.6c) is a consequence of the total variation estimate 
(2.6b) and the property of propagation at finite speed. Indeed, in any interval [iI, t2J 
containing no interaction time let us denote by Yk = Yk(t) (k = 1,2, ... ) the propa­
gating fronts in uk, which are in finite number. The speed Yk(t) is a constant in the 
time interval [t1' t2J and it is not difficult to check, by decomposing the interval [t1' t2J 
in smaller intervals if necessary, 

Iluh(t2) - uh(iI)II£1(ffi) S L lui(Yk(t1), t1) - u~(Yk(td, tdIIYk(t2) - Yk(t1)1 
k 

where Ui(Yk(t1), t1) are the left- and right-traces, with 

IYk(t2) - Yk(t1)1 = IYkllt2 - iII s sup 1f'llt2 - t11, 

which yields (2.6c). 
By Theorem A.3 in the appendix (Helly's compactness theorem) the conditions 

(2.6) imply the existence of a limit u and the convergence (2.7), as well as the prop­
erties (2.9). We rely here on the lower semi-continuity properties of the L1 norm and 
total variation, for instance: 

TV(u(t)) S lim inf TV(uh(t)). 
h-.O 

Since by construction 

it is obvious that the limit u satisfies the conservation law (2.1). The initial condition 
(2.2) follows from (2.3) and (2.6c), namely 

Ilu(t) - uoll£1(ffi) S liminf Iluh(t) - ugll£1(ffi) 
h-.O 

:::; TV(uo) sup If'l t ----t 0 
(2.10) 

as t ----t O. 
To check, finally, that u is the classical entropy solution of the Cauchy problem we 

rely on the fact that a propagating front either is a classical shock satisfying Oleinik 
entropy inequalities or else is a rarefaction front with small strength, that is, setting 
ut := Ui(Yk(t), t), 

-Yk (U(ut) - U(u;;)) + F(ut) - F(u;;) sO for shock fronts (2.11) 



3. NONCLASSICAL ENTROPY SOLUTIONS 93 

and 
lut - uk I ::; h for rarefaction fronts. (2.12) 

Therefore, for every convex entropy pair (U, F) and every smooth function with 
compact support 0 = O(x, t) 2': 0 we have by (2.11) 

0(0): = - [ (U(uh)8t O +F(uh)8x O) dxdt 
lmxm+ 

::; L In O(Yk,t)(-y~(U(ut)-U(uk))+F(ut)-F(uk))dt. 
rarefactions m+ 

Since 
-y~ (ut - Uk) + f(ut) - f(uk ) = 0 

and F' := U'I', in view of (2.12) we obtain 

u+ 

\-y~ (U(ut) - U(Uk)) + F(ut) - F(uk )\ = l_k U'(v) (-y~ + J'(v)) dv 
Uk 

so that 

::; sup IU'I sup f" \ut - Uk \2 
::; Ch\ut -uk \, 

0(0) ::; C h L [ O(Yk(t), t) \ut(t) - uk(t)\ dt 
k lm+ 

::;ChsupTV(uh(t)) [ supO(x,t)dt---+O. 
t lm+ xEm 

This completes the proof of Theorem 2.1. 

3. Nonclassical entropy solutions 

o 

The strategy described in Section 2 can be applied to the same Cauchy problem (2.1) 
and (2.2) but by replacing the classical Riemann solver with the nonclassical one 
discovered in Section II-4. As we will see, the corresponding approximate solutions are 
expected to converge toward weak solutions, which we will refer to as the nonclassical 
entropy solutions of the Cauchy problem. For a rigorous definition of nonclassical 
solutions we refer to Remark 3.3 and to Chapter X. 

To be able to implement this approach we must overcome some new difficulties: 
As was pointed out in Chapter II, nonclassical entropy solutions of the Riemann 
problem do not satisfy the maximum principle ((2.6a) above) nor the total variation 
diminishing property ((2.6b) above). Namely, the total variation of a nonclassical 
solution may increase in time, especially at times when a nonclassical shock arises 
from the interaction between classical waves. To control the total variation on the 
approximate solutions uniformly, it will be necessary here to investigate carefully the 
geometric structure of the approximate solutions. In particular, we will have to keep 
track of certain wave fronts, that is, the "crossing shocks" defined below. 

Let f : m --> m be a concave-convex flux function satisfying 

uf"(u) > 0 (u i= 0), 1"'(0) i= 0, 
lim J'(u) = +00. (3.1) 

lul-+oo 
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As before, we associate with f the functions <pQ, <p-Q : IR -t IR; see (II-2.6). We 
want to consider the Cauchy problem (2.1)-(2.2) in a class of "nonclassical entropy 
solutions". In view of the results in Chapters II and III, a Lipschitz continuous kinetic 
function <pb : IR -t IR is now prescribed such that 

<p-Q(u) < <pb(u) ::; <pQ(u), u > 0, 

<pQ(u) ::; <pb(u) < <p-Q(u), u < 0, 

<pb is monotone decreasing, 

<pb satisfies the strict contraction property: 

the Lipschitz constant of <pb 0 <pb near u = ° is strictly less than 1: 

. I <pb 0 <pb ( v) - <pb 0 <pb ( u) I 
hmsup < l. 

'U,v ......... o, V - U 
u#v 

(3.2a) 

(3.2b) 

(3.2c) 

(3.2d) 

and the companion function <p~ : IR -t IR associated with <pb (see (II-4.3)) satisfies: 

(3.2e) 

REMARK 3.l. 
• If a strictly convex entropy pair (U, F) is prescribed and <p~ denotes the zero 

entropy dissipation function associated with f and U (Theorem II-3.1) and if 
a kinetic function satisfying the condition (II-4.1), 

<Pt(u) < <pb(u) ::; <pQ(u), u> 0, 

<pQ(u) ::; <pb(u) < <Pt(u), u < 0, 

is prescribed, then obviously (3.2a) holds true and since <p~o<p~ = id, (3.2c) also 
holds. The setting proposed in the present section is more general than the one 
investigated in Section II-4 and in Chapter III. However, it is a simpler matter 
to observe that the Riemann solver is still well-defined under the conditions 
(3.2a)-(3.2c) and that the Riemann solution depends L1-continuously upon 
its initial states. (See also Remark II-5.5.) 

• Assumptions (3.2a) to (3.2d) are always satisfied by kinetic functions gen­
erated by nonlinear diffusive-dispersive limits in Chapter III. These kinetic 
functions are monotone decreasing and coincide with the classical value <pQ on 
a neighborhood of 0. Since <pQ(u) rv -u/2 at u = 0, the Lipschitz constant of 
<pb 0 <pb near ° is about 1/4. 

• The assumption (3.2e), in fact, is the only genuine restriction made on the 
kinetic function in the present section. It implies that the Riemann solution 
is always classical when the Riemann data are in the same region of convexity 
or concavity of f. Of course, this assumption is fulfilled in most situations 
of interest. It is satisfied when the flux is f (u) = u3 and the diffusion and 
dispersion functions are constant (Section III-2) or, more generally, when the 
regularization terms are consistent with the entropy U (u) = u2/2. It is also 
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satisfied for a general concave-convex fiux, provided the diffusion a is suf­
ficiently large or provided u remains in a sufficiently small interval near O. 
(See (111-3.17).) 

o 

Now, to the kinetic function we can associate the nonclassical Riemann solver 
described in Theorem 11-4.1. Recall that the Riemann solution contains two waves, at 
most: either a single rarefaction wave, or a single classical shock wave, or a nonclassical 
shock plus a classical one, or else a nonclassical shock plus a rarefaction wave. We can 
construct a sequence of piecewise constant, approximate solutions uh = uh(x, t) of the 
Cauchy problem (2.1)-(2.2), as was done in the previous section but now relying on 
the nonclassical Riemann solver. Precisely, let us start with a sequence h ---7 0 and 
some initial data u8 satisfying the usual convergence conditions (2.4). At the initial 
time t = 0, we decompose every rarefaction fan into small propagating jumps with 
strength less than h. At each interaction, we always replace a rarefaction fan with 
a single rarefaction front traveling with the Rankine-Hugoniot speed. For simplicity 
in the discussion we can assume that there is at most one interaction taking place at 
any given time and there are exactly two waves meeting at any interaction. Minor 
modifications are needed to cover the more general situation. 

THEOREM 3.2. (Existence of nonclassical entropy solutions.) Consider the Cauchy 
problem for the scalar conservation law (2.1) and (2.2) associated with a concave­
convex flux-function f satisfying (3.1). Consider also a kinetic function zpP satisfying 
the assumptions (3.2). 

(i) Then, for arbitrary initial data Uo E UXJ(JR) nBV(JR) the wave front tracking 
approximations determined from the nonclassical Riemann solver satisfy, for 
some constants GI ,G2 > 0 depending only on Iluollux)(ffi) and on the data f 
and zpP, 

(a) Iluh(t)llux)(ffi)::; GI , t ~ 0, 
(b) TV(uh(t)) ~ C2 TV(uo), t ~ 0, (3.3) 
(c) Iluh(t2) - uh(tdll£1(ffi) ::; C2 TV(uo) sup 1f'llt2 - tIl, h, t2 ~ O. 

(ii) The sequence uh (or a subsequence of it, at least) converges strongly to a weak 
solution u = u(x, t) of (2.1) and (2.2), specifically 

uh(t) ---7 u(t) in Lfoc for all times t (3.4) 

and uh(x, t) ---7 u(x, t) for almost every (x, t), with 

(a) Ilu(t)IILOO(ffi)::; GI , t ~ 0, 
(b) TV( u(t)) ::; G2 TV( uo), t ~ 0, (3.5) 
(c) Ilu(t2) - u(tl )IIL1(ffi) ::; G2 TV(uo) sup If'llt2 - tIl, tll t2 ~ O. 

(iii) If the kinetic function zpP satisfies the inequalities 

zp~(u) < zpP(u) ::; zpQ(u), u> 0, 

zpQ(u) ::; zpP(u) < zp~(u), U < 0, 

for the zero-entropy dissipation function zp~ associated with some strictly con­
vex entropy pair (U, F), then the solution u satisfies also the (single) entropy 
inequality 

(3.6) 
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Additionally, one can also establish that the solution satisfies the prescribed ki­
netic relation; see the forthcoming Section VIII-4. The solutions generated in The­
orem 3.2 will be called nonclassical entropy solutions of the Cauchy problem 
(2.1)-(2.2). 

REMARK 3.3. The solutions, in principle, could depend upon the approximation 
scheme under consideration or upon the discretization parameters. In Chapter X 
we will see that this is not the case. A general definition of nonclassical entropy so­
lutions can be stated, independently of any approximation scheme, in the framework 
to be developed later in Chapter X: by definition, a nonclassical entropy solution 
of the Cauchy problem (2.1)-(2.2) is a (<J>,,¢)-admissible solution of (2.1)-(2.2) for the 
following families of admissible discontinuities and speeds: 

._ { / U+ E[U_,<p~(u_))U{<pI>(u_)}, u_ < 0 } 
<J> . - ( u_ , U+ ) , 

U+ E {<pI> ( u_)} U (<p~ ( u_ ), u_ ] , u_ > 0 

'¢(u_, u+) := a(u_, u+) = 11 1'((1 - 0) u_ + 0 u+) dO. 
o 

The rest of this section is devoted to a proof of Theorem 3.2. We will now give a 
complete classification of all possible wave interaction patterns when a left-hand wave 
connecting two states Uz and Urn interacts with a right-hand wave connecting two 
states Urn and ur . For definiteness, we restrict attention to positive left-hand states 
Uz, the other case being entirely similar. We use, for instance, the notation (RC)-(R') 
when the left-hand incoming wave is a rarefaction front, the right-hand incoming wave 
is a classical shock, and the outgoing wave pattern contains a single rarefaction front. 
The notation (RC)- (N'C') is used when the outgoing pattern contains a nonclassical 
shock followed by a classical shock, etc. In each case, we indicate whether the incoming 
solution is locally monotone or not and we specify the relevant ranges for Uz, Urn, and 
ur . We indicate whether the wave is increasing or decreasing by adding an up (T) or 
down (!) arrow. It is important to note that the notation N may also represent the 
limiting case when a left-hand state Uz is connected to <pQ(uz). So, our classification 
also covers the classical case. On the other hand, we exclude from our construction 
the classical shocks connecting Uz to <p~ (uz) (when the latter is distinct from <pQ (uz)) 
since such waves cannot be generated by interactions. 

Our analysis below will keep track of the crossing fronts, that is, fronts con­
necting two states u_ and u+ such that u_ u+ ~ 0, u+ i=- O. So, in each case we 
will specify whether the incoming or outgoing pattern contains such fronts. Clearly, 
such waves are classical or nonclassical shock waves, but not rarefaction fronts. All 
nonclassical shocks are crossing shocks (by our assumption (3.2a)). So, we only have 
to distinguish between crossing classical shocks and non-crossing ones, the latter be­
ing referred to as classical shocks for short. We will use the notation C+ for a shock 
connecting two non-negative states with u_ i=- 0, C± for a classical shock connecting 
a non-negative state to a negative one (so, here, u+ < 0), R+ for a rarefaction con­
necting two non-negative states, and so on. For the sake of completion we provide 
the classification when the assumptions (3.2a) to (3.2d) hold but without imposing 
(3.2e). 
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(i) Interactions involving a rarefaction on the left-hand side: 

Case RC-l : (R~C1 )_(C1') (non-monotone and entirely classical) when 

max('P~(ut),'P~(um)) < Ur < Ul, 0 < Ul < Um. 

The incoming classical shock survives the interaction with its strength decreased by 
an amount equal to the strength of the incoming rarefaction. The latter is completely 

cancelled. There are two-subcases: (R~C.i.)-(Cr) if U r ~ 0 and (R~Ci)-(ci') 
otherwise. 

Ur 

Case RC-2 (R~ci)-(Nr R~') (non-monotone and possibly entirely classical) 
when 

'P~(Um) < Ur :=:; 'P~(UI) < 0 < Ul < Um· 
The right-hand incoming crossing classical shock transforms into a nonclassical shock, 
while the left-hand incoming rarefaction passes through the crossing shock. Note that 
the wave R~' may be trivial, that is, the limiting case Ur :=:; 'PD(UI) is possible. 

Urn 
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Case RC-3: (R~G! )-(Nl' Gi') (non-monotone and exclusively nonclassical) when 

max(<p~(ul),<pU(Um)) < Ur < <pU(Ul),O < Ul < Um. 

The right-hand incoming crossing classical shock is transformed into a nonclassical 
shock, while the left-hand incoming rarefaction passes through the crossing shock and 
is transformed into a right-hand classical shock. There are two-subcases: (R~GiJ-

(NiG!') if U r < 0 and (R~G.t.)-(Nl' Cr) otherwise. In the latter, the incoming 
pattern is entirely positive while a nonclassical shock and a crossing shock are gener­
ated; hence, the number of crossing shock increases. 

Um 

e i ' 

<pb(Ul) "~-----Nr--
------ Ul 

Case RN: (R~Ni)-(Nl' R~') (non-monotone and exclusively nonclassical) when 

0< Ul < Um and Ur = <p~(um). 

The nonclassical shock survives the interaction, while the left-hand rarefaction passes 
through it and exits on its right-hand side. 
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(ii) Interactions involving a classical shock on the left-hand side: 

Case CR-l: (CiR~)-(Ci') (monotone and entirely classical) when 

if"(uz) < U r < U m ~ ° < Uz· 

The left-hand incoming classical crossing shock survives the interaction, its strength 
being increased by an amount equal to the strength of the right-hand incoming rar­
efaction. The latter is completely cancelled. In the special case U m = ° we have 

actually (CiR~)-(Ci'). 

Case CR-2: (CtR~)-(Cr) (non-monotone and entirely classical) when 

maX(if"(uz),0) ~ U m < U r < U!. 

The left-hand incoming classical shock survives the interaction, its strength being 
decreased by an amount equal to the strength of the right-hand incoming rarefaction. 
The latter is completely cancelled. 

Urn 
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Case CR-3: (CiR~)-(Nr R~') (monotone and possibly entirely classical) when 

Ur ::; ,l(UI) < cp~(ud < Um ::; 0 < Ul. 

The incoming crossing classical shock is transformed into a nonclassical shock, while 
the right-hand incoming rarefaction bounces back on the right-side of the crossing 
shock. The wave R~' is trivial when Ur = cpi>(Ul). In the special case Um = 0 we have 

(CiR~)-(Nr R~'). 

Case CR-4: (CiR~)-(NrC!') (monotone and exclusively nonclassical) when 

cpi>(uL) < Ur < cp~(Ul) < Um ::; 0 < Ul. 

The incoming crossing classical shock is transformed into a nonclassical shock, while 
the right-hand incoming rarefaction is transformed into a classical shock exiting on 

the same side. In the special case Urn = 0 we have (CiR~)-(Nr C!'). 



3. NONCLASSICAL ENTROPY SOLUTIONS 101 

Case CC-l: (cic l )-( Cl ') (monotone and entirely classical) when 

max(4?U(uz),4?U(um )) < Ur < Um < Ul and Um ~ O. 

Two incoming shocks join together to form a single classical shock. Either all waves are 
non-crossing or else there are exactly one incoming crossing shock and one outgoing 

1 1 l' 1 1 l' crossing shock. There are two-subcases: (C+C+)-(C+ ) if U r ~ 0 and (C+C±)-(C± ) 
otherwise. 

Ur 

~ 
~ 

eL' ~~~~ 

~ 
~ 

~ 
~ 
~ 

~~~ eL 

Urn 

~~ Uz 

Case CC-2: (ciCi)_(Cl') (non-monotone and entirely classical) when 

4?U(Ul) < Um < Ur < 4?U(um ) < Ul and Um < O. 

Two incoming classical shocks cancel each other, and a single classical shock survives 
the interaction. There are two-subcases: (CJp~ )-( Cr) if U r ~ 0 and (Ci C~ )-( Cf) 
otherwise. 

Uz 

Ur 
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Case CC-3: (e~e! )-(Nl' e i ') (monotone and exclusively nonclassical) when 

<l(uz) < <P~(Um) < Ur < <p~(Ul) < Um < Uz, Um 2: O. 

The classical crossing shock is transformed into a nonclassical shock, while the classical 
shock passes through them from left to right. There are two subcases: (e~eiJ-
(Nl' e~') when U r < 0 and (e~e~)-(Nr er) otherwise. 

Case CN-l: (e~N~J-(el') (monotone and exclusively nonclassical) when 

0< Um < Ul and <p~(Ul) S; Ur = <p~(um). 
The nonclassical shock is transformed into a crossing classical shock by combining 
its strength with the one of the incoming classical shock. The latter is completely 
cancelled. 

Um 
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Case CN-2: (CiN~)-(cf) (non-monotone and exclusively nonclassical) when 

<p~(uz) < Um < 0 and Ur = <pP(um ). 

The incoming classical and the nonclassical crossing shocks cancel each other, while 
only a classical shock survives the interaction. 

Case CN-3: (CiNi)-(Ni' C~') (monotone and exclusively nonclassical) when 

0< Um < Ul and Ur = <pi>(um ) < <p~(Ul)' 

The classical shock passes from the left side to the right side of a nonclassical shock. 

Ul 

Nf' ............ . 

. ···..-;i·/ 
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(iii) Interactions involving a nonclassical shock on the left-hand side: 

Case NC: (NiCi)_(C!') (non-monotone and exclusively nonclassical) when 

Um = ,l(uz) and 'P~(uz) < Ur < 'P~(Um) < uz· 

There are two possibilities. Either the incoming waves are nonclassical and classical 
crossing shocks, respectively, and cancel each other and a single classical shock leaves 
out. Or else, the incoming nonclassical shock is transformed into a crossing classical 
shock, while the incoming classical shock is completely cancelled. There are two-

subcases: (NiC~)-(c.f) if U r ~ 0 and (NiC~)-(ci') otherwise. 

Uz 

Case NN: (NiN~)-(C.r) (non-monotone and exclusively nonclassical) when 

Um = 'P~(Ul) and Ur = 'P~(Um)' 

The two incoming nonclassical crossing shocks cancel each other, and generate a single 
classical shock. 

: L' 
fG+ 

Ur = ,l(um) 
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Some general comments concerning the interaction patterns are in order. Observe 
that Cases RC-l, CR-l, CR-2, CC-l, and CC-2 below involve classical waves only, 
while Cases RC-2 and CR-3 may involve classical waves only. The other cases require 
that there is one nonclassical shock, at least, in the incoming or outgoing wave pattern. 
The uniform norm and the total variation are non-increasing in all of the classical or 
monotone cases, at least. Actually, the uniform norm, as well as the total variation, 
increase in Cases RC-3, CR-4, CC-3, and CN-3. Note that in Case RC-3 there are 
two effects in competition: the decrease in total variation due to the cancellation of 
the incoming rarefaction R+ and the increase due to the outgoing nonclassical shock 
N±. The total variation may decrease if the former effect is stronger than the latter. 

Next, we introduce the notation 

1m := [-m, m], (3.7) 

We denote by g[k} the k-th iterate of a function 9 and by LipI(g) its Lipschitz constant 
on some interval I. Clearly, from the property (3.2c), for every interval 1m 

p[3}() P() rp 1m C rp 1m . 

By (3.2d) the Lipschitz norm of rpP on the interval Ie is less than 1. We fix M > 0, 
later on taken to be 

and we estimate the Lipschitz norms on the interval 1M for iterates of rpP of arbitrary 
order. Note that, thanks to (3.2d), we can choose E > 0 so small that 

LEMMA 3.4. (Estimates on the kinetic function.) 
• There exists an integer p such that 

even q Z 2p, 

odd q > 2p, 

k z 2p. 

• There exists a constant C M > 0 such that 

L· (p[q}) < { IPJM rp _ 

CM, 

ry(q-2p)/2 LipJM (rpp[2P}), 

ry(q-1-2p)/2 LiPJM (rpp[2P+1}), 

• There exists a constant C~ > 0 such that 

k=O 

for all q, 

for all even q Z 2p, 

for all odd q > 2p. 

(3.2d') 

(3.8) 

(3.9) 

(3.10) 
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PROOF. Combining the condition (3.2d') available near the origin with the global 
assumption (3.2c), we see that there exists a constant TJo E (0,1) (depending upon 
M) such that 

cp'o 0 cp'o(u) ::; TJo lui, lui::; M. (3.11) 
Then, it follows that for even exponents 

'o[2P]( ) < PM cp u _ TJo , 

and for odd exponents 

which establishes (3.8). 

In view of (3.2d') and using the first property in (3.8) inductively with cp'o[q] = 
cp'o[2] 0 cp'o[q-2], we obtain for any even integer q ~ 2p 

L· ('o[q1) < L' ('0[21) L' ('o[q-21) IPJM cp _ lp[g cp IPJM cp 

< (q-2p)/2 L' (p[2p1 ) _ TJ IPJM cp 

and similarly for any odd integer q ~ 2p + 1 

L· (p[q1) < (q-I-2p)/2 L' (p[2P+11) IPJM cp _ TJ IPJM cp . 

We conclude that (3.9) holds with 

eM := sup LiPJM (cp'o[k1). 
k=1, ... ,2p 

The statement (3.10) is obvious from (3.9) since 'f/ < 1. This completes the proof 
of Lemma 3.4. 0 

Relying on the technical estimates in Lemma 3.4, we arrive at the following: 

LEMMA 3.5. (Basic properties of the wave front approximations.) 
(i) The total number of fronts in uh(t) is less than or equal to the number of fronts 

in u3. The total number of interaction points is finite. 
(ii) The range of the functions uh is uniformly bounded: There exists some con­

stant M > 0 depending only on lIuoIILoo(lR) and cp'o such that 

luh(x, t)1 ::; M, x E JR, t ~ O. (3.12) 

(iii) The strength of any rarefaction front is less than or equal to eM h where eM 
was introduced in (3.10). 

The statement (ii) establishes (3.3a) in Theorem 3.2. 

PROOF. The first property in (i) is obvious by construction since the interaction oftwo 
waves generates two outgoing waves at most. To estimate the number of interactions 
let us consider 

Bh(t) := (Ah(O) + 1) Ah(t) + L Ah(t) + LA~,left(t), (3.13) 
CuR N 

where the sums are over all classical shocks and rarefaction fronts and over all non­
classical shocks respectively (a wave connecting a state u with cpQ ( u) being counted as 
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nonclassical.) Here, Ah(t) is the total number of waves at the time t, and AIVleft(t) 
is the total number of waves located on the right hand-side of the wave N. clearly, 
since Ah(t) ::; Ah(O), we see that Bh(t) is uniformly bounded by (2Ah(0) + 1) Ah(O). 
On the other hand, the function Bh(t) decreases by at least 1 across each interaction 
having a single outgoing wave: the first term decreases by Ah(t) + 1 while the sum 
of the last two terms increases by at most Ah(t). In all of the other cases a left-hand 
outgoing nonclassical wave is generated: the first term remains constant since the 
number of waves does not change, while the sum of the last two terms decreases by 
at least 1. Hence, at each interaction time t, we have Bh(t+) - Bh(t_)::; -1, which 
implies that the number of interactions is finite. 

The range of uh(t), denoted below by Range(uh(t)), may change only at inter­
action times. As is clear from the expression of the nonclassical Riemann solver, all 
of the new states created after an interaction are of the type rpP (v) where v is one of 
the left- or right-hand values at the interaction point, which are also values assumed 
before the interaction. Hence, a state v belongs to the range of the solution at time 
t only if it is some iterate of a state belonging to the range at the time O. Setting 
Mo := IluoIIL<X>(lR) we can write 

+Uoo p[k] 
Range(uh(t)) c rp (Range(u~)) 

k=O 
+00 2p-1 

C U rpp[k] (1Mo) c U rpp[k] (1Mo) c [-M, M] = 1M 

k=O k=O 

for some (sufficiently large) M, where we have used (3.8) for the latter. This estab­
lishes (3.12). 

To derive (iii), observe that the only interactions in which an outgoing rarefaction 
is produced are Cases RC-2, RN, and CR-3. In all of these cases, a rarefaction was 
already present before the interaction. This property allows us to keep track of all 
rarefaction fronts by starting at time t = 0, and there is also no ambiguity at inter­
actions. Denote by (y(t), t) a rarefaction front, defined on a bounded or unbounded 
time interval [0, T] (T depending on h). By considering each one of the possible cases 
RC-2, RN, and CR-3, we see that at each interaction either the rarefaction strength 

Rh(to-):= lim lui(y(t), t) - u~ (y(t), t)1 
t-->to-

decreases or else we have 

where u~ and ui are the left- and right-hand limits at the incoming rarefaction front. 
Iterating this argument we find 

Rh(t) ::; sup LiPIM (rpp[k]) Rh(O) 
k 

::; eM h, 

where we have used (3.9) and the fact that the initial strength of rarefactions is at 
most h. This completes the proof of Lemma 3.5. D 
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Our goal is to control the total variation of the approximate solutions uh . To 
this end, we decompose the (x, t) plane using crossing discontinuities in uh and 
therefore obtain regions in which u keeps a constant sign. In view of the expression 
of the nonclassicallliemann solver and thanks to the assumption (3.2e), the following 
properties are obvious: 

• If the incoming pattern contains no crossing shock, then the outgoing pattern 
contains no crossing shocks. 

• If the incoming pattern contains exactly one crossing shock, then the outgoing 
pattern contains exactly one crossing shock. 

• If the incoming pattern contains two crossing shocks, then the outgoing pattern 
contains two crossing shocks or none. 

New crossing shocks generated in principle in Case RC-3 (precisely, (R+C+)-(N~C~)) 
and in Case CC-3 (precisely, (C+C+)-(N~C~)) do not arise when the condition (3.2e) 
is satisfied. We can then keep track of the crossing fronts ordering them from left to 
right, 

t I-t Zj(t), j = 1, ... ,m, t E (O,Tj) 
with 

and 
Zl(t) ::; Z2(t) ::; ... ::; zm(t). 

In particular, the initial line is decomposed into a finite family of intervals I j with 

I j := [Zj(O), Zj+l (0)], j = 1, ... ,m, 
and 10 := (-00, Zl (0)] and I m+1 := [Zm (0), +00). The initial data uS keep a constant 
sign in each interval I j . A crossing path Zj may be defined for all times (when 
T j = +00) or only on a finite time interval (when Tj < +00). The latter case happens 
when two crossing fronts meet and cancel each other; see Cases CC-2, CN-2, NC, and 
NN listed above. Note that some segments of a crossing shock may be classical while 
others are nonclassical. In Cases RC-2, RC-3, CC-3, CR-3, and CR-4, a classical 
crossing shock is transformed into a nonclassical shock. The opposite happens in 
Case CN-I. 

Our analysis is also based on (generalized) characteristics, defined as follows. 
Given a point (x, t) (which, for simplicity in the presentation, is not a point of jump 
or interaction for uh), we consider the minimal backward characteristic issuing 
from (x, t), i.e., by definition, a piecewise linear and continuous curve 

S I-t X(s) = X(s; x, t), s E [0, tj (3.14) 

constructed as follows. Locally near s = t the function uh is constant and X coincides 
with the standard characteristic line passing through (x, t) and with slope f' (uh(x, t)). 
Continuing backward the construction we observe that the path X can meet only: 

• a rarefaction front, by reaching it on its left- or right-hand side (since a rar­
efaction front propagates with the Rankine-Hugoniot speed by construction), 

• or a nonclassical front, by reaching it on its right-hand side (since nonclassical 
shocks are slow undercompressive). 

By definition, when the path meets a rarefaction it then coincides with it, at least 
until an interaction point is met. On the other hand, when the path meets a nonclas­
sical shock it passes through it and continues again as a standard characteristic line 
propagating now on the left-hand side of the nonclassical shock. 
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It may happen that a characteristic path coinciding locally with a rarefaction 
front encounters an interaction point (xo, to). Then, again by definition, the path 
propagates from the point of interaction by using the upper-left characteristic line 
exiting in a small backward neighborhood of (xo, to). In this way, it is possible to 
define the backward characteristic X(s; x, t) from the time s = t down to the time 
s = ° and encompass the whole interval [0, tJ. Finally, our definition extends naturally 
to the case that (x, t) is an a point of jump or interaction for uh . 

LEMMA 3.6. (Properties of minimal backward characteristics.) 
(i) Minimal backward characteristics cannot cross each other. Namely, given 

Xl < X2, we have X(S;Xl,t):::; X(S;X2,t) for all s E [O,tJ. If two paths meet 
at some time T, then they coincide for all s E [0, T]. 

(ii) Given (x, t) and the backward characteristic s ~ X(s) issuing from (x, t), we 
have 

~[kJ 
u':. (x, t) = 4' (u~_(X(O))), (3.15) 

where k is the number of nonclassical shocks encountered by X in the time 
interval (0, t). 

(iii) Given two points (Xl, t) and (X2' t) with Xl < X2, suppose that the backward 
characteristics X(.; Xl, t) and X(.; X2, t) satisfy 

X(O;XI, t), X(0;X2, t) E I j for some j, 

then kl :::; k2' where the integer ki (i = 1,2) is such that (3.15) holds with 
X(.) = X(.; Xi, t) and k = ki . 

PROOF. The property (i) is clear: the backward characteristic may be non-unique at 
interaction points only, but then we have selected the minimal characteristic, making 
the construction unique. 

Along a backward characteristic, uh is piecewise constant and jumps only when 
the characteristic passes a shock. But, by construction, a minimal backward charac­
teristic may pass through crossing fronts, only. Indeed, it is obvious that backward 
characteristics cannot pass through classical shocks and does pass through nonclassi­
cal shocks from right to left. When the characteristic passes through a nonclassical 
shock, say at (x( T), T), the kinetic function is "acting" and, for € sufficiently small, 
we find 

(3.16) 

Additionally, from the list of interaction patterns, we can also see that the path 
may coincide locally with a rarefaction front emanating from an interaction point 
(xo, to). When the path is traced backward, it may (but not always) passes through 
the nonclassical shock (if any), as happens in Cases RC-2, RN, and CR-3. In each of 
these interactions it can be checked that again the property (3.16) holds. Finally, by 
iterating the formula (3.16) we arrive at the statement (ii) of the theorem. 

Since the interaction between crossing shocks and characteristic lines is always 
transversal from right to left only, and since characteristics can never cross each other, 
we obtain (iii). This completes the proof of Lemma 3.6. 0 

We are now ready to estimate the total variation of uh(t) at any given time t > 0. 
Let 

-00 = Xo < Xl < X2 < ... < XN+1 = +00 
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be the discontinuity points in uh(t) and set also 

uh(x, t) = Ui, X E (Xi, Xi+1), i = 0, ... ,N. 

By using backward characteristics from any fixed point in each interval (Xi, Xi+d and 
relying on Lemma 3.6, we see that there exists an integer ki and a value Vi assumed 
by the initial data ua such that 

Precisely, for some interval ji we have 

Vi := U~(Xi)' X i := X(O; Yi, t) E Iji 

where Yi has been chosen arbitrarily in the interval (Xi, Xi+1)' 
The total variation can be computed as follows: 

N-I N-I 

( h) "" I I"" I D [ki+lJ ( ) D [kiJ ( ) I TV u (t) = ~ Ui+l - Ui = ~ 'P Vi+1 - 'P Vi 
i=O i=O 

i=O i=O 

=: Al +A2 . 

Estimating Al is easy by (3.10) in Lemma 3.4, indeed 

since Xo :::; Xl :::; ... :::; X N · 

(3.17a) 

(3.17b) 

(3.19) 

To estimate the term A2 we consider the sets A-and A + made of all indices i 
such that 

li := ki+l - ki 
is strictly negative or strictly positive, respectively. (Obviously, there is nothing to 
estimate when li = 0.) In the expression of A2 we can separate the summation over 
A+ and over A-, calling them At and A2, respectively. For each initial interval I j 

consider the values of uh(t) that can be traced back to an initial state in the interval 
I j , that is, 

Hj := {i / 0:::; i :::; N and Xi E I j }. 

By (iii) in Lemma 3.6 the map i I--> ki is increasing on Hj for every j. So, it is strictly 
increasing on Hj n A+. 

Now, using that A+ = Uj (Hj n A+) is a partition we find 
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where id is the identity mapping. So, since i 1-+ ki is increasing on each subset under 
consideration and using (3.10) we obtain 

[I] m +00 [k] 
At~sup(l+LipJM(cl )) 2:2:suplcl (ug(x))1 

I j=Ok=OXE~ 
m 

(3.20) 

The latter inequality holds since SUPXElj [ug(x)[ is achieved at some value Wj of the 
initial data ug with Wj Wj+! < 0 since the intervals I j determine a decomposition of 
the real line into disjoint intervals in which ug is alternatively positive and negative. 
Hence, E j [Wj[ is less than TV(ug). 

Finally, we estimate A2 for which li < O. In view of (iii) in Lemma 3.6 and 
since characteristics cannot cross each other, those indices i must be associated with 
distinct intervals If, and since the characteristics cannot cross each other, we must 
have ji < ji+l. Hence, for every interval I' there exists at most one index i E A­
such that Xi E I'. It follows that 

2: [Vii ~ TV(ug), 
iEA-

thus 

iEA-
(3.21 ) 

~ sup Lip (cpp [k] - cpp[l]) 2: IVil ~ 2CM TV(ug). 
k,l iEA-

Finally, in view of (3.18)-(3.21) we conclude that there exists a constant C > 0 
depending only on M and cpP such that 

The derivation of the uniform bound on the total variation, (3.3b), is completed. 
The estimate (3.3c) is a consequence of (3.3b), as was already checked in Section 2. 
By Theorem A.3 in the appendix we conclude that a subsequence converges to a limit 
u satisfying (3.4) and (3.5). Since the functions uh are exact solutions, it follows that 
u is a weak solution of the Cauchy problem. Similarly, one can see that the solution 
u satisfies the entropy inequality (3.6). This completes the proof of the properties (i) 
and (ii) of Theorem 3.2. 

REMARK 3.7. When attention is restricted to classical solutions, the calculation made 
above simplifies drastically. Indeed, for classical solutions we have ki = 0 for all i and, 
therefore, A2 = 0, whereas the estimate (3.19) for Al can be replaced with 

N-l 

Al = 2: IVi+l - Vii ~ TV(ug), (3.19') 
i=O 

which allows us to recover the total variation diminishing property (2.6b) in Theo­
rem 2.1. 0 
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4. Refined estimates 

In this last section we derive some additional properties of classical entropy solutions. 
In particular, we introduce the notion of interaction potential which will playa central 
role later in Chapters VII and VIII in our study of systems. Define the interaction 
potential of a function with bounded variation u = u( x) by 

Q(u) := L lu+(x) - u_(x)llu+(y) - u_(y)l, ( 4.1) 
x<y 

where the sum is over the points of discontinuity of the function u and u± denotes 
its left- and right-hand traces. Observe that 

Q(u) ::::; TV(u)2 < 00. 

Furthermore, restricting now attention to piecewise constant functions u = u(x) made 
of classical shock and rarefaction fronts only, we denote by R( u) the maximal strength 
of rarefaction fronts in u. 

For convex flux-functions we obtain immediately the following result. 

THEOREM 4.1. (Refined estimates I) Consider the Cauchy problem (2.1) and (2.2) 
where the flux f is either convex or concave. Let uh = uh(x, t) be a sequence of wave 
front tracking approximations associated with the classical Riemann solver. Consider 
an interaction taking place at some time to and involving two incoming fronts con­
necting the states Ul, Um, and ur. Then, we have 

[TV(uh(to))] = lUI - uri-lUI - uml-Ium - uri::::; 0, 

[R(uh(to))] ::::; 0, (4.2) 

[Q(uh(to))] :::; -lUI - umllum - uri:::; 0, 

where, for instance, we use the notation 

[TV(uh(to))] := !~ TV(uh(to + s)) - TV(uh(to - s)). (4.3) 
<>0 

We omit the proof which is easy. From the local estimates (4.2) we deduce the 
global estimates (t > 0) 

TV(uh(t)) ::::; TV(uh(O+)) = TV(ua), 

R(uh(t)) ::::; R(uh(O+)) :::; I/h, 

Q(uh(t)) ::::; Q(uh(O+)) ::::; TV(ua)2. 

Recall that TV(uS) is uniformly bounded in view of (2.4). 

We now discuss the interaction potential for concave-convex flux-functions, using 
the standard notation <pQ, <p-Q, etc. A technical inequality will be needed, which we 
introduce first. Given two points u and v with v =/: u,<pQ(u) we denote by p(u, v) the 
solution of 

f(p(u, v)) - f(u) f(v) - f(u) 
p(u,v) =/: U,v. ( 4.4) 

p(u,v)-u v-u 
The function p is extended by continuity, so that, in particular, p( u, <pQ ( u)) = <pQ ( u). 
Expanding the relation above, it is not difficult to see that, in the neighborhood of 
the origin, 

p(u,v) '" -u - v. 
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In turn, we see that for some () E (0,1) and in the neighborhood of the origin, 

Lip(cpQ) < 1, 

Iu - cpQ(u)llv - cpQ(u)1 S; () min(lullvl, lu - p(u, v)llv - p(u, v)i) 
(4.5) 

for all u > ° and p(u,O) S; v S; cpQ(u), as well as an analogous property for u < 0. In 
fact, (4.5) holds globally for all u and v if f(u) = u3 , since then cpQ(u) = -u/2 and 
p(u,v)=-u-v: 

~ u Iv + ¥I S; () min{lullvl, 12u + vl12v + ul), 

which holds in the range given above if, for instance, () = 3/4. 

THEOREM 4.2. (Refined estimates II) Consider the Cauchy problem (2.1) and (2.2) 
when the flux f is a concave-convex function and let us restrict attention to solutions 
whose range is included in a small neighborhood of the origin (or, more precisely, 
assume that the flux satisfies (4.5)). Let uh = uh(x, t) be a sequence of classical wave 
front tracking approximations. Consider an interaction taking place at some time to 
and involving two incoming waves connecting the states Ul, Um, and Ur and (at most) 
two outgoing waves connecting UI, u~, and Ur (with possibly u~ = ur). Then, we 
have 

[TV(uh(to))] = lUI - u~1 + lu~ - uri-luI - uml-Ium - uri S; 0, 

[R(uh(to))] S; 0, 

[Q(uh(to))] S; lUI - u~llu~ - uri-luI - umllum - uri 

S; -c lUI - umllum - uri 

for some uniform constant c > 0. 

(4.6) 

PROOF. We distinguish between several interactions, following the general classifi­
cation given in Section 3. Since only classical shocks are allowed here, only seven 
different cases may arise. Note that the decreasing property of the interaction poten­
tial is obvious when the outgoing pattern contains a "single wave" since then 

So, we omit this calculation in the single wave cases below. Additionally, in our 
calculations of the maximal rarefaction strength and of the potential we focus on 
those waves involved in the interaction, or in other words we assume that the solution 
under consideration contains only two waves interacting and no other waves. It is 
obvious that the contribution to the potential due to "other" waves would diminish 
since the total variation diminishes at interactions. 

Case RC-l : That is, (R+C)-(C') when ° < Ul < Um and cpQ(UI) S; Ur < U/. There 
is only one outgoing wave, and the incoming pattern is non-monotone so some waves 
strength is cancelled. We find 

[TV(uh(to))] = IUr - uzl-Ium - uzl-Iur - uml = -2lum - uzl S; ° 
and 



114 CHAPTER IV. EXISTENCE THEORY FOR THE CAUCHY PROBLEM 

Case RC-2 : That is, (R+C±)-(C±R'-) when 0 < Ul < Urn and rpQ(urn ) ::; Ur < 
rpQ ( Ul). The outgoing pattern contains here two waves and some cancellation is taking 
place. We have 

and 

[TV(uh(to))] = IrpQ(Ul) - uzi + IUr - rpQ(ul)I-lurn - uzI-lur - Urn I 
= -2 I Urn - uzi ::; 0, 

[R(uh(to))] = IrpQ(rp-Q(ur » - rpQ(ul)I-lurn - uzi 

::; - (1 - Lip( rpQ)) IUrn - uzi. 

Using Ul < rp - Q ( ur ) ::; Urn we find also that for every Ii E (0, 1) 

[Q( uh (to))] 

::; IrpQ(Ul) - uzllur - rpQ(uZ)I-lurn - uzllur - Urn I 
::; -(1 - Ii) IUrn - ulilur - Urn I + Lip(rpQ) IrpQ(uz) - uzllrp-Q(ur ) - uzi 

- Ii Irp-Q(ur ) - uzllur - rp-Q(ur)1 

::; -(1- Ii) IUrn - uzllur - urnl- (Ii - Lip(rpQ))lrpQ(Ul) - ulllrp-Q(ur ) - uzi 

::; -(1 - Ii) IUrn - uzllur - Urn I ::; 0, 

since Ur < rpQ (Ul) < Ul < rp-Q (ur ) and provided we choose Ii such that 

1> Ii > Lip(rpQ), 

which is possible by the first assumption in (4.5). 

Case CR-l : That is, (C±R_)-(C±) when r.pQ(UI) ::; Ur < UTn < O. There is only one 
outgoing wave and the incoming solution is monotone. We find here 

Case CR-2 : That is, (C+R+)-(C~) when ° < Urn < Ur < Ul. There is only one 
outgoing wave and some cancellation is taking place. This case is analogous to (RC-1). 

Case CR-3 : That is, (C±R_)-(C±R'-) when p(uz, urn) < Ur < rpQ(Ul) ::; Urn < 0. 
The outgoing pattern contains two waves and the incoming solution is monotone. We 
obtain 

and 
[R(uh(to))] = IUr - rpQ(ul)I-lur - Urn I = -lrpQ(Ul) - Urn I ::; O. 

For every Ii E (0,1) we have 

[Q(uh(to»] ::; IrpQ(Ul) - uzllur - rpQ(ul)I-luTn - uzllur - Urn I 
= IrpQ(uz) - uzllur - rpQ(ul)l- Ii IUrn - uzllur - urnl- (1 - Ii) IUrn - ulilur - urnl· 

The polynomial function Urn I-t IUrn - uzllur - Urn I over the interval determined by 
p( Ul, ur ) ::; Urn ::; 0 satisfies the inequality 
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Therefore, we conclude that 

[Q(Uh(to))] 

~ IcpQ( Ut) - UtilUr - cpQ(Ut)1 - /'i, min(luzllurl, IUt - p( Ut, Ur )llur - p(Ut, Ur )1) 
- (1 - /'i,) IUm - uzllur - uml 

~ -(1 - /'i,) IUm - utllur - uml 

by the assumption (4.5), provided /'i, is chosen such that () ~ /'i, < l. 
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Case CC-l : That is, (C+C)-(C') when ° ~ Um < Ut and cpQ(um) ~ Ur < Um. This 
case is analogous to (CR-l). 

Case CC-2 : That is, (C±C)-(C') when cpQ(Ut) ~ Um ~ ° and Um < Ur ~ cpQ(um). 
This case is similar to (RC-l). 

This completes the proof of Theorem 4.2. 0 

Finally, we consider the weighted interaction potential 

Q(U) = L q(u_(x), u+(x)) Iu+(x) - u_(x)llu+(y) - u_(y)l, (4.7) 
x<y 

where the weight q is determined so that a right-contact located at x is regarded as 
non-interacting with all waves located at y > x. Precisely, setting U± := u±(x) we 
define the function q( U_, u+) by 

{ 
U+ - p(u_,u+), cpQ(u_) ~ U+ ~ u_ and u_ > 0, 

q(u_,u+):= p(u_,u+) -u+, u_ ~ u+ ~ cpQ(u_) and u_ < 0, 

1, otherwise. 

(4.8) 

Recall that p( u_, u+) was defined in (4.4). 

THEOREM 4.3. (Refined estimates III) With the same assumptions and notation as 
in Theorem 4.2, we have at each interaction time to 

in Case CC-2, 
in all other cases, 

(4.9) 

for some uniform constants C, c > 0. 

We observe that the rate of decrease in (4.9) is weaker than the one obtained in 
Theorem 4.2 since the coefficient q may vanish. Furthermore, in one case (Case CC-2) 
the potential may increase whereas the total variation functional decreases: 

In turn, for in a range of constants C. > ° at least, the functional TV (uh (to)) + 
C. Q( uh (to)) decreases strictly in all interaction cases. The weighted potential will 
be of particular interest in Chapter VIII to study nonclassical solutions. 

PROOF. The jump of the interaction potential can be decomposed in three parts: 
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where P1 contains products between the waves involved in the interaction, P2 between 
waves which are not involved in the interaction, and P3 products between these two 
sets of waves. 

On one hand, we have immediately 

since there is only one outgoing wave or else the two outgoing waves are regarded 
as non-interacting in view of the definition (4.8). If uh would contain only the two 
interacting waves and no other wave then (4.9) would follow by combining the above 
result with (4.6). On the other hand, dearly, P2 = 0 since the waves which are not 
involved in the interaction are not modified. 

We now concentrate on the contribution P3 of "other waves". Denote by WI 
and Wr the total strength of waves located on the left- and right-hand sides of the 
interaction point, respectively. Let us decompose P3 accordingly, say P3 = P31 + P3r . 
Waves located on the left-hand side are dealt with by relying on the decrease of the 
total variation: 

To deal with waves located on the right-hand side of the interaction point we set 
P3r = nr Wr with 

nr:= q(UI,U~J IUI-U~I+q(UI'U~) IUI-u~l-q(u/,um) IUI-uml-q(um,ur ) Iur-uml, 

and we now estimate nr by distinguishing between several cases, as in the proof of 
Theorem 4.2. 

Case RC-l: 

nr = (ur - p(UI' Ur)) (Ul - Ur ) - (Um - Ul) - (Ur - p(um, Ur )) (Um - Ur ) 

= -lp(UI,Ur ) - P(Um,ur)IIUI - url- (1 + IUr - P(Um,Ur)l) IUm - uzI::; O. 

Case RC-2: 

nr = (<pQ(UI) - ur) - (um - Ul) - (ur - P(Um,Ur )) (um - ur ) 

::; I<pQ(UI) - <pQ(um)I-lum - uzi ::; 0, 

since Lip( <pQ) < 1 near the origin. 

Case CR-l: 

nr = (ur - P(UI,Ur )) (Ul - ur ) - (um - p(UI,Um)) (Ul - um) - (um - ur ) 

= -(Ium - uri + Ip(UI,Ur ) - p(ul,um)l) lUI - uml 

- (1 + IUr - p(ul,ur)l) IUm - uri::; O. 

Case CR-2 : We have 

nr =(ur - p(u/,ur )) (Ul - ur ) - (um - p(UI,Um)) (Ul - um) - (ur - urn) 

( 1 ( )1 I I( Ip(UI,Um)-P(UI,Ur)I)) I I 
= - 1 + Um - P UI,Um - Ul - Ur 1 + IUr _ uml Ur - Um 

::;0, 
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provided the term lUI - Ur I is sufficiently small. 

Case CR-3: 

Or =(cpQ(UI) - Ur ) - (Um - p(uz, Um)) (Ul - Um) - (Um - Ur ) 

::; -Ium - cpQ(ul)1 ::; o. 

Case CC-l : 

Or = (ur - p( Ul, Ur )) (Ul - Ur ) 

- (Um - p(UI' Um)) (Ul - Um) - (Ur - p(um, Ur )) (Um - Ur ) 

= -lp(UI' Ur ) - p(UI' um)IIUI - uml 
-Ium - uri lUI - Um - P(Um,Ur ) + p(UI,ur)1 ::; 0, 

since the function p satisfies when Ur ::; Um ::; Ul 

0::; p(UI,Ur ) - p(UI,Um) ::; (1 + 0(8)) IUm - uri, 

lUI - Um - p(um, ur ) + p(UI' ur)1 ::; C 81 ul - uml· 
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Indeed, when f( u) = u3 these inequalities are obvious since p( u, v) = -u - v. For a 
general concave-convex flux-function, it can be checked that they hold in a sufficiently 
small neighborhood of O. 

Case CC-2 : 

Or = (ur - p(UI' ur )) (Ul - ur ) - (um - p(UI' Um)) (Ul - um) 

- (P(Um,ur ) - ur ) (ur - um) 

= 0(1) IUr - umllum - uzi. 
This completes the proof of Theorem 4.3. o 



CHAPTER V 

CONTINUOUS DEPENDENCE OF SOLUTIONS 

In the present chapter, we investigate the continuous dependence of solutions to scalar 
conservation laws. In Section 2, we study a class of hyperbolic equations with discon­
tinuous coefficient, and we establish a general stability result in L1 when the coefficient 
does not contain rarefaction-shocks; see Definition 1.1 and the main result in Theo­
rem 1.7. Next, in Section 2 we apply this setting to conservation laws with convex 
flux; see Theorems 2.2 and 2.3. The proofs in Section 2 are based on the key obser­
vation that no rarefaction-shock (in the sense of Section 1) can arise from comparing 
two entropy solutions. In Section 3, we derive a sharp estimate in a weighted L1 norm, 
which provides a quantitative bound on the decrease of the L1 norm; see Theorem 3.1. 
Finally, in Section 4 we state the generalization to nonclassical solutions. 

1. A class of linear hyperbolic equations 

Consider the Cauchy problem associated with the scalar conservation law 

OtU + oxf(u) = 0, u = u(x, t) E JR, x E JR, t > 0, (1.1) 

in which the flux f : JR ---+ JR is a given smooth function. We want to establish the 
L1 continuous dependence property 

Ilu(t) - v(t)II£l(IR) ::; Ilu(O) - v(O) II £1 (IR) , t ~ 0, (1.2) 

for solutions u and v of (1.1). Our general strategy can be sketched as follows. 
After introducing the notation 

'If;:=v-u, a(u,v) = 11 !'(OU+(1-0)V)dO, (1.3) 

where a(u, v) will be called the averaging speed, for any two solutions u = u(x, t) 
and v = v(x, t) of (1.1) we have 

(1.4) 

Therefore, to establish (1.2) it is sufficient to establish the L1 stability property 

11'lf;(t)II£l(IR) ::; 11'lf;(O)II£l(IR), t ~ 0, (1.5) 

for a class of equations and solutions covering the situation (1.3) and (1.4). In the 
present section, we discuss precisely the derivation of (1.5) and leave for the following 
section the applications to the situation (1.3) and (1.4). 

Given a piecewise constant speed a : JR x JR+ ---+ JR we consider piecewise constant 
solutions 'If; : JR x JR+ ---+ JR of the linear hyperbolic equation with discontinuous 
coefficient 

(1.6) 

P. G. LeFloch 
© Birkhauser Verlag 2002

Hyperbolic Systems of Conservation Laws
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and we aim at deriving the inequality (1.5). The set of points of continuity, where a 
is locally constant, is denoted by C(a). The (finitely many) polygonal lines of jump 
discontinuities in the function a determine a set of jump points J (a) C IR x IR+. The 
finite set of interaction times when these lines intersect is denoted by I(a) c IR+. To 
each propagating discontinuity (x, t) E J(a) we associate a shock speed Aa = Aa(X, t) 
and left- and right-hand traces a± = a±(x, t) = a(x±, t). As we will see later, it will 
be convenient to extend the definition of the shock speed by setting 

Aa(X, t) = a(x, t), (x, t) E C(a). 

Finally, observe that if W is a solution of (1.6) (in the weak sense of distributions) and 
admits a jump discontinuity at a point (x, t) propagating at the shock speed A a, then 
the traces W± = W±(x, t) and a± = a±(x, t) satisfy the jump condition 

The geometric properties of the speed a will be critical in the forthcoming dis­
cussion, and it will be useful to adopt the following terminology (illustrated by Fig­
ure V-I). 

DEFINITION 1.1. A point (x, t) E J(a) is called: 
• A Lax discontinuity if 

• A slow undercompressive discontinuity if 

• A fast undercompressive discontinuity if 

• A rarefaction-shock discontinuity if 

Observe that the cases listed in Definition 1.1 are disjoint (since a_ (x, t) "I­
a+(x, t) when (x, t) E J(a)). Introduce the partition 

J(a) =: £(a) U S(a) U F(a) U R(a), 

where £(a), S(a), F(a), and R(a) are the sets of Lax, slow undercompressive, fast un­
dercompressive, and rarefaction-shock discontinuities, respectively. We first illustrate 
a fundamental feature of the equation (1.6) with an example. 

EXAMPLE 1.2. When 

( ) { -I, x < 0, 
a x,t = 

1, x> 0, 

the Cauchy problem associated with (1.6) with the initial condition 

w(x,O) = 0, x E IR, 
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admits a large class of solutions (including the trivial one 't/J == 0), namely 

{ 

0, 

't/J(x, t) = 't/Jo(t + x), 
-'t/Jo(t - x), 

0, 

x < -t, 
-t ~ x < 0, 

o ~ x < t, 
x ~ t, 

where the arbitrary function 't/Jo is Lipschitz continuous or, more generally, of bounded 
variation. (See Figure V-2.) 0 

Example 1.2 shows that we cannot expect the uniqueness of weak solutions for 
the Cauchy problem associated with (1.6). In the above example, the characteristics 
happen to be moving away from the discontinuity at x = 0 from both sides, and 
thus the discontinuity in the coefficient a is a rarefaction-shock in the sense of Defi­
nition 1.1. The fact that rarefaction-shocks are the only source of non-uniqueness is 
a consequence of the following theorem. (Throughout this chapter, we always tacitly 
restrict attention to solutions 't/J with compact support.) 

THEOREM 1.3. (L1 stability for linear hyperbolic equations.) Consider a coefficient 
a = a(x, t) and a solution 't/J = 'I/J(x, t) of (1.6), both being piecewise constant. Then, 
for all t ~ 0 we have the identity 

11't/J(t)II£1(IR) + lot L 21,\a(x, T) - a_(x, T)II't/J-(x, T)I dT 
(x,r)E.c(a) 

= 11't/J(O)II£1(IR) + lot L 21,\a(x, T) - a_(x, T)II't/J-(x, 7)1 dT. 
(x,r)E'R.(a) 

(1.7) 

At this juncture, observe that: 
• Lax discontinuities contribute to the decrease of the L1 norm. 
• Rarefaction-shocks increase the L1 norm. 
• Undercompressive discontinuities keep constant the L1 norm. 

Hence, in the special case that a has no rarefaction shocks, Theorem 1.3 implies 

1I'I/J(t)II£1(IR) ~ 11't/J(O)II£1(IR), t ~ 0, (1.8) 

which is the desired estimate (1.5). In particular, if the coefficient a has no rarefaction­
shocks, then the Cauchy problem for (1.6) admits a unique solution (in the class of 
piecewise constant solutions under consideration here, at least). 

PROOF. It is sufficient to check that for all t ~ I(a) 

!ll't/J(x,t)ldx=- L 21,\a(x,t)-a_(x,t)II't/J_(x,t)1 
IR (x,t)E.c(a) 

+ L 21,\a(x,t)-a_(x,t)II't/J_(x,t)l· 
(x,t)E'R.(a) 

The estimate (1.7) then follows by using that the mapping t f-+ 11't/J(t)II£1(IR) is Lip­
schitz continuous. So, in the rest of this proof, we restrict attention to any time 
interval in which a contains no interaction point. 
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_------·-····~~(x, t) 
a_(x, t) _------------,: 

~ ~_ .. - " 

/a+(x, t) 

Lax discontinuity 
slow undercompressive discontinuity 

fast undercompressive discontinuity rarefaction-shock discontinuity 

Figure V-I: Classification: C(a), S(a), F(a), and'R.(a). 

x/t=o 

x/t = -1 x/t = 1 

'IjJ = 0 

_______ ~_. __ .--"Il'--_"__ ____ ... 

Figure V-2 : Non-uniqueness of solutions. 
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We denote by t I---t Xj(t) (0 ~ j ~ m + 1) the straight lines (or polygonal lines if 
interaction times would be included) along which the function x I---t '¢(x, t) changes 
sign with the convention that, for 0 ~ j ~ m, 

(1.9) 

Xo(t) = -00, and Xm+1 (t) = +00. For all 1 ~ j ~ m we set 

,¢;(t) := ,¢±(Xj(t), t), a;(t):= a±(xj(t), t), Aj(t):= Xj(t), 

Am+1(t) = Ao(t) = 0, and '¢~+1(t) = '¢ci(t) = O. Since,¢ solves (1.6) we find (the 
terms 8t ,¢ and 8x (a'¢) being measures) 

The Rankine-Hugoniot relation associated with (1.6) reads 

therefore with (1.9) 

d [ m 

dt in I'¢(x, t)1 dx = ± 2: 2 (a;(t) - Aj(t)) 1,¢;(t)l· 
m J=1 

(In the right-hand side of (1.11), one can use either the + or the - sign.) 
Consider any of the points Xj(t): 

(1.10) 

(1.11) 

• Suppose Xj(t) E C(a), and thus aj(t) := aj(t) = aj(t). Since ,¢j(t) and '¢j(t) 
have opposite signs, it follows from the Rankine-Hugoniot relation (1.10) that 
either Aj(t) - aj(t) = 0 or else '¢j(t) = '¢j(t) = O. In both cases, the terms 
(a;(t) - Aj(t)) I,¢;(t)I vanish and so the points Xj(t) E C(a) do not contribute 
to the right-hand side of (1.11). 

• Suppose Xj(t) E £(a), and thus Aj(t) = Aa(Xj(t), t). Since, for a Lax discon­
tinuity, aj(t) 2:: Aj(t) 2:: aj(t), we see that both coefficients ±(aj(t) - Aj(t)) 
are negative. Therefore, the points Xj(t) E £(a) contribute "favorably" to the 
right-hand side of (1.11). 

• Suppose Xj(t) E R(a), and thus Aj(t) = Aa(Xj(t), t). Since, for a rarefaction­
shock, aj(t) ~ Aj(t) ~ aj(t), we see that both coefficients ±(aj(t) - Aj(t)) 
are positive. Therefore, the points Xj(t) E R(a) contribute with a "wrong" 
sign to the right-hand side of (1.11). 
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• Suppose Xj(t) E S(a) U F(a), and thus Aj(t) = Aa(Xj(t), t). By definition of 
an undercompressive discontinuity, the two sides of (1.10) have different signs 
and, therefore, 

(aj(t) - Aj(t)) 'ljJj(t) = (aj(t) - Aj(t)) 'ljJj(t) = O. 

Hence, undercompressive discontinuities Xj(t) E S(a)UF(a) do not contribute 
to the right-hand side of (1.11). 

This completes the derivation of (1.7). 0 

REMARK 1.4. Observe that at rarefaction shocks we have 

and since 'ljJ changes sign (see (1.10) above) 

This implies that the last terms in the right-hand side of (1. 7) is bounded by the total 
variation of 'ljJ and the maximum strength of rarefaction-shocks, namely 

2 sup la+(x,r) -a_(x,r)1 rt TV('ljJ(r)) dr. 
(x,T)ER(a) Jo 

TE(a,t) 

This estimate will play an important role later, in Section 2. o 

REMARK 1.5. Of course, the left-hand traces appearing in (1.7) are chosen for the 
sake of definiteness, only. It is obvious from (1.10) that 

By (1.10), the function 'ljJ changes sign at Lax and rarefaction shocks only, and 
keeps a constant sign at undercompressive discontinuities. Therefore, if a solution 'ljJ 
keeps a constant sign, the two sums in (1. 7) vanish and we find 

11'ljJ(t)II£1(ffi) = 11'ljJ(O)II£1(ffi)' t;:::: o. 
This implies that the Cauchy problem associated with (1.6) admits at most one so­
lution 'ljJ of a given sign. 0 

We now discuss the properties of weighted norms of the form 

11'ljJ(t)llw(t) := 1m 1'ljJ(x, t)1 w(x, t) dx, t;:::: 0, 

where w = w(x, t) > 0 is a piecewise constant function. We search for conditions 
on the weight w guaranteeing that 11'ljJ(t) Ilw(t) is non-increasing in time when 'ljJ is 
a solution of (1.6). Our goal is to quantify the rate of decrease of these weighted 
£1 norms. Following the notation introduced for the speed a, we use the obvious 
notation AW , C(w), .J(w), and I(w). It is convenient also to denote by I(a, w) the set 
consisting of all interaction times for a or w (that is, I(a) UI(w)) as well as all times 
when two polygonal lines of discontinuity for a and for w intersect in the (x, t)-plane. 
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We will impose that the discontinuity lines of w coincide with discontinuity lines 
of a or with characteristic lines associated with a, in other words, with the exception 
of all times t E I(a, w), 

,XW(x, t) = ,Xa(x, t), (x, t) E .J{w). (1.12) 

Recall that we extended the definition of the shock speed ,Xa by setting ,Xa(x, t) := 
a(x, t) when (x, t) E C(a). Attempting to generalize the calculation made in the proof 
of Theorem 1.3, we arrive at the following identity for the weighted norm. 

LEMMA 1.6. Consider a coefficient a = a(x, t), a solution '!fJ = '!fJ(x, t) of (1.6), and 
a weight w = w(x, t), all of them being piecewise constant. If the weight satisfies the 
constraint (1.12), then for all t 2: 0 we have 

iI'!fJ(t)llw(t) = 1I'!fJ(O)lIw(o) + it IX"Y-w- +7+W+) l,Xa -a_I l'lP-l(x,r) dr, (1.13) 
o (x,r)E.7(a) 

where 

and 

7-(x,r):= sgn(,Xa(x,r) - a_(x,r»), 

7+(x,r):= sgn(a+(x,r) - ,Xa(x,r»), 

{
-I, ~<O, 

sgn(~) := 0, ~ = 0, 

1, ~ > O. 

(1.14) 

Observe that the contribution in the right-hand side of (1.13) vanishes when the 
argument of the sign function vanishes. So, in practice, the specific value of sgn(~) at 
~ = 0 does not matter. In the forthcoming statements (for instance in (1.16), below) 
we will restrict attention to points (x, t) where ,Xa(x, t) - a±(x, t) =1= O. 

PROOF. Denote by t I--> Xj(t) (1 ::; j ::; m) the polygonal lines of discontinuity for any 
of the functions a, '!fJ, or w. That is, include all of the points in .J(a) U .J('!fJ) U .J(w). 
Let us exclude the set I( a, '!fJ, w) of all of the interaction times when two lines of 
discontinuity for either ones of the functions a, '!fJ, or w intersect in the (x, t)-plane. 
To derive (1.13) it is sufficient to consider any time interval disjoint from I(a,'!fJ,w). 
In such a time interval the discontinuity lines are straight lines and the following 
calculation makes sense. 

In each interval (Xj(t), XHi (t») all of the functions are constant and we can write, 
with completely similar notations as in the proof of Theorem 1.3, 

by observing for instance that 
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After a summation over the index j and a re-ordering of the terms obtained by 
collecting two contributions at each discontinuity, we arrive at 

m 

1I¢(t)lIw(t) = L(Xj(t) - aj(t)t) l¢j(t)1 wj(t) + (aj(t) t - Xj(t)) l¢j(t)1 wj(t). 
j=1 

Differentiating the above identity with respect to t and noting that all terms but 
Xj(t) are constant, we find 

d 
dt 11¢(t)llw(t) 

m (1.15) 
= L(Xj(t) - aj(t)) l¢j(t)1 wj(t) + (aj(t) - Xj(t)) l¢j(t)1 wj(t). 

j=1 

We now rely on the jump relation (1.10) and distinguish between the following pos­
sibilities: 

• Case (Xj(t), t) E .1(a): Here, Xj(t) is a jump point for the function a we have 
Xj(t) = ).a(Xj(t), t). 

• Case (Xj(t), t) E C(a) n .1(¢): The function a is locally constant near Xj(t) 
but ¢ has a jump, and, therefore from (1.10), Xj(t) = a(xj(t), t) = aj(t). 

• Case (Xj(t), t) E C(a) n C(¢) n .1(w): Both a and ¢ are continuous but w is 
discontinuous and, thanks to the constraint (1.12), Xj(t) = a(xj(t), t) = aj(t). 

Clearly, in the last two cases above, the contribution in the right-hand side of (1.15) 
vanishes. Therefore, only the points (x, t) E .1(a) are relevant, and using once more 
(1.10) we obtain 

:tll¢(t)llw(t) = L (sgn().a(x,t) -a_(x,t))w_(x,t) 
(x,t)EJ(a) 

+ sgn(a+(x, t) - ).a(x, t)) w+(x, t)) I).a(x, t) - a_ex, t)II¢_(x, t)l, 

which establishes (1.13). o 

In view of Definition 1.1, the coefficient introduced in (1.14) depend whether the 
discontinuity is of type Lax, undercompressive, or rarefaction: 

{

-I, (x, t) E L(a), 

() ±1, (x, t) E S(a), 
1'± x, t = 

=F1, (x, t) E F(a), 
1, (x, t) E R(a), 

(1.16) 

(provided ).a(x, t) - a±(x, t) i= 0). Consider one pair of terms 

in the right-hand side of (1.13). By (1.16), for each Lax or rarefaction-shock dis­
continuity the two terms are both non-positive or both non-negative, respectively, 
while for each undercompressive discontinuity there is exactly one non-positive and 
one non-negative terms. 
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To take advantage of the property (1.16) within the identity (1.13) it is natural 
to determine the weight w in order that 

() () { :=; 0, (x, t) E S(a), 
w+x,t -w_x,t 

2: 0, (x, t) E F(a), 
(1.17) 

while no condition need be imposed at Lax or rarefaction-shock discontinuities. In 
conclusion, the following "weighted" version of Theorem 1.3 follows immediately from 
Lemma 1.6. 

THEOREM 1. 7. (Weighted L1 stability for linear hyperbolic equations.) Consider 
a coefficient a = a(x, t) and a solution 'l/J = 'l/J(x, t) of (1.6), both being piecewise 
constant. Suppose that there exists a weight-function w > ° satisfying the conditions 
(1.12) and (1.17). Then, for all t 2: ° we have the identity 

where 

and 

L 
(x,s)E'c(a) 

L 
(x,s)ES(a)UF(a) 

(1.18) 

(1.19) 
Iw+(x, s) - w_(x, s)lla_(x, s) - .xa(x, s)II'l/J-(x, s)l, 

R(s):= L (w_(x,s) + w+(x,s)) la_(x,s) - .xa(x,s)II'l/J_(x,s)l· 
(x,s)E'R(a) 

o 

The dissipation terms D2 and D3 are quadratic and cubic in nature, respec­
tively. To apply Theorem 1.7, we need construct a weight w fulfilling the constraints 
(1.12) and (1.17). We will rely on certain geometrical conditions of the coefficient a 
related to the distribution of slow and fast undercompressive shocks. On the other 
hand, in the applications the remainder R either will vanish identically or will tend 
to zero together with some approximation parameter. 

2. L1 continuous dependence estimate 

The framework in Section 1 is now applied to approximate classical entropy solutions 
of the conservation law (1.1), which, by construction, satisfy Oleinik entropy inequal­
ities up to some approximation error. In the rest of this chapter, the coefficient a 
and the solution 'l/J have the form (1.3). We begin in Theorem 2.2 by deriving the L1 
contraction estimate for conservation laws with general flux, relying here on Theo­
rem 1.3. Next in Theorem 2.3 we derive a weighted L1 estimate when the flux-function 
is convex. 

The theory in Section 1 unveiled the fact that rarefaction shocks are the source 
of non-uniqueness in linear hyperbolic equations. So, we start by pointing out the 
following key property. 



2. L1 CONTINUOUS DEPENDENCE ESTIMATE 127 

THEOREM 2.1. (Fundamental property of the averaging coefficient.) If u and v are 
two piecewise constant, classical entropy solutions of the conservation law (1.1) defined 
in some region of the (x, t) plane, then the averaging speed 

a = a(x, t) = a( u(x, t), v(x, t)) 

contains no rarefaction shocks. 

PROOF. The discontinuity lines in a( u, v) are determined by superimposing the dis­
continuity lines in u and v. At a jump point (x, t) E ..1 (a( u, v)) we have 

(i) either (x, t) E ..1 ( u) while v is locally constant, 
(ii) either (x,t) E ..1(v) while u is locally constant, 

(iii) or else (x, t) E ..1(u) n ..1(v) and ).U(x, t) = ).V(x, t). (If the latter would not 
hold, (x, t) would be an interaction point of a( u, v).) 

Case (iii) above is not "generic" and can be avoided by an arbitrary small per­
turbation of one of the solution. Alternatively we can decompose the discontinuity 
in Case (iii) into two discontinuities, one in Case (i), and one in Case (ii). On the 
other hand, Case (ii) being completely similar to Case (i). So we only consider Case 
(i), when u has a discontinuity connecting some states u- and u+ satisfying Oleinik 
entropy inequalities. Recall that the graph of the flux f on the interval limited by 
u- and u+ remains below (above, respectively) the chord connecting the two points 
with coordinates u- and u+, when u+ < u- (u- < u+, respectively). 

Consider for definiteness the case u+ < U-. By extending to the real line the 
chord connecting u- to u+ on the graph of f, we determine finitely many points of 
intersection 

+ + + + + - - - --up < up_1 < ... < u1 < Uo = u < u = Uo < u1 < ... < uq _ 1 < uq , 

such that f is above the line connecting u2J to U2j+1 and the one connecting Ut+1 to 
ut, while it below the line connecting u2J+l to u2j+2 and the one connecting ut+2 
to Ut+l for j = 0,1, ... 

Observe that the nature of a discontinuity in a depends on the location of the 
constant value (say v) taken by the function v. Precisely, in view of Definition 1.1 it 
is clear geometrically that the discontinuity is 

• a Lax shock when v E (u+, u-), 
• slow undercompressive when v E (u2i ,u2i+l) and when v E (utj+2,ut+1)' 
• or fast undercompressive when v E (U2j+1' u2J+2 ) and when v E (Ut+1' ut). 

In particular, there are no rarefaction-shocks. This completes the proof of Theo­
rem 2.1. 0 

Combining Theorems 2.1 and 1.3 we arrive at the following important property 
for scalar conservation laws. 

THEOREM 2.2. (L1 contraction property for general flux.) Let f : IR --t IR be a 
smooth flux-function. Then, the classical entropy solutions of (1.1) satisfy the L1 
contraction property 

Ilu(t) - v(t) II £1 (ffi) ::; Ilu(O) - v(O)II£1(ffi)' t 2: O. (2.1) 

For definiteness, we restrict attention in the present chapter to solutions of (1.1) 
arising as limits of the (piecewise constant) approximate solutions described earlier (in 
Chapter IV). A general uniqueness theory will be developed later on (in Chapter X). 
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PROOF. Starting from some initial values u(O) and v(O), we construct piecewise ap­
proximate solutions uh = uh(x, t) and vh = vh(x, t) by wave front tracking, as de­
scribed in Section IV-2. Recall that uh(O) -t u(O) and uh -t u almost everywhere 
with 

and 
Iluh(t)IIL=(ffi) :::; Ilu(O)IIL=(ffi)' t 2: 0, 

TV(uh(t)) :::; TV(u(O)), t 2: o. 

(2.2) 

(2.3) 

Similar statements hold for vh -t v. The functions uh and vh are actually exact 
solutions of (1.1) but do not fulfill exactly Oleinik entropy inequalities. The rarefaction 
fronts in the solution uh have small strength: 

lu~(x,t) - u~(x,t)l:::; h. (2.4) 

Furthermore, by slightly modifying the initial data uh(O) or vh(O) if necessary, we 
can always guarantee that the discontinuity lines of uh and vh cross at finitely many 
points (x, t) only. Furthermore, we can assume that within a compact region in space 
we always have uh(x, t) i= vh(x, t) (so that 'lj;h does not vanish) while uh(x, t) = 
vh(x, t) = 0 outside this region. As the analysis is completely trivial in the latter we 
only treat the former region. These conditions will be tacitly assumed in the rest of 
this chapter. 

Following the general strategy sketched in the beginning of Section 1, we set 
'lj;h := vh - uh and (jh := (j(uh, vh). Since both uh and vh are solutions of (1.1) we 
have 

(2.5) 
In view of Theorem 1.3 and Remark 1.4 and using the total variation bound (2.3) we 
get 

thus 

II'Ij;h(t)II£1(ffi) :::;11'Ij;h(O)IILl(IR) 

+ 2t (TV(u(O)) + TV(v(O))) sup (a~(x, T) - a~(x, T)), 
(x,T)ER(ah ) 

TE(D,t) 

Ilvh(t) - uh(t) II £1 (ffi) :::; Ilvh(O) - uh(O) II £1 (ffi) + C1 t sup (a~(x, T) - a~(x, T)). 
(x,T)ER(ah ) 

TE(D,t) 

Since uh(O) -t u(O) and vh(O) -t v(O), by lower semi-continuity of the L1 norm it 
follows that 

Ilv(t) - u(t) II £1 (ffi) :::; liminf IIvh(t) - uh(t) II £1 (ffi) 
h-+O 

:::; Ilv(O) - u(O) II £1 (ffi) + C1 t liminf sup (a~(x, T) - a~(x, T)). 
h-+O (x,T)ER(ah) 

TE(D,t) 

To conclude we show that 

sup (a~(x, T) - a~(x, T)) :::; C2 h. 
(x,T)ER(ah ) 

TE(D,t) 

(2.6) 

Suppose that vh(t) is continuous at some point x, i.e., is identically equal to some 
constant v, while uh has a shock connecting u- to u+, say. If the front in uh is an 
entropy-satisfying shock, then by Theorem 2.1 the discontinuity in (jh cannot be a 
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rarefaction shock. If the front in uh is a rarefaction-shock, then we estimate the jump 
of ah as follows 

ai (x, T) - a~ (x, T) = 101 l' (u+ + B (v - u+)) dB - 101 l' (u_ + B (v - u_)) dB 

:::; III"IIL'''' lu+ - u_1 :::; C2 h, 

where we used the uniform bound (2.4). This completes the proof of Theorem 2.2. 
o 

We now rely on Theorem 1. 7 and derive a weighted L1 estimate when the fiux­
function is convex. This new estimate provides us with additional information beyond 
the L1 contraction property (2.1), specifically a lower bound on the decrease of the 
L1 distance between two solutions of (1.1). Later on in Chapter IX in the context 
of systems, it will be essential to work with a weighted norm in order to cope with 
"wave interaction" error terms and derive a generalization of (2.1) for systems. 

THEOREM 2.3. (Weighted L1 estimates.) Consider the scalar conservation law (1.1) 
where the flux f is a convex function. Given sequences of front tracking approxima­
tions uh and v h and a constant K > 0 satisfying 

(2.7) 

there exists a (piecewise constant) weight wh = wh(x, t) satisfying for all (x, t) the 
uniform bounds W~in :::; wh (x, t) :::; w~ax with 

W~in := 1 - 2KTV(uh(0)) - 2KTV(vh(0)), 

w~ax := 1 + 2KTV(uh(0)) + 2KTV(Vh(0)), 

such that the weighted L1 continuous dependence estimate 

1m Ivh(t) - uh(t)1 wh(t) dx + lot (D~(s) + D~(s)) ds 

= 1m Ivh(O) - uh(O)1 wh(O) dx + lot Rh(s) ds 

holds for all t :::: 0, where ah := a( uh, vh) and 

D~(s) := 

(x,s )Es(a;h )uF(a;h) 

and 

(x,s)ER,(a;h) 

(2.8) 

(2.9b) 

Interestingly, by letting K ----t 0 in (2.8) and neglecting the (non-negative) term 
Dg we recover the L1 contraction estimate (2.1) derived in Theorem 2.2. Of course, 
when K > 0 the statement (2.8) is much stronger than (2.1). The passage to the limit 
h ----t 0 in (2.8) and (2.9) is discussed in Section 3 below. Of course, as was already 
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observed (Remark 1.4 and the proof of Theorem 2.2), the last term in (2.8) vanishes 
when h -+ 0. 

It will be convenient to denote by S(a\ uh ) and F(a\ uh ) the slow and the fast 
undercompressive discontinuities in ah associated with jumps of uh • A similar notation 
is used for vh. Recall that the difference between two solutions, 'ljJh := vh - uh , keeps a 
constant sign at each undercompressive discontinuity. (See for instance Remark 1.5.) 

Using that f is convex it is not difficult to check that: 

LEMMA 2.4. The nature of the fronts is determined in each region where 'ljJh = vh -uh 
keeps a constant sign, as follows: 

{ 
> ° 

'ljJ~(x, t) 
<0, 

(2.10) 

PROOF OF THEOREM 2.3. Step 1 : Preliminaries. To simplify the notation we 
omit the upper index h. In view of (2.10) we can rewrite the required conditions 
(1.17) on the weight, in the following strengthened form: 

{ 

-K lu+(x, t) - u_(x, t)l, (x, t) E .J(u), 

() ( ) _ Klu+(x,t)-u_(x,t)l, (X,t)E.J(u), 
w+ x,t -w_ x,t -

K Iv+(x, t) - v_(x, t)l, (x, t) E .J(v), 
-K Iv+(x, t) - v_(x, t)l, (x, t) E .J(v), 

'ljJ±(x, t) > 0, 

'ljJ±(x, t) < 0, 

'ljJ±(x, t) > 0, 

'ljJ±(x, t) < 0. 
(2.11) 

When such a weight exists, Theorem 1. 7 provides us immediately with the desired 
identity (2.8). 

Let us also point out the following property associated with convex-flux functions. 
Suppose that two fronts in the solution u interact at some point (x, t), and generate 
a (single) front. Call u/, Um, U r the constant states achieved before the interaction, so 
that Ul and U r are the left- and right-hand states after the interaction. The strength 
of the outgoing front in u is less than or equal to the total sum of the strengths 
before the interaction, and the corresponding decrease is measured by the amount 
of cancellation at the point (x, t): 

(2.12) 

Suppose that (JU(x, t) > ° and, for definiteness, that U m < U r < Ul. Then, we will say 
that the solution u contains, from the interaction time on, a past (or cancelled) 
wave front with strength 21ur - U m I. For clarity, we will sometime refer to the fronts 
in the solution u as present wave fronts. The same notation and terminology apply 
also to the solution v. 

Step 2 : Main argument of proof. By setting (away from interaction times and 
discontinuities) 

w(x, t) = 1 + L [w] (y, t), 
y<x 

the (piecewise constant) weight w is uniquely determined if we prescribe its derivative 
Wx in the form of finitely many Dirac masses propagating along polygonal lines and 
referred to as particles or anti-particles (see below for the precise definition) which 
may propagate along characteristic lines or discontinuity lines of a in agreement with 
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the earlier requirement (1.12). By convention the (signed) mass of a particle may 
be positive or negative. Particles and anti-particles will be generated from the same 
location and the sum of their masses be zero. The jump [w] (y, t) is the total mass 
of all of the particles and anti-particles located at (y, t). 

Our construction will associate a train of particles and anti-particles with every 
front in the solutions u and v as well as with every cancelled front. To proceed we 
will decompose the (x, t)-plane in finitely many regions in which the function 'IjJ keeps 
a constant sign. We will ensure that the following property holds: 

(P): With every present wave front with strength e and within every region n in 
which 'IjJ keeps a constant sign, we can associate a set of particles and a set of 
anti-particles located within the region n such that the total mass of particles 
is equal to ±e while the total mass of anti-particles is equal to =Fe (the sign 
depending on the region). 

An analogous property will hold for past waves. Based on (P) we conclude the proof 
as follows. 

Denoting by E1(t) the set of locations of particles and anti-particles associated 
with present fronts, we find (Xl < X2) 

-KTV(u(t)) - KTV(v(t)):::; L [w] (y, t) :::; KTV(u(t)) + KTV(v(t)). (2.13) 

On the other hand, observe that the total amount of cancellation can be bounded by 
the initial total variation 

L eU(x, t) + eV(x, t) 
interactions (x,t) 

TV(u(t-)) -TV(u(t+) + TV(v(t-)) -TV(v(t+)) 
interactions t interactions t 

:::; TV(u(O)) + TV(v(O)). 

So, calling E2 (t) the set of locations of particles and anti-particles associated with 
past fronts, we find now 

-KTV(u(O))-KTV(v(O)):::; L [w](y,t):::; KTV(u(O))+KTV(v(O)). (2.14) 

Finally, collecting the terms in (2.13) and (2.14) we arrive at 

-2KTV(u(O)) - 2KTV(v(O)):::; L [w] (y, t) :::; 2KTV(u(O)) + 2KTV(v(O)), 
Xl <Y<X2 

which leads us to the conclusion of the theorem. 

Step 3 : Constructing the weight. It remains to explain how particles and anti­
particles are generated and propagate in time. Recall first that the interaction of two 
incoming fronts in u (v, respectively) generates a single outgoing front in u (v, respec­
tively), while the crossing of two fronts in u and v can be regarded as an interaction 
point with two outgoing fronts. The former are referred to as u/u interactions and 
v/v interactions, respectively. The latter are referred to as u/v interactions if 
the front in u travels faster than the front in v, and as v/u interactions otherwise. 
Let us decompose the (x, t)-plane in finitely many regions in which the function 'IjJ 
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keeps a constant sign. According to (2.10), the waves within these regions can only 
be slow or fast undercompressive, while the boundaries are made of Lax shocks or 
rarefaction-shocks. 

In each region where 'if; keeps a constant sign, say a region denoted by 0+ where 
'if; 2 0, the weight is defined locally near the initial line t = 0, as follows. With each 
front leaving from a point (x, 0) we associate a particle with strength ±e determined by 
(2.11) and propagating along with the wave front, that is with the speed .xa . We also 
introduce a corresponding anti-particle with opposite strength =Fe propagating with 
the local characteristic speed associated with the speed a. Then, (2.11) is satisfied 
for small times. 

Next, the dynamics of anti-particles within 0+ is straightforward: Any jump in 
the speed a is slow or fast undercompressive and, therefore, all characteristic lines 
cross these jumps transversally. A characteristic can never exit 0+ since its bound­
ary is made of Lax and rarefaction-shock fronts, only. Hence, the anti-particles simply 
propagate within 0+, passing through fronts of a until they possibly reach the bound­
ary 0+ and stick with it. At this juncture observe that, within 0+, all of the waves 
in the function a associated with jumps in U are slow undercompressive, while the 
waves associated with v are fast undercompressive. 

For small times we have associated with each wave one particle and one anti­
particle. More generally, for arbitrary times and to each wave front it is necessary 
to associate a train made of several pairs of particles and anti-particles, in agreement 
with the property (P) above. Furthermore, waves may be cancelled and to each 
cancelled front we also associate a train of particles and anti-particles satisfying (P). 
So, to complete the definition of the weight w we now distinguish between several 
interaction cases, depending whether the waves under consideration interact within, 
enter, or leave the region 0+: 

• u/v or v/u Interactions within 0+ : Suppose, for instance, that a line of 
discontinuity in the solution u crosses a line of discontinuity in the solution v, 
at some point (x, t). Since the two fronts cross each other without changing 
their respective strengths we impose that the particles associated with the 
incoming fronts propagate forward without change. 

• u/u or v/v Interactions within 0+ : Suppose, for instance, that two fronts 
in the solution u interact at some point (x, t) and generate a (single) front 
in the solution u. Call Ul, Um, and Ur the constant states achieved before 
the interaction. Here, we replace the two incoming particles (propagating 
together with the incoming fronts) with masses -K IUm -uzi and -K Iur-uml 

respectively with a single particle (propagating together with the outgoing 
front) with mass - K IUr - uzl. The discrepancy in taken care of by introducing 
a new particle associated with the cancelled front (propagating at the local 
characteristic speed and) carrying the mass -K eU(x, t). When eU(x, t) = 0, all 
particles and anti-particles associated with the incoming fronts are naturally 
associated with the outgoing front. When eU(x, t) i= 0, the incoming front 
which is completely cancelled is refer to a past front and remains associated 
with its anti-particles, while the mass of the anti-particles associated with the 
surviving front is decomposed in such a way that the property (P) holds. 

• Leaving/entering fronts: Consider first a front in the solution u leaving 0+ 
on the right-hand side. Calling Ul, Ur and VI, Vr the corresponding left- and 
right-hand states, we have here Vr < min( Ul, u r ) < max( Ul, u r ) < VI. It is an 
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interaction of the type (SuLv)-(L~F~), that is, a slow undercompressive front 
in u meeting with a Lax front in v and generating a Lax front in v and a fast 
compressive front in u. We impose here that the particle associated with the 
front Su sticks with the boundary L~ of n+. (In fact, here it cancels together 
with its corresponding anti-particle.) On the other hand, with the outgoing 
wave F~ (within a new region where now t/J < 0) we associate a new pair 
of particle and anti-particle, in agreement with the constraints (2.11): The 
particle with mass K jUr - ulj propagates along with the front F~ while the 
anti-particle sticks with the boundary L~. 

Consider next a front in the solution u leaving n+ on the left-hand side. 
We now have Vz < min( Uz, u r ) < max( UZ, u r ) < Vr and an interaction of the 
type (RvSu)-(F~R~). We impose that the particle associated with Su sticks 
with the boundary R~ of the region n+. On the other hand, with the wave 
F~ and in a region where now t/J < 0, we associate a particle along F~ and an 
anti-particle along R~, in agreement with the constraints (2.11) . 

• u/v orv/u Interactions closing the region n+ : At an interaction involving two 
boundaries of the region n+ it turns out that all particles and anti-particles 
within that region cancel each other. 

This completes the construction of the weight and, therefore, the 'proof of Theo-
rem 2.3. 0 

REMARK 2.5. It is also possible to initialize the weight near t = 0 without introducing 
anti-particles. Then, all anti-particles (which, anyway, must be introduced when 
waves pass from a region t/J > 0 to a region t/J < ° and vice-versa) remain "stuck" 
along the boundaries t/J- t/J+ < O. Only particles generated by cancellation propagate 
along characteristics in the interior of the regions. 0 

3. Sharp version of the continuous dependence estimate 

Our next purpose is to pass to the limit (h ~ 0) in the statement established in 
Theorem 2.3 for piecewise constant approximate solutions. The proofs are omitted 
here as they will be given in Section IX-3 for systems of equations. 

For each function with bounded variation u = u(x) we denote by C(u) and J(u) 
its points of continuity and jump discontinuity, respectively, and by u±(x) its left­
and right-hand limits at x E J ( u). Let VU denote the total variation function x f-> 

TV':oo(u(t)) associated with u(t). 
To any three functions of bounded variation u, v, w in x we associate the non­

conservative product 

(a(u, v) - J'(u)) (v - u) dw := J.L 

which is defined as the unique measure on IR characterized by the following two 
conditions: 

• If B is a Borel set included in the set C(w) of continuity points of w 

J.L(B):= is (a(u,v) - J'(u)) (v - u)dw, (3.1a) 

where the integral is defined in a classical sense; 
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• If X E :l(w) is a jump point of w, then 

JL({x}):= ~ ((a(u+,v+) -a(u_,u+») (v+ -1),+) 

+ (a(u_, v_) - a(u_, u+») (v_ - u_») Iw+ - w_1 

with u± = u(x±), etc. 

(3.1b) 

The following theorem provides a sharp estimate for the decrease of the weighted 
distance between two solutions at time t: 

IIv(t) - u(t)lIw(t) := 1m Iv(x, t) - u(x, t)1 w(x, t) dx. 

THEOREM 3.1. Let f be a strictly convex function and u and v be two entropy solu­
tions of bounded variation of the conservation law (1.1). Then, for each K satisfying 

3K (TV(u) + TV(v») < 1, 

there exists a function w = w(x, t) which is bounded and remains bounded away from 
zero such that the sharp £1 continuous dependence estimate 

IIv(t) - u(t)lIw(t) + lot (D2(u(s), v(s» + D2(V(S), u(s» 

+ D3(U(S), v(s)) + D3(V(S), u(s))) ds 

s Ilv(O) - u(O)llw(o) 

(3.2) 

holds for all t ~ 0, where the dissipation terms are defined for each given time by 

D2(u, v) := 2T(u, v) L la(u_(x),v_(x» - a(u_(x), u+(x») !Iv_(x) - u_(x)l, 
XE.c(u,v) 

D 3 (u,v):= K 1m (a(u,v) - f'(u») (v - u)dVu. 

(3.3) 
with 

T(u, v) := 1 - 2K (TV(u) + TV(v»), (3.4) 

and the set of Lax: discontinuities £( u, v) c IR in the function u is the set of points x 
satisfying (v_(x) - u_(x)) (v_(x) - u+(x») SO. 0 

The terms D2 and D3 are quadratic and cubic in nature, respectively. Observe 
that the integral term in the left-hand side of (3.2) is positive and, therefore, do 
contribute to the decrease of weighted distance between the two solutions. To see 
this, let us decompose the cubic dissipation term in continuous and atomic parts: 

D3 (u,v) =K 1m (a(u,v) - I'(u») (v - u)dVCU 

+K L (a(u_,v_) -a(u+,u_)) (v_ -u_)!u+ -u_I, 
(3.5) 

xE..7(u) 

where Vcu denotes the continuous part of the total variation measure VU. The set of 
jump points in u can be decomposed as follows: 

:leu) = £(u,v) US(u,v) U.r(u,v), (3.6) 
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where .c(u,v), S(u,v), F(u,v) are the subsets of Lax, slow undercompressive, and 
fast undercompressive discontinuities in the solution u, respectively, with 

(v_(x) - u_(x)) (v_(x) - u+(x)) ~ 0 

(v_(x) - u_(x)) 2:: 0 and (v_(x) - u+(x)) 2:: 0 

(v_(x) - u_(x)) ~ 0 and (v_(x) - u+(x)) ~ 0 

when x E .c(u, v), 

when x E S(u,v), 

when x E F(u, v). 

(3.7) 

(Note that exact entropy solutions cannot have rarefaction-shock discontinuities.) 
Then the sharp Ll estimate (3.2) implies 

where 

with 

Ilv(t) - u(t)lIw(t) + lot (D 2(u(s),v(s)) + D2(V(S), u(s)) 

+ D3(U(S), v(s)) + D3(V(S), u(s))) ds 

~ IIv(O) - u(O)llw(o), 

xE£( u,v) 

D3(u,v):= K L 
xES(u,v)UJ'(u,v) 

+ K 1m lac u, v) - l' (u) Ilv - ul dVCU ' 

T(u,v):= 1- 3K (TV(u) + TV(v)). 

(3.8) 

The following is a simplified version of Theorem 3.1 in which the weight equals 
w = 1 with K = 0 and T(u,v) = l. 

THEOREM 3.2. Under the assumptions in Theorem 3.1, for all t 2:: 0 we have 

where 

Ilv(t) - u(t)II£l(lR) + lot (D2 (u(s), v(s)) + D2(V(S), u(s))) ds 

~ lIu(O) - v(O)II£l (lR), 

D2(u, v):= L 2 (a(u_(x),v_(x)) - a(u_(x), u+(x))) Iv-(x) - u_(x)l· 
xE£(u,v) 

4. Generalizations 

(3.9) 

o 

By taking v = 0 in the continuous dependence results derived in Sections 2 and 3, 
for instance in Theorem 2.2, we find immediately that the norm lIu(t)IIL1(lR) is non­
increasing in time for every classical entropy solution u. In fact, this result holds also 
for nonclassical entropy solutions, as shown now. 
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THEOREM 4.1. (£1 stability of nonclassical solutions.) Let f : IR -+ IR be a concave­
convex flux-function and cp'p be a kinetic function satisfying the conditions (IV -3.2). 
Then, any nonclassical entropy solution u = u(x, t) (generated by wave front tracking 
and) based on the corresponding kinetic relation satisfies the L1 stability property 

lIu(t)II£1(ffi) ::; Ilu(O)II£1(ffi)' t ~ O. ( 4.1) 

Theorem 4.1 applies, for instance, to the cubic flux-function and kinetic functions 
determined by diffusive-dispersive limits (Section 111-2). 

PROOF. Given a sequence of piecewise constant approximations uh converging to the 
nonclassical solution u (see Section IV-3) , we can follow the approach developed in 
Section 1 (Theorem 1.3) with now the function 

'ljJh:= uh. (4.2) 

Thanks to (IV-3.2e), all of the discontinuities of the averaging coefficient 

ah := a(uh,O) = f(uh): f(O) 
u 

are Lax or undercompressive discontinuities except for those associated with rarefac­
tion fronts in uh , that is, an analogue of Theorem 2.1 holds true! Therefore, the last 
term in the right-hand side of (1.7) tends to zero with h. Neglecting the last term in 
the left-hand side we obtain 

which yields (4.1). 

(4.3) 

o 

In fact, nonclassical entropy solutions should satisfy an analogue of the £1 con­
tinuous dependence results obtained in Sections 2 and 3. We conjecture the following 
stability result, which supplements the existence result in Theorem IV-3.2. 

THEOREM 4.2. (£1 continuous dependence of nonclassical solutions.) Under the no­
tations and assumptions in Theorem IV-3.2, any two nonclassical entropy solutions 
u = u(x, t) and v = v(x, t) generated by wave front tracking and based on a given 
kinetic relation satisfy the £1 continuous dependence property 

Ilu(t) - v(t) II £1 (ffi) ::; C* Ilu(O) - v(O)II£1(ffi)' t ~ O. ( 4.4) 

where the constant C* > 0 depends on the kinetic function and the £00 norm of the 
solutions under consideration. 
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CHAPTER VI 

THE RIEMANN PROBLEM 

In this first chapter on systems we explicitly construct the classical and the nonclas­
sical entropy solutions to the Riemann problem associated with a strictly hyperbolic 
system of conservation laws. The initial data consist of single jump discontinuities 
of sufficiently small strength. As was already observed with scalar conservation laws 
(Chapter II), solutions can be obtained by combining shock waves and rarefaction 
waves together. Motivated by the applications (Sections 1-3 and 1-4) we are primarily 
interested in systems endowed with a strictly convex entropy pair and in solutions 
satisfying a single entropy inequality. 

In Section 1 we discuss general properties of shock and rarefaction waves. In the 
(comparatively easier) case of systems whose all characteristic fields are genuinely 
nonlinear or linearly degenerate, a single entropy inequality is sufficient to select a 
unique solution to the Riemann problem; see Theorem 1.6. Then, in the following 
sections we focus on characteristic fields that are not globally genuinely nonlinear. 
In Section 2 we prove that Lax shock inequalities select a unique (classical) entropy 
solution when the characteristic fields of the system are concave-convex or convex­
concave (or genuinely nonlinear or linearly degenerate); see (2.2) and Theorem 2.1. 
On the other hand, in Sections 3 and 4 we show that a single entropy inequality leads 
to undercompressive shock waves and to a multi-parameter family of solutions (one 
for each concave-convex or convex-concave characteristic field) and imposing a kinetic 
relation we arrive at a unique nonclassical entropy solution to the Riemann problem; 
see Theorems 3.4, 3.5, and 4.3. 

1. Shock and rarefaction waves 

We consider the Riemann problem for a system of conservation laws 

fhu + oxf(u) = 0, u = u(x, t) E U, (1.1) 

u(x,O) = {Ul' X < 0, (1.2) 
ur , x> 0, 

where U c JRN is an open set, the function f : U --t JRN is a smooth mapping, and Ul, 

U r are constant states in U. Since this problem is invariant under the transformation 
(x,t) f---> ((}x,(}t) (for any () > 0), it is natural to search for a self-similar solution 
U = u(~), with ~ = x/to In view of (1.1) and (1.2) the solution must satisfy the 
ordinary differential equation 

_~U' + f(u)' = 0, U = u(~), (1.3) 

and the boundary conditions 

U(-OO)=UI, u(+oo)=ur . (1.4) 

P. G. LeFloch 
© Birkhauser Verlag 2002

Hyperbolic Systems of Conservation Laws
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Throughout, we restrict attention to values U in a neighborhood of a constant 
state normalized to be 0 E JRN and, so, we set U := 8(80), the ball with center 0 
and radius 80 > O. Moreover, the flux-function f is assumed to be strictly hyperbolic, 
that is, the Jacobian matrix A(u) := Df(u) has N real and distinct eigenvalues, 

A1(U) < ... < AN(U), 

and basis of left- and right-eigenvectors li(u) and ri(u), 1 :::; i :::; N, respectively. 
Recall that Ii (u) r j (u) = 0 if i t= j and, after normalization, we can always assume 
that li(u) ri(u) == 1. Finally, we assume that 80 is sufficiently small so that the wave 
speeds are separated, in the sense that 

SUPAj_1(u)<infAj(u) (j=2, ... ,N). 
uEU uEU 

Here, we are primarily interested in a system of conservation laws (1.1) endowed 
with a strictly convex, mathematical entropy pair (U, F) : U ~ JR2. Following the 
discussion in Section I-3 we constrain the weak solutions to satisfy the single entropy 
inequality 

OtU(U) + oxF(u) :::; 0, 
which, for self-similar solutions, reads 

-e U(u)' + F(u)' :::; O. 

Shock waves and Hugoniot curves. 

(1.5) 

(1.6) 

The so-called shock waves provide an important family of elementary solutions of 
(1.1). Those solutions take only two constant values, u_ and U+ E U, and have the 
form 

( ) { 
U_, x < At, 

U x,t = 
U+, x> At, 

(1.7) 

where A is called the shock speed. We know from Theorem I-2.3 that (1.7) is a weak 
solution of (1.1) if and only if the states U_, U+ and the speed A satisfy the Rankine­
Hugoniot relation 

(1.8) 
To study (1.8), we fix the left-hand state u_ and we study the local structure of the 
Hugoniot set consisting of all right-hand states u+ satisfying (1.8) for some A. 

THEOREM 1.1. (Hugoniot curves.) There exist (h < 80 and c: > 0 such that for each 
u_ E 8( 8t) the following holds. The Hugoniot set can be decomposed into N curves 
8 f--+ Vi (8j u_) (1 :::; i ::; N) defined for 8 E (-c:, c:) and depending smoothly on 8 and 
U_. Moreover, we have 

82 
Vi(8j U_) = U_ + sri(U-) + 2' (Dri ri)(U_) + 0(s3) (1.9) 

and the corresponding shock speed A = "Xi (Sj u_) satisfies 

"Xi(SjU_) =Ai(U-) + ~ (V'Ai' ri){U_) 

8 2 ( V'A- . r- ) +6 (V'(V'Ai·ri)·ri)+ ; 'li(Driri) (u_)+0(s3). 
(1.10) 

We will use the notation 

'Hi(U-) = {vi(S; u_) / S E (-c:, c:)} 
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and refer to 1-li(U-) as the i-Hugoniot curve issuing from u_. Note in passing 
that, by (1.10), when the genuine nonlinearity condition (Definition I-l.4) 

V'Ai(U-)' ri(u_) > 0 

holds, the shock speed Xi (Sj u_) is an increasing function of s. (If necessary, replace 
here € with a smaller value.) 

Since the matrix D f (u_) is strictly hyperbolic for all u_ E B( 80 ), so is the 
averaging matrix 

(1.11) 

for all u_, u+ E B( (h), where 81 < 80 is sufficiently small. We denote by Xi (u_, u+), 
ri (u_, u+), Ii (u_, u+) its eigenvalues and eigenvectors which we normalize so that 
Ii(u_,u+)ri(u_,u+) = 1. Observe that Xi(u_,u_) = Ai(U-), etc. 

PROOF. The Rankine-Hugoniot relation (1.8) is equivalent to 

(1.12) 

which shows that, for some index i = 1, ... , N, the vector (u+ -u_) is an i-eigenvector 
and A = Xi ( u_, u+ ). In particular, we get 

Ij(u_,u+)(u+-u_) =0, ji=i, j=I, ... ,N, 

which is a nonlinear algebraic system of N - 1 equations for the unknown N-vector 
u+. Let us apply the implicit function theorem to the mapping 

( - ) N-l u+ E U I--' G(u+) = lj(u_, u+) (u+ - u_) ifi E IR 

in a neighborhood of u+ = u_, which is a trivial solution of 

Since the Jacobian matrix at u+ = u_, 

DG(u_) = (lj(u_))#i' 

has maximal rank, N - 1, there exists a smooth curve of solutions u+ of (1.12), 
depending smoothly also upon the base value u_. By continuity, when u+ -; u_ we 
have A = Xi ( u_ , u+) -; Ai ( u_ ). 

Regarding u+ and A as functions of some parameter s, say 

u+ = Vi(SjU_) = v(s), A = Xi(SjU_) = X(s), 

let us differentiate (1.8) with respect to s: 

X'(s) (v(s) - u_) = (A(v(s)) - X(s)) v'(s). 

Differentiating (1.13) once more we obtain 

X" (s) (v( s) - u_) + 2 X' (s) v' (s) 

= (DA(v(s)) . v'(s)) v'(s) + (A(v(s)) - X(s)) v"(s). 

Letting first s -; 0 in (1.13) we find 

(1.13) 

(1.14) 
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We already observed that "X(O) = Ai(U-), so the above relation shows that v'(O) is a 
multiple of the eigenvector Ti(U-). Moreover, one can check that v'(O) f 0 so that, 
by modifying the parametrization if necessary (replacing 8 with a 8 for some constant 
a) we obtain 

v'(O) = Ti(U-). 
Next, letting 8 ----> 0 in (1.14) we find 

On the other hand, by differentiating the relation A Ti = Ai Ti we have 

so 
(2 "X' (0) - VAi(U-) . Ti(U-)) Ti(U-) 

= (A(v(O)) - Ai(U-)) (v"(O) - DTi(U-h(u-)). 
(1.15) 

Multiplying (1.15) by the left-eigenvector li(U-), we deduce that 

Returning to (1.15) we see that v"(O) - DTi(U_) Ti(U-) must be an eigenvector. In 
other words, for some scalar b we have 

By modifying again the parametrization if necessary (replacing 8 with 8 + b 8 2 /2) the 
term bTi(U_) can be absorbed in the first term of the expansion (1.9). 

Differentiating (1.14) once more we obtain 

-II 3 
3A (0) Ti(U_) +"2 (VAi· Ti)(U-) (DTi Ti)(U-) 

= ((D2 A Ti) Ti)Ti(U_) + (DA(DTi Ti)) Ti(U-) 
+ 2 (DA Ti)(U-) (DTi Ti)(U-) + (A(u_) - Ai(U-)) vlll(O). 

On the other hand, by differentiating the relation A Ti = Ai Ti twice we have 

((D2 A Ti) Ti)Ti( u_) + (DA(DTi Ti)) Ti( u_) + 2 (DA Ti)( u_) (DTi Ti)( u_) 

= - (A(u_) - Ai(U-)) D(DTi Ti) Ti(U-) + 2 (VAi . Ti)(U-) (DTi Ti)(U-) 

+ (V(VAi . Ti) . Ti)(U-) Ti(U-). 

It follows that 

(3 "X" (0) - (V (V Ai . Ti) . Ti) (U_)) Ti( u_) 

= (VAi . ;i)( U_) (DTi Ti)( u_) + (A( U_) - Ai( U_)) (v"'(O) - D(DTi Ti) Ti( U_)). 

It suffices to multiply this identity by the left-eigenvector li to complete the derivation 
of (1.10) and, therefore, the proof of Theorem 1.1. 0 
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Rarefaction waves and integral curves. 
We now turn to the discussion of the rarefaction waves. They are constructed from 
smooth and self-similar solutions of the equation (1.3), i.e., by solving the equation 

(-~+A(U))U'=O. (1.16) 

If (1.16) holds and U'(~) i- 0 there must exist i E {I, ... ,N} and a scalar c(~) such 
that (for all relevant values ~) 

By differentiating the second relation above we obtain 1 = c(O \7 Ai( u(~))·ri( u(~)), 
which determines c(~) when the genuine nonlinearity condition \7Ai(U) . ri(u) i- 0 
holds. When the latter vanishes the corresponding coefficient c(~) becomes infinite. 

The range of a rarefaction wave describes the integral curve associated with the 
vector field rio For each given u_ satisfying \7Ai(U-)· ri(u_) i- 0 let us denote by 
~ 1-+ u( ~; u_) the solution of the following ordinary differential equation with pre­
scribed data at ~_ := Ai (u_ ), 

I ri(u) () 
u = \7Ai(U) . ri(U) , U ~- = U_. (1.17) 

The solution exists and is smooth, as long as the term \7Ai(U)· ri(u) does not vanish. 
Importantly, the condition ~ = Ai(U(O) is a consequence of (1.17). 

The i-rarefaction waves issuing from u_ are parametrized by their right-hand 
speed ~+ and are defined as follows. For any ~+ 2: ~_, the i-rarefaction wave 
connecting u_ to U+ = u(~+; u_) is defined by 

u(x, t) ~ { 

x ~ ~_ t, 
~_ t ~ x ~ ~+ t, 

x 2: ~+ t, 
(1.18) 

which is a self-similar and Lipschitz continuous solution of (1.1). Since ~ = Ai(U(~)) 
by construction, we have ~+ = Ai(U+). We emphasize that ~+ must be greater than 
~_. Indeed, the part ~+ < ~_ of the integral curve cannot be used since it would lead 
to a multivalued function in (1.18). 

Often, we will be interested only in the range {u(~; u_) / ~_ < ~ < ~+ } C JRN, 

for which the parametrization is irrelevant. 

THEOREM 1. 2. (Integral curves.) There exist (h < 60 and c > 0 such that for each 
u_ E 8(61) the following holds. For each i E {I, ... ,N} the integral curve Vi (u_) 
defined by 

(1.19) 

is a curve 8 1-+ Wi (8; u_) defined for 8 E (-c, c) and depending smoothly upon u_ and 
8, which satisfies 

82 
Wi(8; u_) = U_ + 8ri(U_) + "2 Dri(U_) ri(U_) + 0(83 ) (1.20) 

and 
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Comparing (1.19) with (1.17), we note that the singularity in (1.17) is due to the 
choice of the parameter ~ imposed along the integral curve inside the rarefaction fan. 
Note also that, later on, it will be convenient to describe the (range of the) integral 
curve via a different parameter s and so to replace (1.19) with 

(1.19') 

where a(s) is a smooth function bounded away from zero. (See also Remark 1.7 
below.) 

Finally, rarefaction waves of the form (1.18) are constructed as follows. Assuming 
that the genuine nonlinearity condition V'.\ (u_) . ri (u_) > 0 holds at the point U_, 

the wave speed s I-t Ai (Wi (S; U_ )) is an increasing function, at least near s = O. It 
follows that s I-t Ai(Wi(S;U-)) is a one-to-one mapping from (-c,c) onto a neighbor­
hood of Ai(U-). So, the function s I-t ~ = Ai(Wi(S;U-)) admits an inverse denoted 
by ~ I-t O'(~). Choosing any value S+ > 0 and setting u+ = Wi (s+; u_) we define the 
corresponding rarefaction wave connecting u_ to U+ by 

x:::; tAi(U-), 
tAi(U-) :::; x:::; tAi(U+), 

x ~ tAi(U+), 
(1.22) 

Observe that, when V'Ai(U-) . ri(u_) > 0, only the part S > 0 of the integral curve 
can be used to construct rarefactions. (The formula (1.22) would give a multivalued 
function for S < 0.) 

Contact discontinuities. 
Shock waves associated with a linearly degenerate field are called contact disconti­
nuities and satisfy the following property. 

THEOREM 1.3. (Contact discontinuities.) There exist 01 < 80 and c > 0 such that for 
each u_ E B(od the following holds. Suppose that the i-characteristic field is linearly 
degenerate, that is, 

V'Ai·ri=O. 
Then, the integral curve Oi(U-) and the Hugoniot curve 'Hi(U-) coincide. Moreover, 
the characteristic speed along the integral curve and the shock speed along the Hugoniot 
curve are constant and coincide. 

PROOF. Note that along the integral curve s I-t W( S) = Wi (S; u_) the wave speed is 
constant since Ai(W(S))' = V'Ai(W(S)) . ri(w(s)) = O. Then, consider 

Using that w'(s) = ri(w(s)) we obtain 

h'(s) = -Ai(W(S)) w'(s) + A(w(s)) w'(s) = O. 

Since h(O) = 0 we have h(s) = 0 for all relevant values of s. This proves that the 
Rankine-Hugoniot relation (1.8) holds along the integral curve and that the two curves 
under consideration do coincide with, furthermore, Ai(W(S)) = "Xi(U_,W(s)), D 
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Genuinely nonlinear and linearly degenerate fields. 
We now assume that each field associated with (1.1) is either genuinely nonlinear, 
that is, \7)..k . rk > 0 after normalization, or linearly degenerate, that is, \7)..k . rk == O. 
Combining shock and rarefaction waves together, we are able to solve the Riemann 
problem (1.1) and (1.2). To ensure the uniqueness of the weak solution, we impose 
the entropy inequality (1.5), where (U, F) is a given entropy pair. For a shock wave 
ofthe form (1.7), the entropy inequality (see (1.6)) precisely imposes that the rate of 
entropy dissipation be non-positive, that is, 

E(u_,u+):= -).. (U(u+) - U(u_)) + F(u+) - F(u_) :s; O. (1.23) 

The following lemma provides the sign of the entropy dissipation 

E(s; u_) := E(u_, Vi(S;U-)) 

along the i-Hugoniot curve issuing from u_. (For the notation, see Theorem 1.1.) 

LEMMA 1.4. (Entropy dissipation.) Along the i-Hugoniot curve issuing from u_, we 
have 

3 

E(s; u_) = ~2 (r[ D2U ri) (u_) \7)..i(U-) . ri(u_) + 0(S4). (1.24) 

PROOF. We use the same notation as in the proof of Theorem 1.1. The entropy 
dissipation rate is expressed as a function of s: 

- -, 
On one hand, we have immediately E(O; u_) = E (0; u_) = 0 and, with some tedious 

-II -II' 
calculation, one may also get E (0; u_) = 0 and E (0; u_) -I O. The latter follows 
also conveniently from the following integral form of E( s; u_): 

E(s; u_) = 18 \7U(v(m))T ( - :\(s) + A(v(m))) v'(m) dm 

= -18 v'(mf D2U(v(m)) (-X(s)(v(m) - u_) + f(v(m)) - f(u-)) dm (1.25) 

= -18 v'(m)T D2U(v(m)) (X(m) - X(s)) (v(m) - u_) dm, 

where we used the compatibility condition on the entropy pair, i.e., \7 FT = \7UT D f, 
and the Rankine-Hugoniot relation (1.8). In view of the Taylor expansions (1.9) and 
(1.10) in Theorem 1.1 we deduce from (1.25) that 

1 18 E(s; u_) = -- (r[ D2U ri) (u_) (\7)..i . ri)(U_) m (m - s) dm + 0(S4). 
2 0 

o 
We now discuss another approach for the selection of shock waves. Consider again 

a shock wave connecting u_ to u+ at the speed )... Lax shock inequalities 

(1.26) 

can be regarded as a generalization to the system of conservation laws (1.1) of the 
inequalities discussed earlier for scalar equations. The following result shows that, 
based on (1.26), the part s :s; 0 of the Hugoniot curve again should be retained. The 
proof is straightforward in view of (1.10). 
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LEMMA 1. 5. Consider the i-Hugoniot curve s 1-+ Vi (s; u_) issuing from a state u_ 
and associated with a genuinely nonlinear family. Then, the shock speed s 1-+ >:i (s; u_) 
is an increasing function of S and, for all s < 0, the inequalities 

.Ai(U-) > >:i(S;U-) > .Ai(Vi(S;U-)) 

hold, while both inequalities are violated for s > 0. 

(1.27) 

D 

In view of (1.24) and relying on the genuine nonlinearity assumption, the entropy 
inequality (1.23) holds along the Hugoniot curve if and only if s :s; 0. On the other 
hand, recall that this is consistent with the fact that only the part s > ° of the 
integral curve can be used in that case. (See the discussion after Theorem 1.2.) By 
definition, the i-shock curve Si (u_) is the part s :s; ° of the Hugoniot curve Hi (u_). 
We call i-rarefaction curve, 'Ri(u_), is the part S 2: ° of the integral curve Oi(U-), 
We refer to Wi (u_) := Si (u_) U 'Ri (u_) as the i-wave curve issuing from u_. (See 
Figure VI-1.) 

Combining Theorems 1.1 to 1.3 and Lemmas 1.4 and 1.5 we arrive at the following 
important existence result. For clarity in the presentation, we say that a function 
U = u(x, t) belongs to the class P if it is self-similar (that is, u = u(xjt)), piecewise 
smooth, and made of constant states separated by shock waves or rarefaction fans. 
All the existence and uniqueness results in the present chapter are stated in this class, 
while a general uniqueness theory is postponed to Chapter X. (See Figure VI-2.) 

THEOREM 1.6. (Riemann solver for genuinely nonlinear and linearly degenerate fields.) 
Suppose that, in 8(80 ), the system (1.1) is strictly hyperbolic and admits only gen­
uinely nonlinear or linearly degenerate fields. Then, there exist 81 < 80 and e > ° 
with the following property. To any u_ E 8(81) and i E {1, ... , N} we can associate 
the i-wave curve issuing from u_ 

Wi(U_) = Si(U-) U'Ri(u_) =: {'ljIi(S;U-) j s E (-e,e)}, 

( . ) _ {Vi(S;U-), s E (-e,O], 
'ljIi S,U_ -

Wi(S;U-), s E [O,e). 

(1.28) 

The mapping'ljli : (-e, c) x 8(8t} -+ JRN admits continuous derivatives up to second­
order and bounded third-order derivatives in sand U_, and satisfies 

(1.29) 

Given any Ul and Ur E 8(h) the Riemann problem (1.1) and (1.2) admits a unique 
self-similar solution (in the class P) made up of N + 1 constant states 

o 1 N Ul = U , U , ... , U = Ur 

separated by elementary waves. The intermediate constant states satisfy 

uj E W j (uj- 1), uj = 'ljIj(Sj;Uj- 1), 

for some S j E (-e, c). The states u j -1 and uj are connected with either a contact 
discontinuity (if the j-field is linearly degenerate) or else, when Sj 2: 0, a rarefaction 
wave and, when Sj < 0, a shock wave satisfying the entropy inequality (1.23) and Lax 
shock inequalities (1.26). 
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Figure VI-I: The i-wave curve Wi(u_). 

PROOF. The mapping 

8 = (81, ... ,8 N) E (-€, €)N I----t w( 8) = 'l/JN( 8N) 0 ... 0 'l/J1 (81)( Ul) 

is locally invertible. This follows from the implicit function theorem since the differ­
ential at 8 = 0 

DW(O) = (rk(ul))l~k~N 
is an invertible N x N matrix. It follows from the monotonicity property of the 
shock speed and characteristic speed along the wave curves that a wave cannot follow 
another wave of the same family. This ensures that the Riemann problem cannot be 
solved with another combination of elementary waves. Each wave curve is smooth for 
8 < 0 and 8 > o. Furthermore, the first- and second-order derivatives (with respect 
to both variables 8 and u) of the shock and rarefaction curves coincide at 8 = 0, as 
follows from (1.9) and (1.20). 0 

REMARK 1.7. In Section 2 below, we will use a globally defined parameter U I----t f..£i ( u) 
satisfying "f..£i(U) . ri(u) =1= 0, and we will re-parametrize all the wave curves accord­
ingly, for instance the Hugoniot curve m I----t Vi (m; u_) (keeping here the same nota­
tion), in such a way that 

f..£i ( Vi (m; u_ )) = m. 

In this situation, by setting 8 = m - f..£i(U-) the expansions (1.9) and (1.10) become 

- -2 

Vi(m; U_) = U_ + _(8 ) ri(U_) + 2 t )2 ((Dri ri) +bri)(U-) + 0(83) (1.30) 
a u_ a u_ 

and 

Xi(m;u_) =Ai(u_) + _(8 ) ("Ai. ri)(U-) 
2a u_ 

-2 

+ 6a(:_)2 (("("Ai· ri)· ri) + e"Ai· ri)(u_) + 0(83 ), 

(1.31 ) 

where a, b, and e are smooth and real-valued functions of u_ with, in particular, 
a := "f..£i . ri =1= o. The formula (1.20) takes the same form as (1.30) while, with the 
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same function a as above and for some function d, (1.21) becomes 

Xi(Wi(m; u_)) =Ai(U- ) + _(8 ) (V'Ai 'Ti)(U_) 
a U_ 

-2 

+ 2a(:_)2 ((V'(V'Ai' Ti)' Ti) + dV'Ai' Ti)(U_) + 0(83 ). 

(1.32) 

o 

Figure VI-2 : The Riemann solution. 

2. Classical Riemann solver 

In this section we solve the Riemann problem (1.1) and (1.2) when the characteristic 
fields are not globally genuinely nonlinear. We restrict attention to systems for which 
the genuine nonlinearity condition may fail at one point (at most) along each wave 
curve. For scalar conservation laws Lax shock inequalities were found to be sufficiently 
discriminating to select a unique solution to the Riemann problem (Chapter II). This 
motivates us to proving here, for systems, that Lax shock inequalities (1.26) single 
out a unique Riemann solution, even for non-genuinely nonlinear fields. As observed 
already with scalar equation, a more discriminating condition (Liu entropy condition 
(2.6), below) is necessary only when the genuine nonlinearity fails at two or more 
points (along the wave curves). Note finally that for technical reasons we use a 
parameter (see (2.3) and (2.4), below) which is globally defined for all wave curves 
and does not coincide with the one in Section 1. 

We assume that (1.1) is a strictly hyperbolic system of conservation laws and that 
there exists a partition {I, ... ,N} = Jo U J1 U h such that 

• j E Jo if the j-characteristic field is linearly degenerate, 
• j E J1 if it is genuinely nonlinear, 
• j E J2 if it is concave-convex or convex-concave, in a sense explained now. 

In the latter case, the scalar-valued function 

does not keep a constant sign and we assume that 

(2.1) 
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is a smooth affine manifold with dimension N - 1 such that the vector field rj is 
transverse to the manifold M j and that one of the following two conditions holds: 

concave-convex field: "Vmj(u)· rj(u) > 0, U E U, 

convex-concave field: "Vmj(u)· rj(u) < 0, U E U. 
(2.2) 

This terminology generalizes the one introduced earlier for scalar equations in Chap­
ter II. The notion is intrinsic, i.e., does not depend on the choice of the eigenvectors, 
since changing rj into -rj does not change the sign of "Vmj' rj. For scalar equations, 
(2.2) constraints the third derivative of the flux-function 1'" to be positive or negative, 
respectively, and we recover a stronger version of the notions of concave-convex and 
convex-concave functions introduced in Chapter II. Observe that for concave-convex 
fields mj (u) increases when U describes a wave curve in the direction of the right 
eigenvector rj (while we have the opposite behavior in the convex-concave case). The 
transversality assumption (2.2) implies that for j E J2 the wave speed has exactly 
one critical point along each wave curve, that is, "VAj(U) . rj(u) = 0 if and only if 
mj (u) = O. In the concave-convex case the root of mj ( u) = 0 is associated with a 
minimum value of the wave speed (while in the convex-concave case it is associated 
with a maximum value.) 

We are interested in solving the Riemann problem with data Uz and Ur in 8( 8t) 
where 81 is small enough. Still, we assume that M j n 8(81) :f. 0 for all j E h 
so that the problem does not reduce to the genuinely nonlinear case. Furthermore, 
to parametrize the wave curves it is convenient to have (for all j) a globally defined 
parameter Mj (u) E IR which should depend smoothly upon U and be strictly monotone 
along the wave curves. Specifically, we assume that a parameter Mj is given such that 

(2.3) 

and for all j E J2 
Mj(U) = 0 if and only if mj(u) = O. (2.4) 

In view of the conditions (2.2), when j E h there is an obvious choice of Mj which 
satisfies both requirements (2.3) and (2.4). When j E J1 a natural choice is the wave 
speed Aj, while there is no canonical choice for j E Jo. In summary, from now on, we 
assume that the wave curves are parametrized by (u E U) 

Mj(U) := { Aj(U), j E J1 · 

"VAj(U) . rj(u), j E J2 . 

Given u_ E U and j = 1,2, ... ,N, we recall from Theorems 1.1 to 1.3 that the 
Hugoniot curve and the integral curve issuing from u_ are denoted by Hj (u_) = 
{vj(m; u_)} and OJ(u_) = {wj(m; u_)}, respectively. The parameter m along these 
curves can be chosen to coincide with the parameter Mj, that is, 

(2.5) 

for all relevant values m. Since Mj is strictly monotone along the wave curves thanks 
to (2.2), the conditions (2.5) can be achieved by modifying the parameter s intro­
duced earlier in Section 1. Recall that the local behavior of these curves is given by 
Remark 1.7. 

Theorem 2.1 below establishes a generalization of Theorem 1.6, which was con­
cerned with genuinely nonlinear or linearly degenerate fields only. In both the concave­
convex and the convex-concave cases, we now prove that Lax shock inequalities (1.26) 
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select a unique solution to the Riemann problem. For more general fields Liu en­
tropy criterion is necessary and imposes that, along the Hugoniot curve Hj (u_), 
the inequality 

(2.6) 

holds for all m between /-Lj(u_) and /-Lj(u+). In other words, the shock speed for m 
in the above range achieves its minimum value at the point u+. This condition is a 
natural extension to systems of Oleinik entropy inequalities (see (II-1.6)). 

We can now state the main existence result in this section. 

THEOREM 2.1. (Classical Riemann solver.) Suppose that (1.1) is strictly hyperbolic 
in 8(80 ) and each j-field is either linearly degenerate (j E Jo), genuinely nonlinear 
(j E J1 ), or else is concave-convex or convex-concave (j E J2 ). Then, there exist 
81 < 80 and E > 0 with the following property. For u_ E 8( 8d and j E J2 the j-wave 
curve of right-hand states connected to u_ by a combination of j-elementary 
waves, 

Wj(u_):= {v'Jj(m;u_)} 

(m describing some open interval), is continuously differentiable with bounded second­
order derivatives in m and u_, at least, and satisfies 

m - /-Lj(u_) 2 
'ljJj(m; u_) = u_ + ( )() rj(u_) + O(m - /-Lj(U_)) . (2.7) 

'V/-Lj' rj u_ 

Given any Uz and Ur E 8(81), the Riemann problem (1.1) and (1.2) admits a 
unique piecewise smooth solution (in the class P) made of N + 1 constant states 

separated by j-wave packets. The state u j is connected to u j - 1 by either a contact 
discontinuity (if j E Jo), or a shock or rarefaction wave (if j E J1), or else (if 
j E J2 ) by (at most) two waves: either a shock from u j - 1 to some intermediate state 
u j - 1/ 2 followed by a rarefaction connecting to u j , or a rarefaction from uj - 1 to some 
state Uj- 1/ 2 followed by a shock connecting to u j . Each shock wave satisfies Liu 
entropy criterion and Lax shock inequalities, any of these being sufficient to uniquely 
characterize the solution. Furthermore, the Riemann solution depends continuously 
upon its initial data in the sense that all of the states Uj- 1/ 2 and u j converge to Uz 

when Ur tends to Uz. 

The second-order derivatives of wave curves for non-genuinely nonlinear fields are 
not continuous, in general. In the course of the proof of Theorem 2.1 we will explicitly 
construct the wave curves Wj(u_) for j E h. From now on, we fix a left-hand state 
u_ satisfying (for definiteness) /-Lj(u_) > O. Concerning the integral curves OJ(u_) it 
follows from the expansion (1.32) and the assumption (2.2) that: 

LEMMA 2.2. (Characteristic speed along the integral curve.) Let j E J2 and u_ be 
given with /-Lj ( u_) > 0 and consider the integral curve OJ (u_) parametrized by the 
map m f---t wj(m;u_). 

• In the concave-convex case, the j-characteristic speed along the integral 
curve 

m f---t Aj(Wj(m;u_)) 
is a strictly convex function of m achieving its minimum value at m = O. In 
particular, it is decreasing for m < 0 and increasing for m > O. 
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• In the convex-concave case, the characteristic speed >"j (Wj (m; u_)) is a strictly 
concave function of m achieving its maximum value at m = O. In particular, 
it is increasing for m < 0 and decreasing for m > O. 

PROOF. With (1.32) in Remark 1.7 we have at m = J.Lj(u_) 

[)2 1 ( (V'>"j' rj)(u_)) 
~>"j(wj(m;u_))lm=J.!j(u_) = ( )() 1 +d(u_) ( )() um V'J.Lj' rj u_ V'J.Lj' rj u_ 

which is positive, since V'>"j . rj vanishes on the manifold M j and 

keeps a constant sign. o 

In view of Lemma 2.2 we can define the part of the curve Wj( u_) associated with 
rarefaction waves, as follows. Given a point u+ E OJ(u_), in order to construct a 
corresponding Lipschitz continuous, rarefaction wave u = u(~) of the form (1.22) it is 
necessary that the wave speed ~ 1---7 >"j(u(~)) be monotone increasing throughout the 
rarefaction fan. In the concave-convex case, this condition selects the part m ;:::: J.Lj ( u_ ) 
of OJ(u_). In the convex-concave case it is necessary that m :::; J.Lj(u_) but the desired 
monotonicity property is violated as one reaches M j along the integral curve. Thus, 
this geometric restriction selects the part 0 :::; m :::; J.Lj ( u_) of the integral curve. 

Now, to pursue the construction of the wave curve Wj( u_) we rely on the Hugo­
niot curve Hj (u_). The qualitative properties of the characteristic speed along 
Hj(u_) are identical to those stated in Lemma 2.2 for OJ(u_). The new features 
are concerned with the shock speed. (See Figure VI-3 for a graphical representation.) 

LEMMA 2.3. (Characteristic speed and shock speed along the Hugoniot curve.) Let 
j E J2 and u_ be given with J.Lj(u_) > 0, and consider the Hugoniot curve Hj(u_) 
parameterized by m 1---7 Vj (m; u_). In the concave-convex case the j-characteristic 
speed along the Hugoniot curve 

is a strictly convex function. On the other hand, the j-shock speed along the 
Hugoniot curve 

m 1---7 ~j(m;u_):= ~j (u_,vj(m;u_)) 
is a strictly convex function, which either is globally increasing or else achieves a 
minimum value at a point 

J.L~(u_). 
Moreover, at this critical value the characteristic speed and the shock speed coincide: 

(2.8) 

and, for some smooth function e = e( u_) > 0, 

(2.9) 

When J.Lj(u_) = 0, the same properties hold with now J.L'(u_) = O. In the convex­
concave case, all the signs and mono tonicity properties are reversed. 
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--~----~----~--------~------~·rn 

J-Ljq(u_) J-L~(u_) 0 J-Lj(U_) 

Figure VI-3 : Characteristic speed and shock speed. 

In the following, we assume that the shock speed admits a minimum value. (The 
case of a globally increasing shock speed is simpler and can be easily deduced from the 
present discussion.) The proof of Lemma 2.3 (cf. the key formula (2.11), below) will 
imply that in the concave-convex case the characteristic speed and the shock speed 
satisfy 

Xj(mjU_) - Aj(Vj(mju_)) > 0, mE (JL'(U_),JLj(U_)), 
- Q Aj(mjU_) - Aj(Vj(mju_)) < 0, m < JLj(u_) or m > JLj(U_). 

(2.10) 

PROOF. As in Lemma 2.2, the statement concerning the characteristic speed is a 
direct consequence of (2.2). With (1.32) (which also holds along the Hugoniot curve) 
in Remark 1.7 we have at m = JLj (u_) 

{)2 1 ( (\7Aj' rj)(u_)) 
£l2Aj(Vj(mj u_ ))Im=/kj(u_) = ( )() 1 + c(u_) ( )() , um \7JLj . rj u_ \7JLj . rj u_ 

which is positive since \7Aj . rj vanishes on the manifold M j and \7JLj . rj keeps a 
constant sign. 

Similarly, using the notation v(m):= vj(mju_) and X(m):= Xj(mju_), the for­
mula (1.31) in Remark 1.7 gives 

{)2 _ 1 ( (\7Aj' rj)(u_)) 
£l2A(m)lm=/kj(u_) = ( )() 1/3 + c(u_) ( )() , um \7JLj' rj u_ \7JLj' rj u_ 

which gives the first statement for the shock speed. On the other hand, returning to 
(1.13) and multiplying this identity by lj(v(m)) we obtain 

X' (m) lj(v(m)) (v(m) - u_) = (Aj(v(m)) - X(m)) lj(v(m))v'(m). 

By relying on the expansion (1.9) it follows that 

mX'(m) = d(m) (Aj(v(m)) - X(m)), (2.11) 

where d = d(m) is a positive function bounded away from O. Clearly, (2.8) follows 
from (2.11). Finally, (1.13) at m = JLj(u_) yields us 

0= (A(v(JL'(u_))) - X(JLj(u_))) v'(JL'(u_)), 
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which yields (2.9). This completes the proof of Lemma 2.3. o 

PROOF OF THEOREM 2.1. Based on Lemmas 2.2 and 2.3 we can now construct 
the wave curves explicitly. We treat first the concave-convex case (represented in 
Figure VI-4). Given u_ with /-Lj(u_) > 0, we already pointed out that the part 
m > /-Lj(u_) of the wave curve coincides with the integral curve OJ(u_) and that the 
corresponding solutions are rarefaction waves. On the other hand, for m decreasing 
from /-Lj (u_), the wave curve coincides locally with the Hugoniot curve Jij (u_) and 
the corresponding solutions are shock waves. This is correct as long as the entropy 
condition is satisfied. Relying on the property (2.10) which compares the character­
istic speed and the shock speed along the Hugoniot curve, we see that Lax entropy 
inequalities (1.26) hold until we reach the value m = /-L~(u_) only, at which point the 
equality holds in the right-hand side of (1.26). Furthermore, since the shock speed 
increases as m decreases from /-L}(u_), Liu entropy criterion (2.6) is also violated ex­

actly for m < /-L~(u_). We conclude that the wave curve Wj(u_) coincides with the 

part m E (/-L~ (u_), /-Lj (u_)) of the Hugoniot curve, and no other point on this curve is 
admissible. 

To extend the wave curve from the point u~ := Vj(/-L~(u_);u_), we consider 

the integral curve OJ(u~). Any point u+ E OJ(u~), with /-Lj(u+) < /-L~(u_), can 

be connected to u_ by a shock wave from u_ to u~ followed by a rarefaction wave 
from u~ to u+. Note that the rarefaction is attached to the shock since the shock 
speed Xj(/-L~(u_);u_) coincides with the lowest speed of the rarefaction fan, Aj(U~). 
(See (2.8).) Note also that the shock connecting u_ to u~ is a right-contact in the 
sense that the propagation speed of the shock coincides with the characteristic speed 
of its right side. Finally, the wave curve is continuously differentiable at the point u~ 
as follows from (2.9). 

We now turn to the convex-concave case. For m increasing away from /-Lj(u_), the 
shock speed is decreasing and both Lax shock inequalities and Liu entropy criterion 
hold. Therefore, the wave curve contains the part Jij (u_) for all m > /-Lj ( u_ ). On 
the other hand, for m decreasing from /-Lj (u_) the wave curve coincides with the 
integral curve until m reaches the manifold, that is, m = O. Values m < 0 cannot 
be attained using only a rarefaction wave since the characteristic speed is increasing 
for m decreasing from m = o. This would violate the geometric requirement that the 
wave speed be increasing inside a rarefaction fan. To reach points m < 0 we proceed 
as follows. Take any point u+ E OJ (u_) having 0 < /-Lj (u+) < /-Lj (u_) and define u~ 
by the two conditions 

(2.12) 

Then, we connect u_ to u~ using first a rarefaction from u_ to u+ followed by a shock 
wave connecting to u~. By construction, the shock is attached to the rarefaction on 
the left and is called a left-contact. 

This completes the construction of the waves curves. The existence and unique­
ness of the Riemann solution follow from the implicit function theorem, as was dis­
cussed in the proof of Theorem 1.6. The proof of Theorem 2.1 is completed. 0 



154 CHAPTER VI. THE RIEMANN PROBLEM 

". '~ .......... 

... ,...................... M 

-'-" j 

Figure VI-4 : The j-wave curve in the concave-convex case. 

Finally, we prove some technical lemmas, say for concave-convex fields, which will 
be useful later on in this course. 

LEMMA 2.4. (Regularity of the function {l~.) The function {l~ depends smoothly upon 
its argument and 

Q 1 'V{lj. rj rv -2" 'V{lj ·rj near the manifold M j . (2.13) 

In particular, (2.13) implies that {l~ < o. 
PROOF. The regularity property follows from the implicit function theorem applied 
to the mapping (see the condition (2.8)) 

H(m. U) = Xj(m; u) - )"j(Vj(m; u)) 
, m - {lj(U) , 

Indeed, H (m; u) is smooth for m =1= {lj (u) and, relying on the expansions in Re­
mark 1.7, we see that H(m; u) extends continuously at m = {lj(u). We have also 
H({l~(u);u) = 0 by definition and 

H(m. u) _ _ ('V)..j . rj)(u) 
, - 2 'V ('V)..j . rj) . rj(u) 

+ (m - {lj(u)) ( - 3 ('V('V)..j .lrj). rj)(u) + 0(1) ('V)..j. rj)(u)) 

+ O(m - {lj(u))2. 

Hence at m = {lj (u) we find 

To derive (2.13) along the critical manifold we use the expansion of the shock 
speed (1.31) and the expansion of the characteristic speed (similar to (1.32)) along 
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where we neglected high-order terms. Computing the second-order derivative in the 
direction rj and letting the state U approach the manifold M j , we obtain 

which yields 
(V8. rj)(u) = -(3/2) (Vpj· rj)(u) 

and, therefore, the identity (2.13) since V8· rj = Vp}. rj - VPj· rj. This completes 
the proof of Lemma 2.4. D 

To any two states u_ and U+ with U+ = Vj (m; u_) E 1ij (u_) we will associate a 
third state 

Pj(U_,U+) = U* := Vj(pj;u_) E 1ij (u_) 

where the component pj = pj (m; u_) is determined so that the speed of the shock 
connecting u_ to U* coincides with the speed of the shock connecting u_ to u+, that 
is, 

LEMMA 2.5. The function pj depends smoothly upon its arguments and 

Pj(m; u) rv -Pj(u) - m near the manifold M j . (2.14) 

PROOF. The arguments are similar the the one in the proof of Lemma 2.4, so we only 
sketch the proof. Using the expansion of the shock speed we have 

m - Pj(u) (m - Pj(u))2 ( ) 
Aj(U) + 2a(u) (VAj. rj)(u) + 6a(u)2 (V(VAj. rj)· rj)(u) +... + ... 

= Aj(U) + pj(m;u\-tj(U) (VAj. rj)(u) 
2a U 

(pj(m;u) - pj(u))2 
+ 6a(u)2 ((V(VAj . rj) . rj)(u) + ... ) + ... 

which, since Pij(U) = (VAj. rj)(u), yields 

D 
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3. Entropy dissipation and wave sets 

In the following two sections we study the Riemann problem (1.1) and (1.2) for non­
genuinely nonlinear systems endowed with a strictly convex entropy pair (U, F). In 
order to encompass all possible diffusive-dispersive limits compatible with this entropy 
(see the discussion in Chapter I), we investigate the consequences of a single entropy 
inequality for the solutions of the Riemann problem. Not surprisingly, the class of 
admissible solutions will turn out to be larger than the one selected in Section 2 by 
Lax entropy inequalities or Liu entropy criterion. In particular, the solutions of the 
Riemann problem may now contain "nonclassical" shocks. 

Nonclassical shocks and entropy dissipation. 
Generalizing a notion introduced in Chapter II for scalar equations we set: 

DEFINITION 3.1. A shock wave (1.7) is called a nonclassical shock if it satisfies the 
single entropy inequality (1.23) but not Lax shock inequalities (1.26). It is called a 
classical shock if (1.23) holds but (1.26) is violated. 0 

For shocks with sufficiently small amplitude, the wave speeds associated with 
different wave families are totally separated. Therefore, our analysis can focus on 
each wave family separately. It will be useful to introduce the following terminology 
before imposing any entropy condition at this stage. A j-shock wave connecting a 
left-hand state u_ to a right-hand state u+ can be: 

• a Lax shock, satisfying 

• a slow undercompressive shock : 

"Xj ( U_, u+) :::; min(Aj(u_), Aj(U+)), 

• a fast undercompressive shock : 

• or a rarefaction shock : 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

Let u_ such that /-lj (u_) > O. Recalling Lemma 2.3 which describes the properties 
of the shock speed along the Hugoniot curve Hj (u_), we denote by /-lj~ (u_) the point 
of Hj ( u_) such that 

- -~ Q Q Aj(/-lj (u_); u_) = Aj(U_), /-lj (u_) < /-lj(u_), (3.5) 

whenever such a point exists. For simplicity in the presentation we assume that both 
points /-l' (u_) and /-lj~ (u_) exist, since the present discussion would be much simpler 
otherwise. Note in passing that 

C' 0 CjQ = CjQ 0 C' = id, 

where C'(u_) := Vj(/-l'(u_); u_), Cj~(u_):= Vj(/-lj~(u_); u_). 
(3.6) 

This is easily checked using the (symmetric) form of the Rankine-Hugoniot relation. 
(With the notation introduced in Chapter II the property (3.6) represents a extension 
to systems of the property <,O~ 0 <,O-Q= <,O-~ 0 <,OQ = id satisfied by scalar equations.) 
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Note also that the shock wave connecting u_ to u~ is a right-contact, while the shock 

connecting u_ to u::::Q is a left-contact. 

LEMMA 3.2. (Classification of shock waves.) Let u_ be given with J.Lj(u_) ~ 0 and 
consider a point u+ on the Hugoniot curve Hj (u_), say u+ = Vj (m; u_) with m = 

J.Lj (u+). 
• In the concave-convex case, the shock connecting u_ to u+ is 

• a mrefaction shock ifm > J.Lj(u_) orm < J.LjQ(u_), 

• a Lax shock ifm E [J.Lj(u_),J.Lj(u_)], (3.7i) 

• an undercompressive shock if m E [J.LjQ (u_), J.Lj (u_)). 

In the second instance, the shock also satisfies Liu entropy criterion. 
• In the convex-concave case, the shock connecting u_ to u+ is 

• aLaxshockifm~J.Lj(u_) orm:SltjQ(u_), 

• a mrefaction shock if m E (It~ (u_), Itj (u_)), (3.7ii) 

• an undercompressive shock ifm E (ltjQ(u_),ltj(u_)]. 

In the first instance, the shock also satisfies Liu entropy criterion. 

PROOF. Consider for instance the concave-convex case, the other case being similar. 
According to Lemma 2.3 the function m 1---+ Aj (m; u_) - .Aj (Vj (m; u_)) is positive 

for J.L~ (u_) < m < J.Lj (u_) and negative for m < J.L~ (u_) or m > J.Lj (u_). On the 

other hand the function m 1---+ Aj (m; u_) - .Aj (u_) is positive for m < J.LjQ (u_) or 

m > J.Lj(u_), and negative for m E (ltjQ(u_),ltj(u_)). The classification follows 
immediately from these two properties. 0 

Next, we investigate the sign of the entropy dissipation E (see (1.23» along the 
Hugoniot curve. (See Figure VI-5.) 

LEMMA 3.3. (Entropy dissipation.) Let u_ be given with Itj (u_) > 0 and consider the 
Hugoniot curve Hj (u_). Consider the concave-convex case (respectively the convex­
concave case). 

(i) The entropy dissipation s 1---+ E(m; u_) := E(u_, vj(m; u_)) vanishes at J.Lj(u_) 
and at a point 

It~o(u_) E (J.LjQ(u_),It~(u_)). 

The entropy dissipation is decreasing (resp. increasing) for m < J.L~ (u_), in­
creasing (resp. decreasing) form > It~(u_), and achieves a negative maximum 
value (resp. a positive maximum value) at the critical point of the wave speed 
Itj(u_). 

(ii) A shock satisfying the entropy inequality (1.23) cannot be a mrefaction shock. 
A nonclassical shock is undercompressive and satisfies 

m E (It;o(u_),It~(u_)) (resp. m E (ltjQ(u_),J.L~o(u_))). 

(iii) Any shock satisfying Liu entropy criterion (2.6) also satisfies the entropy in­
equality (1.23). 
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We refer to u_ 1--+ J.t~o (u_) as the zero-entropy dissipation function associated 
with the j-characteristic field. In view of Lemma 2.3 we can also define the companion 
function J.t~o by 

J.t~o(u_) < J.t~(u_) < J.t~o(u_), "Xj(J.t~o(u_);u_) = "Xj(J.t~o(u_);u_). (3.8) 

It can be checked using the implicit function theorem (along the same lines as in 
Remark II-4.4 and Lemma 2.4) that J.t~o and J.t~o are smooth mappings. 

PROOF. By (1.25) in the proof of Lemma 1.4 the entropy dissipation has the explicit 
form 

where 
dvT 

gj(t; u_):= d: (t;u_) D2U(vj(t;u_)) (Vj(t; u_) - u_). (3.10) 

Using the expansion (1.30) along the Hugoniot curve and the strict convexity of U 
(implying that rJ D2U rj > 0), we see that 

When Liu entropy criterion (2.6) holds, "Xj(m; u_) - "Xj(t; u_) is non-positive and 
it follows that the entropy dissipation is non-positive. This proves the property (iii) 
of the lemma. 

When, instead, the shock is a rarefaction shock (see (3.4)), the properties stated 
in Lemma 2.3 show that 

(3.11) 

Combining (3.9)-(3.11) shows that the entropy dissipation is positive for rarefaction 
shocks. This proves the property (ii). 

Finally, we establish the property (i) by differentiating (3.9): 

() - 1m ()--;:;-E( m; u_) = -;:;-Aj (m; u_) gj (t; u_) dt, 
um I'j(u_) um 

which relates the entropy dissipation and the shock speed: 

with 
(3.13) 

for some positive constants 0 1 and O2 . 

In view of (3.12), the entropy dissipation reaches a critical value when the shock 
speed has a critical point and at the point u_. From the properties of the shock speed 
(Lemma 2.3), it follows that E(m; u_) is decreasing for m < J.t~(u_) and increasing 

for m > J.t~(u_). On the other hand, from its definition it is clear that E(m;u_) 
vanishes at m = J.tj(u_), the values m < J.tjQ(u_) correspond to rarefaction shocks 
for which we already checked that the entropy dissipation is negative. Therefore there 
exists a unique value J.t~o( u_) in the interval (J.tjQ (u_), J.t~ (u_)) where the dissipation 
vanishes. This completes the proof of Lemma 3.3. 0 
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Figure VI-5 : Entropy dissipation in the concave-convex case. 

Nonclassical wave sets for general characteristic fields. 
We now construct a multi-parameter family of solutions to the Riemann problem (1.1) 
and (1.2), based on the single entropy inequality (1.5). For each j-wave family we 
define here a "wave set" consisting of all states reachable from a given left-hand state 
using only admissible j-waves. 

Consider a j-wave fan with left-hand state u_ and right-hand state U with 
J.lj (u_) ;::: 0 and j E J2 . (Recall that the wave curve was already constructed in 
Section 1 when j E Jo U Jd We consider first a concave-convex field. Recall (Sec­
tion 2) that the j-wave fan using only classical waves contains 

(a) a rarefaction from u_ to U E OJ(u_) if J.lj(u) > J.lj(u_), 
(b) or a classical shock from u_ to U E Hj(u_) if J.lj(u) E (J.l~(u_),J.lj(u_)), 
(c) or else a classical shock from u_ to u~ := Vj (J.l~ (u_); u_) followed by an 

attached rarefaction connecting to U E OJ(u~) if J.lj(u) < J.l~(u_). 
In the special case that J.lj (u_) = 0, the j-wave curve is the j-integral curve issuing 
from u_. This completes the description of the classical j-wave curve Wj(u_). 

Given a left-hand state u_, the set of all states that can be reached using only 
j-waves is called the nonclassical j-wave set issuing from u_ and denoted by 
Xj(u_). (See Figure VI-6.) 

THEOREM 3.4. (Nonclassical j-wave set - Concave-convex field.) In addition to the 
classical one, the j-wave fan may contain a nonclassical j-shock connecting u_ to 
some intermediate state u+ E Hj (u_) with J.lj (u+) E [J.l;o (u_), J.l~ (u_)) followed by 

(a) either a non-attached rarefaction connecting u+ to u E OJ (u+) if J.lj (u) < 
J.lj(u+), 

(b) or by a classical shock connecting u+ to u E Hj (u+) if J.lj (u) > J.lj (u+). 
This defines a two-parameter family of right-hand states u which can be reached from 
u_ by nonclassical solutions. 
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We now consider a convex-concave characteristic field. Recall from Section 2 that 
the j-wave fan using only classical waves contains 

(a) a classical shock connecting u_ to U E Hj (u_) if either J.lj (u) 2 J.lj (u_) or 
J.lj(u) :S J.ljP(u_), 

(b) or a rarefaction connecting u_ to U E OJ(u_) if J.lj(u) E [O,J.lj(u_)], 
(c) or a rarefaction wave connecting u_ to a point U+, followed by an attached 

classical shock connecting to U E Hj(u+) with J.l~(u) = J.lj(u+), if J.lj(u) E 

(J.ljQ (u_), 0). (In this latter case, the set of U does not describe a rarefaction 
or shock curve.) 

This completes the description of the classical j-wave curve WJ(u_). 

THEOREM 3.5. (Nonclassical j-wave set - Convex-concave field.) The j-wave fan 
may also contain 

(a) a rarefaction to U+ E OJ(u_) with J.lj(u+) E (O,J.lj(u_)), possibly followed by 
a non-attached nonclassical shock which connects the intermediate state U+ to 
u, if J.lj(u) E (J.ljP(u+),J.l;o(u+)]; (in this case, the set ofu does not describe 
a rarefaction or shock curve); 

(b) or a classical shock to U+ E Hj (u_) with J.lj (u+) > J.lj (u_), followed by a 
nonclassical shock connecting to U E Hj (u+), if J.lj (u) E (J.ljQ (u+), J.l;o (u+)]. 

This defines a two-parameter wave set Xj (u_) of right-hand states U which can be 
reached from u_ by nonclassical solutions. 

PROOF OF THEOREM 3.4. To construct the wave set Xj(u_) for u_ E U and j E J2 
in the concave-convex case and we proceed as follows. Consider a point u_ away from 
the manifold with J.lj (u_) > 0. The construction of the wave curve will depend on 
the values J.l~o(u_) < J.l}(u_) < J.l!o(u_) introduced earlier. 

Recall first the construction of the classical part of the wave set. Considering first 
the region J.lj ( u) > J.lj ( u_ ), we see that the state u_ can be connected to any point 
on OJ(u_) by a rarefaction, since the wave speed Aj is increasing for J.lj(u) increasing 
(Lemma 2.2). Therefore, the wave set Xj ( u_) coincides with the rarefaction curve 
OJ(u_) for J.lj(u) 2 J.lj(u_). 

For J.lj(u) decreasing from J.lj(u_) the shock speed is decreasing as long as J.lj(u) 
remains larger than the critical value J.l~ (u_) (Lemma 2.3). Therefore, all of the points 

in the Hugoniot curve Hj (u_) with J.lj (u) E [J.l~ (u_), J.lj (u_) 1 can be reached from 
u_ by a classical shock satisfying Lax shock inequalities and Liu entropy criterion. 
According to Lemma 3.3, the entropy dissipation remains non-positive in the whole 
range J.lj (u) E [J.l;o (u_), J.lj (u_) l, thus the points of the Hugoniot curve Hj (u_) with 

J.lj(u) E [J.l;o(u_), J.l~(u_)) can also be reached from u_ but, now, using a nonclassical 
shock. These are the only admissible solutions with a single j-wave issuing from u_. 

Consider now an admissible solution containing a single wave joining u_ to a 
state u+. It is not difficult to see that if J.lj (u+) > J.l' (u_) no further j-wave can 
be constructed from u+ which would travel faster than the first wave. So, consider a 
nonclassical shock joining u_ to a state u+ with J.lj (u+) E [J-t;o (u_), J-t~ (u_)). Accord­
ing to Lemma 2.3, the wave speed is increasing when J.lj decreases from J-tj (u+) < 0, 
so u+ can be connected to any point u = U2 in the rarefaction curve OJ(u+) with 
J-tj(U2) :S J-tj(u+). Observe that the nonclassical shock is not attached to the rarefac­
tion fan, i.e., 

(3.14) 
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This describes all of the solutions containing a nonclassical shock followed by a rar­
efaction. It is not difficult to check that no further j-wave may follow the rarefaction. 

" . 
•.•.•.•.•.•.•.•.•... 

'" 
, .. , ............... , 

Figure VI-6 : Wave set in the concave-convex case. 

Consider again a nonclassical shock joining u_ to u+ with 

The shocks with small strength issuing from u+ have a larger speed than that of the 
nonclassical shock, i.e., 'Xj (u+, U2) ~ Aj (u+) > 'Xj (u_, u+), for all states U2 close to 
u+. Hence, the speeds have the proper ordering and u+ may be connected to any 
U2 E Hj (u+), at least in the small. Such a shock is also admissible when J-lj increases 
(according to Lax shock inequalities and Liu entropy criterion) since the wave speed 
is decreasing when J-lj increases (Lemma 2.3). This construction can be continued, 
for u+ given, until U2 violates either of the two conditions: 

(3.15) 

(3.16) 

Actually, as J-lj(U2) increases from J-lj(u+) one reaches a maximum value, in which 
equality holds in (3.15) while the shock is still classical (and therefore (3.16) still 
holds). To check this property, consider the graphs of the two functions h(m) := 

'Xj(u_,vj(m;u_)) and k(m) := 'Xj(u+,vj(m;u+)). By symmetry of the Rankine­
Hugoniot relation one has 'Xj (u+, u_) = 'Xj (u_, u+), so 

(3.17) 

In view of Lemma 2.3 and (2.10), the two graphs must intersect at exactly one point 
m~ in the interval (J-lj(u+),J-lj(u_)). We define u~ by the conditions J-lj(u~) = m~ 
and u~ E Hj(u+). 
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On the other hand, let us consider the point u~ E 'Hj(u+) satisfying Xj (u+, u~) = 
Xj(u_,u+) = u. From the Rankine-Hugoniot relations 

-u (u+ - u_) + f(u+) - f(u-) = 0 

and 

we deduce that 
-u (u~ - u_) + f(u~) - f(u-) = 0, 

. - ~ ~ WhICh proves that Aj(U_,U3) = u and u3 E 'Hj(u_). 
From the above discussion we conclude that u~ = u~ and 

h(m~) = k(m~) = u, u~ E 'Hj(u_). (3.18) 

Then, it follows also that (3.15) holds for all J.lj(U2) < m~, and the equality holds 
in (3.15) at the critical value u~. Moreover, since m~ < J.l~(u_), the shock speed is 

decreasing on the interval (J.lj(u+),m~) and any shock from U+ to U2 (with J.lj(U2) :::; 
m~) satisfies Liu entropy criterion. 

We have the inequalities J.lj(u+) < J.l~(u_) < m~ < J.lj(u_). As J.lj(u+) increases, 

both J.lj(u+) and m~ approach the limiting value J.l~(u_). As J.lj(u+) decreases, both 

J.lj (u+) and m~ approach the limiting value J.l~o (u_), while m~ approaches a limiting 

value which we denote by J.l~o (u_). Finally, one can also check from the properties of 
the wave speeds, that no third wave can follow a two-wave fan. This completes the 
proof of Theorem 3.4. 0 

PROOF OF THEOREM 3.5. For u_ E M j it is not hard to see, using the properties 
(3.7ii), that Wj(u_) coincides with the Hugoniot curve 'Hj(u_). This is because 
the wave speed is decreasing when moving away from u_ in either direction. The 
construction is complete for u_ E M j . 

Consider the case J.lj (u_) > 0 and recall first the construction of the classical 
part of the wave set. For J.lj > J.lj ( u_) the state u_ can be connected to any point 
on 'Hj (u_) since the wave speed is decreasing for J.lj increasing. For J.lj < J.lj (u_), 
the wave speed is, locally, increasing for J.lj decreasing. So u_ can be connected to a 
point on OJ(u_) by a rarefaction. This remains possible until J.lj reaches the value O. 
It is also possible to connect any point u+ E OJ(u_) satisfying J.lj(u+) E [O,J.lj(u_)] 
to a point U2 E 'Hj ( u+) provided 

(3.19) 

This construction covers the range J.lj E [J.lj~(u_), 0]. It is also possible to connect u_ 

directly to a point U E 'Hj(u_) with J.lj(u) :::; J.lj~(u_), since the shock speed in this 
range satisfies Liu entropy criterion. This completes the construction of the classical 
wave curve Wj(u_). 

We now describe all nonclassical solutions with two j-waves. Consider an admis­
sible one-wave solution from u_ to U+. Suppose first that J.lj (u+) E (0, J.lj (u_)) and 
U+ E OJ(u_). Then, one can connect U+ to U2 E 'Hj(u+) by a shock provided both 
conditions 

(3.20) 
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(3.21) 

hold. From the properties of the entropy dissipation (Lemma 3.3) we know that (3.21) 
is equivalent to 

fLj(U2) S fL;o(U+) (or fLj(U2) 2: fLj(U+)). 

In view of the graph of the shock speed, (3.20) reads 

Since we always have fL~o(U+) E [fLjQ(U+),fLj(U+)], it follows that the admissible 

interval in the case under consideration is fLj(U2) E [fLjQ(U+)'fL~o(U+)], Moreover 

such a shock is classical only when fLj(U2) S fLjQ(U+), that is, only when fLj(U2) = 
fLjQ(U+). 

Suppose now that fLj(U+) 2: fLj(U-) with U+ E 'Hj(u_). The, one can connect U+ 
to a point U2 E 'Hj (u+) provided 

(3.22) 

and 
(3.23) 

The condition (3.23) is equivalent to saying that fLj(U2) S fL~o(U+) (or fLj(U2) 2: 
b -fLj(U+)). As fLj(U2) decreases from fLjo(U+), the speed Aj(U+,U2) satisfies (3.22) 

initially, decreases, and eventually reaches the value Aj (u_, u+). Since u+ E 'Hj (u_) 
and U2 E 'Hj ( u+) the same argument as in the concave-convex case shows that for 
that value of fLj one has U2 E 'Hj (u_). 

This completes the description of the two wave patterns and, therefore, the proof 
of Theorem 3.5. 0 

4. Kinetic relations and nonclassical Riemann solver 

In view of Theorems 3.4 and 3.5 the nonclassical wave set Xj (u_) is a two-dimensional 
manifold when j E J2 • It is our objective now to select the nonclassical wave curve 
W;c(u_) within the wave set Xj(u_). In view of Theorems 3.4 and 3.5 one parameter 
should be prescribed for each non-genuinely nonlinear wave family. Generalizing the 
approach in Chapter II for scalar conservation laws, we postulate that for all u_ 
and j E h a single right-hand state U+ can be reached from u_ with a nonclassical 
shock. As already pointed out for scalar conservation laws, the kinetic function to be 
introduced now is a given "constitutive function" which represents certain small-scale 
effects neglected at the hyperbolic level of modeling. For definiteness, we restrict 
now attention to concave-convex fields. (The results in this section extend to convex­
concave fields by relying on Theorem 3.5 instead of Theorem 3.4). 

DEFINITION 4.1. For each j E J2 a kinetic function for the j-characteristic field is 
a Lipschitz continuous mapping fL~ : B( 8d ---> IR satisfying 

fL;o(U) < fL~(U) S fLj(U), fLj(U) > 0, 

fLj(U) S fL~(U) < fL;o(U), fLj(U) < O. 
(4.1) 
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We shall say that a solution U = u(x, t) (in the class P) satisfies the kinetic relation 
associated with the kinetic function J.t~ if for every j-nonclassical shock the right-hand 
state U+ is determined from the left-hand state u_ by 

To the kinetic function we shall associate its companion function J.t~ (u) by 

- ~ _ - i> Aj(U_,U+) - Aj(U_,U+), 

where u~:= Vj(J.t;(u_);u_), u~ := Vj(J.t~(u_);u_). 

(4.2) 

o 

(4.3) 

It can be checked, by the implicit function theorem for Lipschitz continuous mappings, 
that J.t~(u) exists and depends Lipschitz continuously upon its argument. From the 
discussion in Chapter II we know that an additional constraint is needed to avoid 
selecting the classical solution. 

DEFINITION 4.2. We shall say that a weak solution U satisfies the nucleation cri­
terion associated with the kinetic function J.t~ if for every classical shock connecting 
u_ to u+ we have 

J.t~(U_) :S J.tj(u+) :S J.tj(u_) when J.tj(u_) ~ 0, 

J.tj(u_) :S J.tj(u+) :S J.t~(u_) when J.tj(u_) :S O. 
( 4.4) 

o 
THEOREM 4.3. (Nonclassicallliemann solver.) Suppose the system (1.1) admits lin­
early degenerate, genuinely nonlinear, and concave-convex fields. 

(a) For j E J2 consider a (Lipschitz continuous) kinetic function J.t~ (satisfying 
(4.1)). Then, for each u_ E 8(81) the kinetic relation (4.2) and the nucleation 
criterion (4.4) select a unique nonclassical j-wave curve W;c(u_) within 
the wave set Xj (u_). When J.tj (u_) > 0 it is composed of the following four 
pieces: 

OJ(U_), J.tj(u) ~ J.tj(u_), 

1ij (u_), J.t~(u_):S J.tj(u) :S J.tj(u_), 

1ij(u~), J.t~(u_):S J.tj(u) < J.t~(u_), 

OJ(u~), J.tj(u):s J.t~(u_), 

where u~ := Vj (J.t~ (u_); u_). The Riemann solution is a single rarefaction 
shock, or a single classical shock, or a nonclassical shock followed by a classical 
shock, or finally a nonclassical shock followed by a rarefaction, respectively. 
The curve W;c ( u_) is continuous and monotone in the parameter m = J.tj ( u). 
It is of continuously differentiable with bounded second-order derivatives for 
all m I- J.t~(u_) and Lipschitz continuous (at least) at m = J.t~(u_). 

(b) For all Uz and Ur in 8(8t} the Riemann problem (1.1) and (1.2) admits a unique 
solution determined by combining together the (classical) wave curves Wj ( u_ ) 
for j E Jo U J1 and the (nonclassical) wave curves W;c(u_) for j E J2 · 
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PROOF. Let u_ E U and j E J2 be given. In view of the assumption (4.1) the criterion 
(4.2) selects a unique nonclassical shock along the Hugoniot curve Jij(u_), which we 
denote by u~ := Vj (JL~ (u_); u_). Once this state is selected the construction in The­
orem 3.4 determines a unique wave curve W;C( u_) having the form described in the 
theorem. Furthermore, without the nucleation criterion (4.4) the classical wave curve 
Wj( u_) is admissible, since the kinetic relation does not prevent one from solving the 
Riemann problem by using classical waves only. The nucleation criterion precisely 
excludes the single shock solution when the nonclassical construction is available. 

The nonclassical wave curve is continuous in the parameter JLj which, by con­
struction, is monotone increasing along it. Finally, having constructed the (possibly 
only Lipschitz continuous) wave curves W;C for j E h and the (smooth) wave curves 

Wj for j ~ h, and using the condition that {rk} is a basis of JRN, we can solve 
the Riemann problem with data in 8( 8d by combining together the wave curves and 
relying on the implicit function theorem for Lipschitz continuous mappings. 0 

In Theorem 4.3, for j E J2 we can also recover the classical wave curve Wj( u_) 
with the trivial choice JL~ (u) = JL~ (u) for all u. With this choice, the nonclassical 
shock have the maximal negative entropy dissipation while another particular choice, 
JL~ (u) = JL~o ( u), leads to nonclassical shocks with vanishing entropy dissipation. 

As was already pointed out for scalar conservation laws (in Section II-4), the non­
classical Riemann solution depends continuously in the L1 norm upon its initial data, 
but not in a pointwise sense. In the classical solution, the value of the intermediate 
state (if any) in the Riemann solution varies continuously as u+ E Wj(u_) describes 
the wave curve; the solution in the (x, t) plane varies continuously in the L1 norm 
and its total variation is a continuous function of the end points. 

Along a nonclassical wave curve, the speeds of the (rarefaction or shock) waves 
change continuously. We simply observe that at the point JL~ (u_) one has to compare, 
on one hand, the shock speed of the nonclassical shock and, on the other hand, the 
shock speeds of the nonclassical and the classical shocks. All three terms coincide at 
Il~(u_), i.e., 

(4.5) 
The continuous dependence of the wave speeds implies the L1 continuous dependence 
of the solution. For the nonclassical wave curve the wave speeds (only) are continu­
ous and the total variation of the nonclassical Riemann solution is not a continuous 
function of its end points. This lack of continuity makes it delicate to control the 
strengths of waves at interactions; see Chapter VIII which is concerned with the 
Cauchy problem. 

REMARK 4.4. 
• We may also constrain the entropy dissipation E( u_, u+) of nonclassical shocks 

through a kinetic relation of the general form 

(4.6) 
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• A special class of such kinetic functions of particular interest is based on the 
entropy dissipation function and depends solely on the shock speed Xj ( u_, u+), 
i.e., 

(4.7) 
A left-hand state u_ being fixed, one observes that the entropy dissipation 
along the Hugoniot curve (when re-written as a function of the shock speed) 
is increasing from its maximal negative value 

E;(u_) = min E(u_,u+), 
u+E1tj(u_) 

achieved at A~ := Xj (u_, Wj (IL~ (u_); u_)), to the value 0 which is achieved 
at the speed A = Xj (u_, Wj (lL~o (u_); u_)). Provided the function <p( s) is 
decreasing and that <p ("Xj ( u_, u+)) lies in the interval 

E;(u_) :S; <p(Xj(u_,u+)) :S; 0, 

there exists a unique point m = IL~ ( u_) such that the kinetic relation (4.7) is 
satisfied. 

• In the applications concerning scalar conservation laws and the 2 x 2 system 
of nonlinear elastodynamics, it turns out that the kinetic function can always 
be expressed as a function of the shock speed, i.e., in the form (4.7). In many 
physical systems, the entropy dissipation is related to the mechanical energy 
and regarded as a force driving the propagation of discontinuities. The ki­
netic relation (4.7) imposes a one-to-one relationship between the propagation 
speed and the driving force. 

o 



CHAPTER VII 

CLASSICAL ENTROPY SOLUTIONS 
OF 

THE CAUCHY PROBLEM 

In this chapter we establish the existence of a classical entropy solution to the 
Cauchy problem associated with a strictly hyperbolic system of conservation laws 
when the initial data have small total variation. We cover here the general class 
of systems whose each characteristic field is either genuinely nonlinear or concave­
convex. With minor changes, the results in this chapter extend to linearly degenerate 
and convex-concave fields. In Section 1 we discuss fundamental properties of (exact 
and approximate) classical entropy solutions to the Riemann problem, studied earlier 
in Sections VI-l and VI-2. The key property is given by the interactions estimates 
in Theorem 1.1: at each interaction, the wave strengths may increase by an amount 
which is bounded by the product of the strengths of the two incoming waves. In 
Section 2 we describe the approximation scheme which generalizes the one given in 
Section IV-2 for scalar conservation laws, and we state the main existence result; see 
Theorem 2.1. Technical aspects of the proof are postponed to Section 3. Finally, in 
Section 4 we briefly discuss pointwise regularity properties of the solutions. 

1. Glimm interaction estimates 

Consider the system 

OtU + oxf(u) = 0, U = u(x, t) E U, x E JR, t > o. (1.1) 

The set U := B(60) is a ball with center 0 E JRN and radius 150 , and the flux f : U -+ JRN 
is assumed to be strictly hyperbolic. For each U we denote by Al(U) < ... < AN(U) 
the eigenvalues of the matrix Df(u) and by lj(u) and rj(u), 1 :::; j :::; N corresponding 
basis of left- and right-eigenvectors. For 150 sufficiently small the averaging matrix 

is also strictly hyperbolic for all U_, u+ E B( 150 ). We denote by Xi (u_, u+), Ii (u_, u+), 
and 1\ (u_, u+) its eigenvalues and left- and right-eigenvectors, respectively, normal­
ized so that 

Exact Riemann solver. 
The Riemann problem associated with (1.1) and 

{ 
Ul, 

U(x, 0) = 
U r , 

x < 0, 

x> 0, 
(1.2) 

P. G. LeFloch 
© Birkhauser Verlag 2002

Hyperbolic Systems of Conservation Laws
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where UI and Ur E 8(82 ) and 82 < 80 , was solved in Sections VI-1 and VI-2, in the 
class of classical entropy solutions. Let us summarize the main results as follows. It is 
convenient to introduce, for each wave family, a global parometer /-ti = /-ti (u) such that 
'iJ /-ti . ri # o. For 81 < 80 sufficiently small and for all u_ E 8(81) and 1 ~ i ~ N the 
i-wave curve Wi (u_) issuing from u_ is parameterized by a mapping m f-t 'l/Ji (m; u_) 
with 

/-ti('l/Ji(m;u_)) = m 

for all m varying in some open and bounded interval containing /-ti ( u_ ). Each state 
'l/Ji (m; u_) can be connected to u_ on the right by elementary i-waves. For genuinely 
nonlinear fields one obtains a i-rore/action wave when m ~ /-ti(U-) and a i-shock wave 
when m < /-ti(U-). (See Section VI-I.) For concave-convex fields the wave curves are 
made of three different parts: a single rarefaction wave, a single shock wave, or else a 

right-contact plus a rore/action wave. (See Section VI-2.) Moreover, the mapping 'l/Ji 
has bounded second-order derivatives in (m; u_) with 

(1.3) 

The solution of the Riemann problem contains (at most) N wave fans associated 
with each of the characteristic families. Since {ri} is a basis of JRN and in view of 
(1.3), for any fixed UI E 8(82 ) (with 82 < 81 sufficiently small) the mapping 

(S1, ... ,SN) f-t \[I(S1, ... ,SN; UI) = UN, 

Uo := U/, Ui:= 'l/Ji(/-ti(Ui-1) + Si; Ui-t}, 1 ~ i ~ N, 

is one-to-one from a neighborhood of 0 in JRN onto a subset of 8(00) containing 8(02). 
For UI and Ur in 8(82 ) the wave strengths (Ji = (Ji(UI,Ur ) of the Riemann solution 
of (1.1) and (1.2) are defined implicitly by 

They have second-order bounded derivatives, and they are equivalent to the usual 
distance in JRN in the sense that for some constant C ~ 1 

1 N 

C IUr - uzi ~ L h(UI,Ur)1 ~ C IUr - uzI· 
i=l 

(1.4) 

It will be convenient to introduce the general notation 

where (Jk(UI,Ur )8 and (Jk(U/,ur)R represent the strengths of the k-shock wave and of 
the k-rarefaction wave in the corresponding Riemann solution, respectively. Observe 
in passing that (Jk(U/,ur )8 and (Jk(UI,Ur)R always have the same sign so that, for 
instance, 

max(l(Jk( UI, Ur )81, l(Jk (u/, Ur )RI) ~ l(Jk( Ul, Ur ) I. 
In this section our main objective is to derive "wave interaction estimates". That 

is, we consider the solution of the Cauchy problem associated with (1.1) when the 
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initial data take three constant values: 

{ 
Ul, 

U(X,O) = Urn, 

Un 

x < -1, 

-1 < X < 1, 

X> 1, 

169 

(1.5) 

where UI,Urn , and Ur E 8(ih). By combining the two Riemann solutions associated 
with the left- and right-hand data Ul, Urn and Urn, Un respectively, it is easy to con­
struct the solution of (1.1) and (1.5) for small time. Waves originating from the initial 
discontinuities located at X = -1 and x = 1 propagate until their trajectories meet 
eventually. After all possible interactions have taken place, the solution has reached 
an asymptotic state which is determined by the Riemann solution connecting Ul to Ur . 

The wave interaction estimates relate the wave strengths of the two incoming 
Riemann solutions with the ones of the outgoing Riemann solution. For instance, if 
the flux f were linear we would simply write 

(1.6) 

The formula (1.6) extends to nonlinear flux-functions up to a quadratic error term. 
Since this is sufficient for our purpose we assume that each incoming Riemann solu­
tions contains a single wave fan. 

THEOREM 1.1. (Glimm interaction estimates - Exact Riemann solver.) For all 
Ul, Urn, and Ur E 8(82) we have the following property. Suppose that Ul is connected 
to Urn by an i-wave fan and that Urn is connected to Ur by a j -wave fan (1 ~ i, j ~ N). 
Then, the wave strengths ak (Ul, ur ) of the outgoing Riemann solution satisfy 

ak( UI, ur ) = ak( UI, urn) + ak(urn , ur ) + 0(1) Qin(UI, Urn, ur ), 

{ 

ai(ul, urn) + 0(1) Qin( Ul, Urn, Ur ), 

aj(urn , u r ) + 0(1) Qin( Ul, urn, u r ), 

- ai(ul, urn) + aAurn , ur ) + 0(1) Qin(UI, urn, ur ), 

0(1) Qin(UZ, urn, ur ), 

1 ~ k ~ N, 

k = i =1= j, 

k = j =1= i, 

k = j = i, 
otherwise, 

where the interaction potential between the two incoming waves is defined as 

and the symbol 0(1) denotes some uniformly bounded functions. 

(1.7) 

With the notation of the theorem note that, when either i < j or else i = j and 
both incoming waves are rarefaction waves, the waves do not truly interact and the 
formula (1.6) holds (without error term). 

PROOF. We can describe the set of solutions under consideration by fixing the left­
hand state Ul and using the wave strengths 

as parameters. The state Ur is regarded as a function of Sl and Sr, that is, 
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We set 

and 
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K(sz, sr) = Isz sri· 

k = i =1= j, 

k = j =1= i, 

k = j = i, 
otherwise, 

Obviously, if K (Sl' Sr) = 0, then either Sz = 0 or Sr = 0 and one of the incoming 
wave is trivial. In both cases we have Hk(sz,sr) = O. This motivates us to show that 

iHk(SI,Sr)i :s: C K(sz,sr) (1.8) 

for all relevant values Sl, Sr and for some constant C > O. Indeed, we have 

( ) () l srOHk( ") " Hk SI,Sr = Hk SI,O + ~ SI,(J d(J 
o USr 

l sr (OHk " lSI 02 Hk ,,, ') " = Hk(SI,O) + ~(O,(J ) + ~((J ,(J )d(J d(J, 
o uSr 0 uSZuSr 

which gives (1.8) with 

I 02Hk I 
C := sup OSZOSr ' 

since Hk(SI, O) = Hk(O,Sr) = 0 and the functions (Jk and 'l/Jk have bounded second­
order derivatives. 0 

Approximate interaction solvers. 
We now generalize Theorem 1.1 to "approximate" wave fronts, since for techni­
cal reasons we will need to solve the Riemann problem approximately. Fix some 
(small) parameter h > O. By definition, a (classical) approximate i-wave front 
(1 :s: i :s: N + 1) is a propagating discontinuity connecting two constant states u_ and 
u+ at some speed A, with 

(a) either i < N + 1, A = Xi(u_, u+) + O(h), and u+ E Wi(u_); 
(b) or i = N + 1, the states u_ and u+ are arbitrary, and the speed A := AN+1 is 

a fixed constant satisfying 

AN+1 > sup AN(U). 
uEB(oo) 

In Case (a) the strength of the wave is the usual length (Ji (u_, u+) measured along 
the wave curve Wi ( u_ ). The propagating jump is a (classical approximate) shock 
front if u+ belongs to the Hugoniot curve starting from u_, or an (approximate) 
rarefaction front if u+ belongs to the integral curve starting from u_. (We will not 
use the remaining part of concave-convex i-wave curves involving two-wave patterns.) 
In Case (b) we refer to the front as an artificial front or (N + I)-wave front and 
its strength is defined by 

(1.9) 

Observe that a shock front need not propagate with the Rankine-Hugoniot speed 
as an error of order O(h) is allowed (and specified later in Section 2) provided Lax 
shock inequalities are kept. Similarly, a rarefaction front travels with an averaged of 
the associated speed of the rarefaction fan, up to an error of order O(h). 
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Relying on the above terminology, we consider an approximate i-wave front con­
necting Ul to Urn, followed with an approximate j-wave front connecting Urn to Ur . 

We suppose that they collide at some point, which implies that 

i ~ j, 1:S; i :s; N + 1, 1:S; j :s; N. 

In particular, two (N + I)-fronts cannot meet since they travel at the same (constant) 
speed. To extend the solution beyond the interaction time we will introduce suitable 
approximations of the Riemann solution connecting Ul to Ur . More precisely, we 
distinguish between an "accurate" wave interaction solver (to be used in Section 2 for 
waves with "large" strength) and a "rough" solver (for waves with "small" strength). 
Here, we call wave interaction solver a mapping which, to the incoming fronts 
connecting Ul to Urn and Urn to Un respectively, associates a (piecewise constant) 
approximate solution to the Riemann problem with data Ul and Ur . Note that the 
interaction solvers introduced now depend on the middle state Urn, as well as on the 
given parameter h > o. 

The accurate interaction solver is defined when i, j < N + 1. We consider 
the Riemann solution associated with Ul and Un and we decompose any existing 
rarefaction fan into several propagating jumps with small strength :s; h. 

More precisely, suppose that the Riemann solution contains a k-rarefaction fan 
connecting a state u_ to a state U+ = 'l/Jk (m; u_) for some m. Let p be the largest 
integer such that 

(1.10) 

and set E = sgn( m - f..Lk (u_)). Then, we replace the rarefaction fan by a k-rarefaction 
front connecting u_ to 

VI := 'l/Jk (f..Lk ( U_) + E h; u_) 

and propagating at the speed Xk ( u_ , VI), followed by another k-rarefaction connecting 
VI to 

V2 := 'l/Jk(f..Lk(vd + E h; vd 

and propagating at the speed Xk (Vl, V2), etc., and finally followed by k-rarefaction 
front connecting vp to 

'l/Jk (f..Lk ( vp) + m - f..Lk( u_) - Ep h; vp) = U+ 

and propagating at the speed Xk(vp,u+). However, we have also the freedom of 
changing the above wave speeds by adding small terms of order O(h) (while always 
keeping the ordering of wave fronts). 

The following terminology will be useful. All outgoing k-waves with k i= i,j are 
called secondary waves. When i i= j, all i- and j-waves are called primary waves. 
If i = j, then the shock and the "first" (left-hand) rarefaction front -if any- are called 
primary waves, while all other i-waves are called secondary waves. With this 
terminology, the interaction estimates (1.7) (see also (1.13), below) ensure that all 
secondary waves are quadratic in the incoming wave strengths. 

On the other hand, in the rough interaction solver we neglect the nonlinear 
interaction between incoming waves and we treat them as linear waves. This is done 
at the expense of introducing an artificial wave front. 

If i :s; Nand i > j, then the rough Riemann solution contains a j-wave fan 
with strength s := OJ (urn' ur ) connecting to it := 'l/Jj (f..Lj (Ul) + s; ud, followed by an 
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i-wave fan with strength ~ = O"i(UI, um) connecting to 1i := '¢i(J.Li(U) + §; u), plus an 
artificial front connecting to the right-hand state U r . Here, we also decompose each 
of the two wave fans into a shock front plus rarefaction fronts with strength:::; h, as 
already explained above. All of the i- and j-waves are called primary waves, while 
the artificial front is called a secondary wave. 

Finally, if i :::; Nand i = j, then the Riemann solution contains an i-shock 
front with strength s connecting to U := '¢i(J.Li( uz) + s; Ul), an i-rarefaction front 
with strength ~ connecting to 1i := '¢i(J.Li(U) + §; uz), followed by an artificial front 
connecting to U r . The strengths sand § are determined so that 

s + ~ = O"i(UI, um) + O"i(Um, ur ) + 0(1) !O"i(UI, um) O"i(Um, ur )!, 

and !~! :::; h. This is indeed possible, thanks to the estimate (1.13) in Theorem 1.3 
below which shows that the strength of a rarefaction essentially diminishes at in­
teractions and since incoming rarefactions are kept of strength :::; h throughout our 
construction. The i-wave fronts are called primary waves, while the artificial front is 
called a secondary wave. Again, all secondary waves are quadratic in the incoming 
wave strengths. 

This completes the description of the interaction solvers. It remains to define the 
wave strengths of the approximate Riemann solutions. This is obvious for the accurate 
interaction solver, since we are always using states lying on some wave curves and 
we can therefore measure the strengths from the parametrization given along the 
wave curves. The same is true for the rough solver, except for the artificial fronts 
for which we simply use the definition (1.9). The wave strengths of the accurate 
interaction solver are identical with the wave strengths O"k (Ul' ur ) (1 :::; k :::; N) of the 
exact Riemann solver. With some abuse of notation, the wave strengths of the rough 
interaction solver will still be denoted by O"k (Ut, u r ) (1 :::; k :::; N + 1). For the accurate 
solver it is convenient to set O"N+1(UI,Ur ) = o. It is easy to extend Theorem 1.1 to 
approximate wave fronts, as follows. 

THEOREM 1.2. (Wave interaction estimates - Approximate interaction solvers.) For 
all UI,Um, and Ur E 8(6d, we have the following property. Suppose that Ul is con­
nected to Um by an approximate i-wave front (1 :::; i :::; N + 1) and that Um is connected 
to Ur by an approximate j-wave front (1 :::; j :::; N). Then, the wave strengths of the 
accurate interaction solver satisfy the estimates (1. 7) and 

(1.11 ) 

In the rest of this section we will estimate the outgoing interaction potential 
defined by 

Qout(UI,Um,Ur ) = ~]O"O"/I, 
in terms of the incoming interaction potential Qin (Ul' Um, ur ). Here, the summation 
is over all pairs (0",0"') of waves of the same family within the corresponding accurate 
or rough interaction solvers. 

THEOREM 1.3. (Refined interaction estimates.) Considering UI,Um, and Ur E 8(61)' 
suppose that Ul is connected to Um by an approximate i-wave front, that Um is con­
nected to Ur by an approximate j-wave front (1 :::; j :::; i :::; N), and that the left-hand 
front travels faster than the right-hand front. If i > j, then for some C > 0 we have 

(1.12) 
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If i = j, then for some constants C > ° and c E (0, 1) we have 

lai(ul, ur)RI ~ max(h(ul, um)RI, lai(um, ur)RI) + C Qin(Ul, Um, ur) (1.13) 

and 
(1.14) 

PROOF. For genuinely nonlinear fields the estimate (1.13) follows immediately from 
the standard interaction estimates (1.7). A wave is either a shock or a rarefaction, 
therefore (1.12) and (1.14) are trivial in this case. 

Consider the case i > j and a concave-convex characteristic field. The crossing of 
two waves of different families corresponds to a "shifting" of the waves in the phase 
space: for instance, roughly speaking, the wave connecting Ul to Um is shifted by the 
distance aj(Um,ur). Consider the outgoing i-wave fan together with decomposition 

ai(ul,ur) = ai(uz,ur)s +ai(ul,ur)R. 

If the incoming i-wave is a shock, then the outgoing rarefaction part ai (Ul' ur)R 
depends at most linearly upon the incoming strength. Precisely, since ai (Ul' ur)R 
depends (at least) Lipschitz continuously upon a i (Ul' um) and a j (um, ur) and vanishes 
when one of the latter vanishes, it follows that 

lai( Ul, Ur )RI ~ C min(lai( Uz, um)l, laj( Um, ur)l). 

Of course, in the accurate and rough solvers the new rarefaction fan may need to 
be decomposed into small rarefaction fans with strength ~ h. The "self" interaction 
potential between these waves is at most lai(ul,ur)RI2 . In turn, we can estimate the 
terms in Qout concerned with i-waves, say Q~ut' as follows: 

Q~ut(UI,Um,Ur) ~ lai(ul,ur)s ai(ul,ur)RI + lai(ul,ur)RI 2 

~ C Qin(Ul, Um, ur)· 

Next, if the incoming i-wave is a rarefaction, then both the outgoing shock 
strength a i (uz, Ur ) S and the change in the rarefaction strength depend at most lin­
early upon the incoming strengths, since they depend (at least) Lipschitz continuously 
upon ai(ul,um) and aj(um,ur) and vanish when one of the latter vanishes: 

lai(ul, ur)sl + lai(ul, ur)R - ai(ul, um)1 ::; C min(lai(ul,Um)l, laj(um, ur)l). 

Here, by construction we always have lai(ul,um)1 ~ h and we only may need to de­
compose the part ai(ul, Ur)R - ai(ul, um) of the rarefaction fan. We estimate Q~ut as 
follows: 

Q~ut( Ul, Um, ur) 
~(lai(ul,Ur)sl + lai(ul,ur)R - ai(ut,um)1) lai(ul,ur)RI 

+ lai(ul, ur)Sllai(Ul, ur)R - ai(uz, um)1 + lai(ul, ur)R - ai(ul,um)1 2 

~C Qin(Ul, Um, ur). 

This establishes the estimate (1.12). 
Consider the case i = j of a concave-convex characteristic field. We use here the 

notation introduced in Chapter VI where we constructed the i-wave curve. Following 
the general classification given in the proof of Theorem IV -4.1, we distinguish between 
several interaction patterns depending on the relative positions of /-Li (Ul), /-Li ( um), and 
/-Li(Ur). We restrict attention to the cases with /-Li(Ul) > 0, the other cases being 
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completely similar. The argument below strongly uses the monotonicity properties 
of the shock speed and characteristic speed determined in Section VI-3, which imply, 
for instance, that two rarefaction fronts cannot meet. We emphasize that all the 
calculations and inequalities below should include error terms of quadratic order in 
the incoming wave strengths which, for simplicity in the presentation, we neglect in 
the rest of this discussion. (Strictly speaking, there are more interaction cases for 
systems than for scalar conservation laws, but the "new" cases can be regarded as 
quadratic perturbations of the cases listed below.) We use the notation 

and 
[R] := lai(ul, ur)RI- max(lai(Ul, um)RI, lai(um, ur)RI). 

[Q] := lai(ul, ur)sllai(Ul, ur)RI-lai(Ul, um)llai(um, ur)l· 
Recall from Lemma VI-2.4 that \7 /L~ ·ri rv -(1/2)\7 /Li ·ri near the critical manifold 

Mi which implies that, for states U and u" taken along any i-wave curve and for some 
constant e E (0,1), we have 

(1.15a) 

and 
(1.15b) 

Case RC-l : That is, (R+C)-(C') when 0 < /Li(Uz) < /Li(Um) and /L~(uz) ::; /Li(Ur ) < 
/Li(Ul) (up to a quadratic error 0(1) lai(ul,um)llai(Um,ur)l). There is only one out­
going i-wave, and the incoming pattern is non-monotone in the variable /Li. We find 

Case RC-2 : That is, (R+C±)-(C'±:R'-) when 0 < /Li(Ul) < /Li(Um) and /L~(Um) ::; 
/Li ( ur ) < /L~ (Ul). The exact outgoing pattern contains a shock wave and a rarefaction 
wave. We have 

[R] = l/Li(Ur ) - /L~(uZ)I-I/Li(Um) - /Li(Ul)1 

::; e I/L;~(ur) - /Li(Ul)I-I/Li(Um) - /Li(Ul)1 
::; -(1 - e) l/Li(Um) - /Li(Ul)l. 

Using /Li(Uz) < /L;~(Ur) ::; /Li(Um) and (1.16), we find that for every K, E (0,1) 

[Q] = 1/L~(Ul) - /Li(Ul)ll/Li(Ur ) - /L~(ul)I-I/Li(Um) - /Li(Ul)ll/Li(Ur ) - /Li(um)1 
::; -(1 - K,) l/Li(Um) - /Li(uz)ll/Li(Ur ) - /Li(Um)I 

+ e 1/L~(Ul) - /Li(Ul)II/L;~(ur) - /Li(Ul)l- K, 1/L;Q(ur ) - /Li(Ul)ll/Li(Ur ) - /L;~(ur)1 
::; -(1 - K,) l/Li(Um) - /Li(uz)ll/Li(Ur ) - /Li(um)1 

- (K, - e) 1/L~(Ul) - /Li(Ul)II/L;~(Ur) - /Li(Ul)1 

::; -(1 - K,) l/Li(Um) - JLi(Ul)ll/Li(Ur ) - /Li(um)1 ::; 0, 

since /Li ( ur ) < /L~ ( Ul) < /Li ( Ul) < /L; ~ ( ur ) and provided we choose K, such that 
1 > K, > e. 
Case CR-l : That is, (C±R_)-(C'±:) when /L~(Ul) ::; /Li(Ur ) < /Li(Um) < O. There is 
only one outgoing wave and the incoming solution is monotone. We find here 

[R] = -I/L;~(ur) - /L;~(um)1 ::; O. 
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Case CR-2 : That is, (C+R+)-(C~) when 0 < J.li(Um) < J.li(Ur ) < J.li(Uz). There is 
only one outgoing wave and some cancellation is taking place. This case is similar to 
Case RC-1. 

Case CR-3 : That is, (C±R_)-(C±R'-) when J.lt(UI,Um) < J.li(Ur ) < J.l~(uz) ::; 
J.li(Um) < o. Here the value J.l = J.l;(UI,Um) is defined by the conditions (Vi denoting 
the parametrization of the Hugoniot curve) 

Let us first observe that, possibly using a larger value () E (0,1) if necessary, it follows 
from Lemma VI-2.5 (see also the proof of Theorem IV-4.2 for scalar equation) that 

1J.l~(UI) - J.li(UI)IIJ.li(Ur ) - J.l~(ul)1 
::; () min(lJ.li(uz)llJ.li(ur)l, lJ.li(Uz) - J.l:(UI, ur)llJ.li(Ur ) - J.l:(UI, ur)I)· 

(1.16) 

The outgoing pattern contains two waves and the incoming solution is monotone. 
We have 

[RJ = lJ.li(Ur ) - J.l~(ul)I-IJ.li(Ur) - J.li(Um)I 
= -1J.l~(UI) - J.li(Um)I ::; 0, 

and for every Ii E (0,1) 

[QJ =1J.l~(UI) - J.li(UI)IIJ.li(Ur ) - J.l~(ul)I-IJ.li(Um) - J.li(UI)IIJ.li(Ur ) - J.li(Um)I 
=1J.l~(UI) - J.li(UI)IIJ.li(Ur ) - J.l~(uZ)l- Ii lJ.li(Um) - J.li(UI)IIJ.li(Ur ) - J.li(Um)I 

- (1 - Ii) lJ.li( um) - J.li( Ul) IIJ.li (ur ) - J.li( um) I· 

The polynomial function J.li ( um) f-+ I J.li ( um) - J.li ( Ul ) II J.li ( Ur ) - J.li ( Um ) lover the interval 
determined by J.lt ( Ul, ur ) ::; J.li (um) ::; 0 satisfies the inequality 

lJ.li(Um) - J.li(UI)IIJ.li(Ur ) - J.li(Um)I 

~ min(lJ.li(ul)llJ.li(Ur)l, lJ.li(UI) - J.l;(ul,ur)llJ.li(Ur ) - J.lt(ul,ur)I)· 

Therefore, by (1.16) we conclude that 

[QJ ::;1J.l~(UI) - J.li(UI)IIJ.li(Ur ) - J.l~(ul)1 
- Ii min(lJ.li(uz)llJ.li(ur)l, lJ.li(UI) - J.l:(ul,ur)llJ.li(Ur ) J.l:(uz,ur)l) 

- (1- Ii) lJ.li(Um) - J.li(UI)IIJ.li(Ur ) - J.li(Um)I 
::; - (1- Ii) lJ.li(Um) - J.li(uz)llJ.li(Ur ) - J.li(um)l, 

provided Ii is chosen such that () ::; Ii < 1. 

Case CC-l : That is, (C+C)-(C') when 0 < J.li(Um) < J.li(Uz) and J.l~(Um) ::; J.li(Ur ) ::; 
J.li(Um). This case is similar to Case CR-1. 

Case CC-2 : That is, (C±C)-(C') when J.l~(UI) ::; J.li(Um) < 0 and J.li(Um) < J.li(Ur ) ::; 
J.l~(Um). This case is similar to Case RC-1. 

This completes the proof of (1.13) and (1.14) and, therefore, the proof of Theo-
rem 1.3. 0 
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2. Existence theory 

We will now construct a sequence of piecewise constant approximate solutions uh 

JR x JR+ ---. U of the Cauchy problem 

OtU + oxf(u) = 0, u = u(x, t) E U, x E JR, t ~ 0, 

u(x,O) = uo(x), x E JR. 

(2.1) 

(2.2) 

The solutions will be made of a large number of approximate wave fronts of the type 
introduced in the previous section. We assume that the given function Uo : JR ---. U 
in (2.2) has bounded total variation, denoted by TV( uo). Given a sequence h ---. 0, 
it is easy to construct a piecewise constant approximation uS : JR ---. U with compact 
support which has only finitely many jump discontinuities (say, 1/h at most) and 
satisfies 

u3 ---. Uo almost everywhere, TV(u3) ~ TV(uo). (2.3) 
Then, the Cauchy problem associated with the initial data uS can be solved explic­

itly for small time t. One simply solves a Riemann problem at each jump discontinuity 
of uS, each problem being treated independently from each other. Each (approximate) 
Riemann solution may contain one or several (approximate) wave fronts. When two 
of these wave fronts collide, we can again solve a Riemann problem and continue the 
solution beyond the interaction time. If the algorithm does not break down (we return 
to this issue shortly), we continue this construction globally in time by resolving all 
interactions one by one. 

Our main objective is to show that the approximate solutions are globally defined 
in time and to derive the uniform bound on the total variation of the approximate 
solutions, 

TV(uh(t)) :S CTV(uo), t 2': o. (2.4) 
By Helly's compactness theorem (see the appendix) (2.4) implies that the limit u = 
limh-.o uh exists almost everywhere and, in turn, satisfies (2.1) and (2.2). In contrast 
with scalar conservation laws (in Chapter IV), the total variation TV(uh(t)) may well 
increase in time, and to establish (2.4) it will be necessary to rely on the interactions 
estimates derived in Section 1. 

Several important obstacles must be overcome in order to implement the above 
strategy: 

• The Riemann problem is known to be solvable for data in [3(82), only, and 
therefore we must ensure that the values uh(x, t) remain in this neighborhood 
of 0. 

• A Riemann solution may contain centered rarefaction fans, and we will replace 
them with several propagating jumps with small strength h (with the minor 
drawback that such fronts violate the entropy condition). 

• When two wave fronts interact, the number of outgoing fronts may be greater 
than the number of incoming ones so that the number of waves could become 
infinite in finite time. To prevent this from happening, we will neglect waves 
with "small" strength. 

• Additionally, we will check that the number of interactions between these 
waves is finite so that the scheme does not break down in finite time. 

• Finally, in order to implement this strategy artificial wave fronts will be needed 
and will propagate "very small" error terms away, with the fixed large speed 

AN+!· 
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By slightly changing the wave speeds and introducing an error term of order O(h) 
if necessary, one can assume that, at each time, at most one interaction is taking place 
and that this interaction involves exactly two wave fronts. 

The wave front tracking approximations uh are defined as follows, based 
on the two approximate interaction solvers proposed in Section 1 and on a threshold 
function £ = £ (h) satisfying 

lim £(h) = ° 
h-+O hn ' 

n = 0, 1,2, ... (2.5) 

First of all, at the initial time t = 0, one solves a Riemann problem at each jump 
discontinuity of u8 using the accurate interaction solver. (All rarefaction fans at time 
t = 0+ are replaced with several propagating jumps with strength less than h.) Next, 
at each interaction involving two incoming waves of families i and j and with strengths 
Sz and Sr, respectively, we proceed as follows: 

1. If Isz sri> £(h) and i :::; N, we resolve the interaction by using the accurate 
interaction solver. 

2. If ISl sri:::; £(h) or if i = N + 1, we use the rough interaction solver. 
The main result in this chapter is the following one. 

THEOREM 2.1. (Existence of classical entropy solutions.) Consider the system of 
conservation laws (2.1) with a smooth flux f defined in the ball U = B(80 ). Assume 
that each characteristic field of (2.1) is either genuinely nonlinear or concave-convex. 
Then, there exist 83 < 80 , c*, C* > ° such that the following property holds for all 
initial data Uo : JR --+ B(83 ) satisfying TV(uo) :::; c*. 

Consider a sequence of approximate initial data uS : JR --+ B(83 ) satisfying (2.3) 
and a threshold function £ satisfying (2.5). Then, the above algorithm generates 
a sequence of approximate solutions uh which are globally defined in time, contain 
finitely many lines of discontinuity and finitely many points of interaction, and satisfy 
the uniform estimates 

uh(x, t) E B(80 ), x E JR, t ~ 0, 

TV(uh(t)) :::; C* TV(uo), t ~ 0, (2.6) 

Iluh(t2) - Uh(tl)II£l(lR) :::; (0(1) + C* A TV(uo)) It2 - tIl, h, t2 ~ 0, 

where 0(1) --+ ° as h --+ 0, and 
A:= sup IAi(u)l. 

uEB(ol) 
l$i-5:N 

After extracting a subsequence if necessary, uh converges (almost everywhere in (x, t) 
and in Lfoc in x for all t) to a weak solution u of the Cauchy problem (2.1) and (2.2) 
with 

u(x, t) E B(80 ), x E JR, t ~ 0, 

TV(u(t)) :::; C* TV(uo), t ~ 0, (2.7) 

Ilu(t2) - u(tl)II£l(lR) :::; C* A TV(uo) It2 - hi, h, t2 ~ 0. 

If the system (2.1) admits a convex entropy pair (U, F), then the limit u satisfies the 
entropy inequality 

(2.8) 

in the weak sense. 
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Note that the solution satisfies also Lax shock inequalities; see Section 4 below. 
The rest of this section is devoted to a proof of Theorem 2.1, assuming the uniform 
bounds (2.6) together with an estimate for the strength of artificial waves (Lemma 2.2 
below). Proving these two technical estimates is postponed to Section 3. 

We will use the following notation. For each time t which is not an interaction 
tile, we denote by .J(uh(t)) the set of the points of jump of the piecewise constant 
function x f--+ uh(x, t). At each point x E .J( uh(t)) the approximate solution contains 
a wave with strength uh(x, t) of the family ih(x, t) :S N + 1, propagating at the speed 
).h(x, t). Recall that, if the front is associated with a wave family ih(x, t) :S N, the 
(signed) strength is measured along the wave curve: 

u~ (x, t) = 1Pih(x,t) (fJ,ih(x,t) (u~ (x, t)) + uh(x, t); u~ (x, t)). 

If this is an artificial front, we have ih(x , t) = N + 1 and the (non-negative) strength 
is 

uh(x, t) = lu~(x, t) - u~ (x, t) I. 
Additionally, when ih(x, t) :S N it will be convenient to use the notation 

uh(x, t) = uh(x, t)s + uh(x, t)R, (2.9) 

where, for instance, 

UhR(X,t) = Uih(x,t)(u~(x,t),u~(x,t))R. 

The total sum of wave strengths in uh is controlled by the total variation estimate 
in (2.6). Indeed thanks to (1.4) and (2.3) we have 

L luh (x,t)I:SC2 L lu~(x,t)-u~(x,t)1 
xEJh(t) 

= C2 TV(uh(t)) :S C2 C* TV(uo) < +00. 
LEMMA 2.2. (Strengths of rarefaction and artificial fronts.) Under the assumptions 
of Theorem 2.1 we have 

and 
lim (sup 
h-+O t~O XE.:lh(t) 

ih(x,t)=N+l 

(2.10) 

(2.11) 

Of course, (2.10) is obvious by construction since all rarefaction fronts have 
strength :S h at the initial time, and that the accurate and rough interaction solvers 
do not increase the size of existing rarefactions and create only new ones with strength 
:S h. 

PROOF OF THEOREM 2.1. In view of the uniform estimates (2.6) we can apply Helly's 
compactness theorem as explained in the appendix. For each time t > 0 there exists 
a converging subsequence uh(t) and a limiting function u(t). By a standard diagonal 
argument we can find a subsequence so that for all rational t 

uh(x, t) -+ u(x, t) for almost every x. (2.12) 

The uniform Lipschitz bound in (2.6) then implies that u(t) is well defined for all t 
and that, in fact, uh(t) converges to u(t) in Ltoc for all t. The inequalities (2.7) follow 



2. EXISTENCE THEORY 179 

immediately from (2.6) by using the lower semi-continuity property of the L1 norm 
and total variation. 

We claim that the limit u is a weak solution. Given a smooth scalar-valued 
function () with compact support in 1R x [0, +00), we consider 

Eh(()):= r ()(O) u~ dx + Jr r (uh Ot() + f(uh) ox()) dxdt. Jm Jm x (0,+00) 

Since uh --+ u almost everywhere, 

Eh(())--+ r ()(O)uodX+jrr (UOt() + f(u)ox())dxdt, 
Jm Jmx(o,+oo) 

thus we simply have to prove Eh(()) --+ O. 
Recall that uh is piecewise constant. Defining 

[uh](x, t) := ui(x, t) - u~(x, t), 

and similarly for [J(uh)](x, t) and using Green's formula, we find 

Eh(()) = 1 L (Ah(x, t) [uh](x, t) - [f(uh)](x, t)) ()(x, t) dt. 
m+ xEJh(t) 

By construction if the front located at x is a shock, the left- and right-hand states 
satisfy the Rankine-Hugoniot relation but an error of order O(h) is allowed on the 
speed, therefore the Rankine-Hugoniot relation holds approximately: 

(2.13) 

If the front is a rarefaction, its speed is of the form 

h - h h A (x, t) = Aih(x,t)(u_(x, t), u+(x, t)) + O(h). 

And, since ui(x, t) lies on the integral curve issuing from u~(x, t), it is easy to check 
that 

Finally, if the front is an artificial wave, we use the simple estimate 

(2.15) 

By assumption, the support of the function () is contained in 1R x [0, T] for some 
T> O. Combining (2.13)-(2.15) we obtain 

[Eh(())[ ~ C iT ( L h [uh(x, t)[ + luh(x, t)R12 + L [uh(x, t)[) dt. 
° 1::;ih(x,t)::;N ih(x,t)=N+1 

In view of Lemma 2.2 we deduce that 

[Eh(())[~TCC3h sup L[uh(x,t)[+C sup L [uh(x,t)[ 
tE[O,Tj x tE[O,Tj ih(x,t)=N+1 

~ C' h sup TV(uh(t)) + C sup L [uh(x, t)[ ~ O. 
tE[O,Tj tE[O,Tj ih(x,t)=N+1 

Hence, the limiting function u is a weak solution of (2.1) and (2.2). 
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Since the underlying exact Riemann solution satisfies the entropy inequality (2.8), 
the accurate and rough Riemann solutions satisfy (2.8) up to error terms which are 
completely analogous to those studied above. So, proving that u satisfies the entropy 
inequality is similar, provided equalities are replaced with inequalities throughout. 
This completes the proof of Theorem 2.1 (when the uniform estimates (2.6) and 
(2.11) hold). 0 

3. Uniform estimates 

This section provides a proof of the technical estimates in Theorem 2.1 and Lemma 2.2. 
We use the notation given after the statement of Theorem 1.1. To simplify the nota­
tion we often suppress the explicit dependence in h and in t. 

Total variation bound. 
The total strength of waves is controlled by the linear functional 

Vet) = L luh(x, t)l, 
xEJh(t) 

while the potential increase due to wave interactions will be measured by the qua­
dratic functional 

Q(t) = M 
(x,Y)EA~(t) (x,Y)EA~(t) 

where M > 1 is a sufficiently large constant. We count in Q(t) all the quadratic 
products of strengths between: (i) all waves of different families, provided the wave 
on the left-hand side is faster than the wave on the right-hand side, (ii) and all waves 
of the same family except artificial waves. In other words, the set A~(t) ("different 
families") contain pairs (x, y) of approaching waves having x < y and 1 :::; ih(y, t) < 
ih(x, t) :::; N +1, while the set A~(t) ("same family") is defined as x < y and ih(X, t) = 
ih(y, t) < N + 1. 

Recall (from (1.4)) that 

1 
C lu~(x,t) -u::(x,t)l:::; luh(x,t)l:::; Clu~(x,t) -u::(x,t)l, (3.1) 

so that the functional V is equivalent to the usual total variation functional, 

(3.2) 

On the other hand, the interaction potential is dominated by the linear functional: 

Estimating V and Q is based on the wave interaction estimates derived in Sec­
tion 1. On one hand, the wave strengths are increased by a small quadratic term at 
interactions, at most. On the other hand, the function Q decreases at interactions by 
the same quadratic amount. To take advantage of these facts, consider the functional 

Vet) + C4 Q(t). 

By choosing a sufficiently large constant C4 , the increase of Vet) can be compensated 
by the decrease of Q(t). 
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LEMMA 3.1. (Decreasing functional.) For C4 > 0 sufficiently large the (piecewise 
constant) function 

t I-t V(t) + C4 Q(t) 

decreases at each interaction time. 

PROOF. Let t be an interaction time and consider two waves meeting at some point x: 
an ia-wave with strength sa located on the left-hand side of an i(3-wave with strength 
s(3. Let s"Y be the strengths of the outgoing waves, where 'Y describes a finite set of 
indices. 

First of all, since V is the sum of all wave strengths which possibly increase at 
the time t but by (at most) the product of the strengths of the two incoming waves 
(Theorem 1.2), we have 

Thus the total increase is 

[V(t)] := V(H) - V(t-) ::; ~ Isa s(3l. (3.3) 

Consider an interaction between waves of different families. The term M Isa s(31 is 
counted in Q(t-), but no longer in Q(t+) since the two waves are no longer approach­
ing after the interaction. (See the definition of the set A~(t) above.) Additionally, 
the estimate (1.12) in Theorem 1.3 shows that the self-interaction between outgoing 
waves of the same family is less than C Isa s(3l. Hence, by choosing M (arising in 
the expression of Q(t)) sufficiently large, we see that the latter is dominated by the 
former. Moreover, by Theorem 1.2 the waves in the other families are of quadratic 
order. 

Consider next an interactions involving two waves of the same family. The esti­
mate (1.14) derived in Theorem 1.3 shows that the self-interaction between outgoing 
waves of the same family is at most (1 - c) Isa s(31 for some c E (0,1), while by 
Theorem 1.2 the waves in the other families are of quadratic order. 

Therefore, in all cases we find for some c E (0,1) 

C 
Q(H) ::; Q(t-) - c Isa s(31 + '2 V(t-) Isa 8(31· 

If we assume that V(t-) ::; c/C it follows that 

and, then, by summation we have for any C 4 2: C / c 

[V(t)] + C4 [Q(t)] ::; o. 

It remains to observe that 

V(H) ::; V(t-) + C4 Q(t-) ::; V(O) + C4 Q(O) 

::; C2 TV( uo) + c4ci TV( uO)2 
c 

::; C· 

(3.4) 

(3.5) 

(3.6) 
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The latter inequality holds as soon as TV(uo) is less than a numerical constant c* 
which depends upon the constants C2 and C4 , only. (Take c* := 1/(2C2C4 ), for 
instance.) 

By induction, we conclude that V(t-) ::; c/C and that the functional is decreas­
ing. This completes the proof that the total variation of uh(t) is uniformly bounded, 
that is, the proof of the second property in (2.6). 0 

Moreover, since the approximations have compact support and the scheme sat­
isfies the property of propagation with finite speed, the approximate solutions are 
bounded in amplitude: 

sup luh(H)1 ::; sup lu~1 + TV(uh(t)) ::; sup lu~1 + C* TV(uo). (3.7) 

The Lipschitz estimate is a consequence of the total variation estimate and the prop­
erty of propagation at finite speed. Indeed, in any interval [tl' t2J containing no 
interaction, the speed Ah(x, t) of each wave front x = xh(t) is constant and we can 
write 

For non-artificial fronts we have 

IXh(t2) - xh(tdl = IAhllt2 - t11 ::; (O(h) + sup IAi(·)I) It2 - itl. 

On the other hand, for artificial fronts we have 

B(80) 
l~i5:N 

Ixh(t2) - xh(t1)1 = AN+1lt2 - t11, 

but the total strength tends to zero with h, by Lemma 2.2. This completes the proof 
of the estimates (2.6). 

N umber of wave fronts. 
In view of the estimate (3.4) the number of interactions having Is'" s{31 > £(h) must be 
finite since the non-negative function Q(t) decreases by the amount c£(h) (at least) 
across any such interaction. Then, disregarding first the artificial waves we observe 
that: 

• In the case Is'" s{31 ::; £(h) the rough solver is used and generate two outgoing 
waves for any two incoming waves of the same family. 

• Two waves of different families may cross at most once. 
Therefore, the number of non-artificial waves is also finite for all time. It follows also 
that the number of artificial waves is finite since new artificial waves are created by 
interactions between non-artificial waves. This establishes that the total number of 
waves is finite. 

We just observed that the number of interactions involving the accurate solver is 
finite. On the other hand, when the rough solver is used, the system being strictly 
hyperbolic, two waves of different families can cross each other at most once. So, we 
may restrict attention to the solution u h after a sufficiently large time and we may 
assume that only interactions between waves of the same family are taking place. Con­
sider a concave-convex i-characteristic field (since the result is obvious for genuinely 
nonlinear fields). In view of the interaction cases listed in the proof of Theorem 1.3 
and without taking into account artificial waves, we see that the interaction of two 
waves of the same family leads either to a two-wave pattern, one of them being a 
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right-contact, or to a one-wave pattern. Moreover, a right-contact may not interact 
with waves on its right-hand side. When it interacts with a wave on its left-hand side 
the outgoing pattern contains a single wave. In consequence, for each concave-convex 
i-field and for all t sufficiently large, the functional 

Fih(t) := (G?(t) + 1) G?(t) + L G?(t) + L G~~,lef/t), 
CiURi c~ 

is strictly decreasing at each interaction, where the sums are over all i-shock fronts 
Ci and rarefaction fronts Ri and over all right-contacts, respectively, and G?(t) is the 
total number of waves at time t while G~q ,left (t) is the total number of waves located 

on the right hand-side of the right-cont~ct C~. This completes the proof that the 
number of interaction times is finite. 

We now want to derive an estimate on the number of waves. To each wave we 
associate a generation order r = 1,2, .... This number keeps track of the number 
of interactions that were necessary to generate that wave. All the waves generated 
at time t = 0+ have by definition the order r = 1. At each interaction the "old" 
waves keep the same order, while we assign a higher order to the "new" waves. More 
precisely, consider an interaction involving an i-wave of order ra. and strength sa. and 
a j-wave of order r{3 and strength s{3. 

1. If i,j ::; Nand Isa. s{31 > £(h), then we used the accurate interaction solver. 
We choose the order of the secondary outgoing waves to be max(ra., r(3) + 1. 
When i f- j, the order of the primary outgoing i- and j-waves is ra. and r{3, 
respectively. When i = j, the order of two primary outgoing i-waves is defined 
to be min(ra., r(3). 

2. If i,j ::; Nand Isa. s{31 ::; £(h), we used the rough interaction solver. When 
i f- j, the outgoing i- and j-waves keep their orders ra. and r{3, respectively. 
When i = j, the order of the i-waves is defined to be min( ra. , r(3). The artificial 
wave is assigned the order max(ra., r(3) + 1. 

3. If i = N + 1 and j ::; N, we used the rough solver. The solution contains a 
j-wave and an artificial wave and the outgoing waves keep their orders ra. and 
ri3 , respectively. 

We checked earlier that the total number of fronts is finite for each fixed h. So 
there exists a maximal generation order, say r max (depending on h). 

LEMMA 3.2. (Number of wave fronts.) The number Mr of fronts with order r is at 
most polynomial in Ilh, 

M < C(r) 
r - hm(r) , r = 1,2, ... ,rmax (3.8) 

for some constants C(r) > 0 and some integer exponents m(r). 

PROOF. By construction, the initial data contain at most Ilh jumps. Then, each 
initial jump may generate N waves, possibly decomposed into O(llh) small jumps 
(when there are rarefaction fans). Therefore we obtain 

1 
M1 = O(h2 )' (3.9) 

There are less than Mf points of interaction between waves of the first generation 
order and at most C Nih outgoing waves from each interaction. Thus the number 
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M2 of wave fronts of the second generation satisfies 

M2 ~ O(~) M; ~ o(~s). 
More generally, the waves of order r - 1 can produce waves of order r by interacting 
with waves of order ~ r - 1. Thus the number of waves of order r is found to be 

C 
Mr ~ N h (M1 + M2 + ... + Mr-d Mr- 1, 

which implies (3.8) by induction from (3.9). o 

Strength of artificial waves. 
Denote by ph(x, t) the order of the wave located at x E .Jh(t). Away from interaction 
times t and for each integer r, let Vr (t) be the sum of the strengths of all waves of 
order 2 r, 

Vr(t) = L lah(x, t)1 

and define also Qr(t) by 

XEJh(t) 
ph(x,t)2:r 

Qr(t) = M L lah(x, t) ah(y, t)1 + L lah(x, t) ah(y, t)l· 
(X'!I)EA~(t) 

max (ph (x,t) ,ph (y, t)) 2:r 

(X,Y)EA~(t) 

max (ph(x,t),ph (y,t)) 2:r 

Denote by Ir the set of interaction times where two incoming waves of order ph(x, t) 
and ph(y, t) interact with max (ph (x, t),ph(y, t)) = r. 

Similarly as done above in the proof of Lemma 3.1, one can check the following 
precised estimates: 

• The strengths of waves of order 2 r do not change when two waves of order 
~ r - 2 interact: 

(Vr(t)] = 0, t E It u ... u Ir- 2. (3.10i) 

• The change in the strength of waves of order 2 r is compensated by the 
interaction potential between waves of order 2 r - 1: 

(3.lOii) 

Similarly for the interaction potentials, we have: 
• At interaction times involving low-order waves, the possible increase in the 

potential Qr is controlled by the decrease of the potential Q: 

[Qr(t)] + C4 Vr{t-) [Q(t)] ~ 0, t E It u ... u Ir- 2, (3.11i) 

• At interaction times involving a wave of order r -1 and a wave of order ~ r -1, 
the possible increase in Qr is controlled by (the decrease of) Qr-1: 

(3. llii) 

• At the remaining interactions, the potential of interaction is non-increasing 

(3.11iii) 
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On the other hand, observe also that 

We now claim that: 

V1(t) = V(t), Q1(t) = Q(t), 
Vr(O+) = Qr(O+) = 0, r 2: 2. 

185 

(3.12) 

LEMMA 3.3. (Total strength of waves of a given order.) There exist constants C5 > 0 
and T} E (0,1) such that 

Vr(t):S CsT}r, t 2: 0, r = 1,2, ... ,rmax . 

PROOF. The estimates (3.10) and (3.182) yield (r 2: 2) 

Vr(t) = L [Vr(T)] + Vr(O+) :s -C4 L [Qr-1(T)], 

thus 
Vr(t) :s C4 L [Qr-1(T)L· (3.13) 

0<r9 

On the other hand, for the interaction potentials we find (r 2: 2) 

(3.14) 
:s C4 L [Qr(T)L sup Vr(t') + C4 L [Qr-1(T)L sup V(t'), 

O<r~t t ' O<r~t t f 

where we used (3.11) and (3.12). 
Note that, since Qr is non-negative and Qr(O+) = 0 for r 2: 2, 

thus 
L [Qr(T)L:s L [Qr(T)]+. 
O<r~t O<r~t 

With the uniform total variation estimate we have also 

Vr(t) :s V(t) :s C*C2 TV(uo), 

L [Qr(T)L:s supQr:S supQ:S Q(O+):S C;C~TV(uO)2. 
O<r<+oo 

Define now 
L [Qr(T)]+. 

O<r<+oo 

Therefore, we obtain from (3.13) and (3.14) 

v,,:s C4Qr-1, 

Qr :s C'TV(UO)2Vr + C"TV(uo) Qr-1. 
Thus we have 

Qr :s (C' cl TV( uO)2 + c" TV( uo)) Qr-1 :s T} Qr-l 

(3.15) 

with T} E (0,1), provided again that the total variation of Uo is sufficiently small. 
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Then, we have 

and for all t > 0 
Vr(t) :::; Vr :::; C r(-l, 

which yields the desired inequality on Vr . o 

To complete the proof of (2.11) in Lemma 2.2 we rely on Lemma 3.3 which shows 
that the total amount of waves with large order is "small". On the other hand, by 
construction, artificial waves -when they are generated- have a small strength less 
than C4 1sa s,61 :::; C4 e(h) (where sa and s,6 denoted the strengths of the incoming 
waves). 

Given c > 0, choose an integer r * such that 

C5 L r(:::;~. 
r~r* 

Consider the total strength of artificial waves 

E(t) := 
ih(x,t)=NH 

For waves with orders ph 2 r * we take advantage of the estimate in Lemma 3.3, while 
for waves with low orders ph < r * we rely on Lemma 3.2, as follows: 

< C_(r*) e(h) + ~ 
- hm(r.) 2' 

by keeping the worst constant and exponent among C (r) and h m( r). Finally, in view 
of the assumption (2.5) on e, we can choose h sufficiently small so that the first term 
in the right-hand side above is less than c/2, hence 

E(t) :::; c for all sufficiently small h. 

Since c is arbitrary this establishes (2.11) and completes the proof of Lemma 2.2. 0 

4. Pointwise regularity properties 

In this last section we state without proof some regularity properties of the solution 
constructed in Theorem 2.1. Solutions to conservation laws turn out to be much more 
regular than arbitrary functions of bounded variation. (Compare with the statement 
in Theorem A.5 of the appendix.) 

THEOREM 4.1. (Structure of shock curves). Let u = u(x, t) be a solution of (1.1) 
given by Theorem 2.1 and let c > 0 be given. Then, there exist finitely many Lipschitz 
continuous curves, x = Yk(t) for t E [I:k,1\], k = 1, ... ,k, such that the following 
holds. 

For each m and all (but countably many) times to E [I:k,1\] the derivative Yk(tO) 
and the left- and right-hand limits 

u_ := lim u(x, t), 
(x, t)~ (Yk (to), to) 

X<Yk (to) 

u+ := lim u(x, t) 
(x, t) ~ (y k (to), to) 

X>Yk(tO) 

( 4.1) 
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exist. The states u_ and u+ determine a shock wave with strength 100k(to)1 ;::: €/2, 
satisfying the Rankine-Hugoniot relations and Lax shock inequalities. The total vari­
ation of the mapping t f-+ O"k(t) and of t f-+ ilk(t) are bounded. At each point (xo, to) 
outside the set 

.:Tc:(u):= {(Yk(t),t)/t E [Lk,l\], k = 1, ... ,k} 
and outside a finite set Ie (u), the function u has small oscillation: 

limsup lu(x,t) -u(xo,to)l:=:; 2€. 
(x,t)-'(xo,to) 

Using a countable sequence € --+ 0 we arrive at: 

(4.2) 

THEOREM 4.2. (Regularity of solutions). Let u be a solution of (1.1) given by The­
orem 2.1. Then, there exists a countable set I( u) of interaction points and a 
countable family of Lipschitz continuous shock curves 

.:T(u) := {(Yk(t), t) / t E [Lk,l\], k = 1,2, ... } 

(both being possibly empty) such that the following holds. For each k and each t E 

[Lk,l\] such that (Yk(t),t) rt I(u), the left- and right-hand limits in (4.1) exist at 
(Yk (t), t); the shock speed ilk (t) also exists and satisfies the Rankine-Hugoniot relations 
and Lax shock inequalities. Moreover, u is continuous at each point outside the set 
.:T(u) UI(u). 0 



CHAPTER VIII 

NONCLASSICAL ENTROPY SOLUTIONS 
OF THE CAUCHY PROBLEM 

In this chapter we give a general existence result for nonclassical entropy solutions 
to the Cauchy problem associated with a system of conservation laws whose charac­
teristic fields are genuinely nonlinear or concave-convex. (The result can be extended 
to linearly degenerate and convex-concave fields as well.) The proof is based on a 
generalization of the algorithm described in Chapter VII. Here, we use the nonclassi­
cal Riemann solver based on a given kinetic function for each concave-convex as was 
described in Section VI-3. Motivated by the examples arising in the applications (see 
Chapter III) we can assume that the kinetic functions satisfy the following threshold 
condition: any shock wave with strength less than some critical value is classical. In 
Section 1 we introduce a generalized total variation functional which is non-increasing 
for nonclassical solutions (Theorem 1.4) and whose decay rate can be estimated (The­
orem 1.5). In Section 2 we introduce a generalized interaction potential and we extend 
Theorem IV-4.3 to nonclassical solutions; see Theorem 2.1. Section 3 and 4 are con­
cerned with the existence and regularity theory for systems; see Theorems 3.1 and 4.2 
respectively. 

1. A generalized total variation functional 

Consider the Cauchy problem for a scalar conservation law 

OtU + oxJ(u) = 0, u = u(x, t) E JR, 

u(x,O) = uo(x), x E JR, 
(1.1) 

when the flux J : JR ---t JR is assumed to be a concave-convex function (in the sense 
(II-2.5)) and the data Uo : JR -+ JR are integrable functions with bounded variation. 
We consider the piecewise constant approximations uh = uh(x, t) associated with 
(1.1) defined earlier in Section IV-3. To control the total variation of approximate 
solutions we introduce a "generalized total variation" functional V(uh(t)) which is 
non-increasing in time and reduces to the standard total variation functional in the 
classical regime. This functional will be sufficiently robust to work for systems of 
equations (Section 3, below). 

We will use the same notation as in Section II-4. The monotone decreasing 
function <pQ : JR ---t JR is characterized by 

J(u) - J(<pQ(u)) = j'(<pQ(u)), u i- 0, 
u - <pQ(u) 

and that <p-Q denotes the inverse of the function <pQ. Recall that <pQ' (u) tends to -1/2 
when u tends to o. We assume here that 

-1~<pQ'(u)<0, UEJR, 

P. G. LeFloch 
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but, alternatively, we could restrict attention to a bounded range of values u. 
Given a threshold coefficient (3 > 0, consider a kinetic function <pD : JR -> JR, 

which is smooth everywhere but possibly only Lipschitz continuous at u = ±(3 and 
satisfies the inequalities 

<p-Q(u) < <pD(U) ~ <pQ(u), u > 0, 

<pQ(u) ~ <pD(U) < <p-Q(u), u < 0. 

Define also <p~ : JR -> JR by the inequalities 

and the condition 

<pQ(u) ~ <p~(u) < u, u > 0, 

u < <p~(u) ~ <pQ(u), u < 0, 

f(u) - f(<pD(U)) 
U - <pD(U) 

f(u) - f(<p~(u)) 
u - <p~(u) 

u # 0. 

Our main assumptions on the kinetic function are the following ones. For some 
constants (3 > ° and 

C1E(0,1], c2,c3E[0,1), C2~C3<I-C1+C2' 

or else C1 = 1, C2 = C3 = 0, 

we impose 
• the mono tonicity of <pD, more precisely 

-C1 ~ <pD'(U) < 0, u E JR, 

• the threshold condition 

• and the monotonicity of <pu, more precisely 

REMARK 1.1. 
• Our assumptions imply for instance 

<pQ((3) - C1 (u - (3) ~ <pD(U) ~ <pQ((3), u 2 (3, 

<pQ( -(3) ~ <pD(U) ~ <pQ( -(3) - cdu + (3), u ~ -(3, 

and 

<pQ((3) - C3 (u - (3) ~ <p~(u) ~ <pQ((3) - C2 (u - (3), u 2 (3, 

<pQ( -(3) - C2 (u + (3) ~ <p~(u) ~ <pQ( -(3) - C3 (u + (3), u ~ -(3. 

• A typical example of interest is given by f(u) = u3 , 

{ 
(3/2 - C1 (u + (3), 

<pD(U) = -u/2, 

-(3/2 - C1 (u - (3), 

u ~ -(3, 

-(3 ~ u ~ (3, 

u 2 (3, 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

(1.6a) 
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and 

{ 
{3/2 - C2 (u + (3), 

<p~(u) = -u/2, 

-{3/2 - C2 (u - (3), 

where the constants C1 and C2 satisfy 

u ~ -{3, 

-{3 ~ u ~ {3, 

u ? {3, 

(1.6b) 

The kinetic function derived in Section 111-2 from a dispersive-diffusive regu­
larization of (1.1) has the form (1.6) with C1 = 1 and C2 = O. This last case is 
covered by the second line in (1.2) . 

• More generally, the assumptions (1.3)-(1.5) are satisfied by any concave­
convex flux-function and any kinetic function generated by nonlinear diffusion­
dispersion, at least as far as values near the origin are concerned. (This is, 
of course, the situation of interest in the application to systems, in Section 3 
below.) The conditions (1.2) will be motivated in Remark 1.6, below. 

o 

We will work with a generalized total variation functional V(u), defined as 
follows. If u : IR I--t IR is a piecewise constant function, then we set 

x 

where the summation is over all points of discontinuity of u and a( u_, u+) denotes 
the generalized strength of the wave connecting the left- and right-hand traces 
u_ := u_ (x) and u+ := u+ (x) and is defined as follows. Note first that, if a( u_, u+) = 
lu+ - u_l, then V (u) coincides with the standard total variation TV (u). Instead, to 
handle nonclassical solutions we choose (see Figure VIII-I) 

where K is a Lipschitz continuous function satisfying 

K(u_) E [0,2]' 

u_u+ ? 0, 

u_u+ ~ 0, lu+1 ~ 1<p~(u_)I, 
u+ = <pl>(u_), 

(1.7) 

K(u_) = 0 when lu-I ~ {3. 
(1.8) 

Observe that when lu-I ~ (3 we have <pij (u_) = <pI> (u_) = <pQ (u_) and, therefore, 
a coincides with the standard wave strength, that is, a( u_, u+) = lu+ - u_1 for all 
u+. Note that the definition (1.7) does not specify a( u_, u+) when u+ belongs to 
the range u_ u+ < 0, lu+1 > 1<p~(u_)I, and lu+1 :j:. l<pl>(u-)I, since the generalized 
strength will not be of real use within this range. For convenience in the presentation 
we can define a( u_, u+) for arbitrary u_ and u+ as being the sum of the generalized 
strengths of the two waves in the associated Riemann solution. (See the dashed lines 
on Figure VIII -1. ) 

Observe also that 
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and, more precisely, for every M > 0 we have 

where 

c~ := sup{l,l(u)/ul / u E [-M, M]} < 1. (1.10) 

(When C1 < 1, c~ can be replaced with C1 and, then, (1.9) holds for arbitrary u_, u+.) 
Hence, the generalized strength and the generalized total variation are equivalent to 
the standard ones. 

Figure VIII-I: Generalized strength. 

REMARK 1.2. The form of the generalized total variation is motivated as follows: 
• The standard total variation cannot be used here since, when a nonclassical 

shock is generated at some interaction, the standard total variation increases 
by some (large) amount of the order of the strength of the incoming waves. 

• From considering the interaction cases listed in Section IV -3 one can show 
that, to obtain a non-increasing functional, it is necessary that the strengths of 
nonclassical and of crossing classical shocks be weighted less than the standard 
strengths. (Note that a crossing classical shock may be transformed into a 
nonclassical shock through interactions.) 

• Additionally, for the generalized total variation of the nonclassical Riemann 
solution to depend continuously upon the left- and the right-hand states, the 
strength of the classical shock from u_ to 'P~ (u_) must coincide with the 
strength of the nonclassical shock from u_ to 'PP (u_) plus the strength of 
the classical shock from 'PP(u_) to 'P~ (u_) . The definition (1.7) satisfies this 
property as is clear from 

a(u_, 'PP(u_)) = lu- - (1 - K(u_)) 'P~(u-)I-I'PP(u-) - 'P~(u-)I 

= a(u_,'P~ (u_)) - a('PP(u_),'P~ (u_)). 

o 

The generalized strength depends on the function K, which should satisfy some 
constraints for the total variation of approximate solutions of (1.1) to be non-increasing. 
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THEOREM 1.3. (Diminishing generalized total variation.) Under the assumptions 
listed above, suppose that the function K satisfies (1.8) and the following differential 
inequalities for all lui > {3 

max ( - (2 + K 'P~'), (2 - K) 'P~' - 2 (1 + 'PP')) ~ 'P~ K' ~ (2 - K) 'P( (1.11) 

Consider the piecewise constant approximations uh = uh(x, t) defined in Section IV-3 
and based on the nonclassical Riemann solver. Then, the function 

is non-increasing. 

It is easy to check that by our assumptions (1.3)-(1.5) the intervals involved in 
(1.11) are not empty. The actual existence of a function K is established in Theo­
rem 1.4 below. 

PROOF. Observe first that (1.11) implies that the functions K, 2u+'P~(u), 2 (u+'PP)­
(2 - K) 'P~, and (2 - K) 'P~ are non-decreasing for U > {3. The first three functions 
are also non-decreasing in the region ° ~ U ~ {3 (region in which we simply have 
K == 0). We consider a front connecting a left-hand state Ul to a right-hand state Urn 
and interacting at some time to with some other front connecting Urn to some state 
Ur . For definiteness we always assume that Ul > 0, the other cases being completely 
similar. We use the notation and classification given in Section IV-3. 

Case RC-l: Recall that Ul ~ Urn and that 'P~(ut} ~ Ur . We distinguish between 
two subcases. When U r ~ 0, the result is trivial and 

When U r < ° we have 

[V(Uh(to))] = (Ul - (1 - K(Ul)) ur ) - (urn - Ul) - (Urn - (1 - K(urn)) ur ) 

= 2 (Ul - Urn) + Ur (K(uz) - K(urn)) 

= (2 (Ul - urn) + 'P~(Ul) (K(UI) - K(urn ))) + (u r - 'P~(Ul)) (K(UI) - K(urn)) 

~ (2 Ul + K(UI) 'P~( uz)) - (2 Urn + K( urn) 'PU(Urn )) , 

since Ur - 'P~(Ul) ~ ° and K is non-decreasing by (1.11). Furthermore, by (1.11) we 
have that 2 u + 'PU K is non-decreasing, so that [V (uh (to))] ~ 0. 

Case RC-2: We have Ul ~ Urn and 'PU(urn ) ~ Ur ~ 'PP(UI). 

[V( uh(to))] = (Ul + 'PP( Ul) - (2 - K( Ul)) 'P~( Ul)) + ('PP( Ul) - ur ) 

- (urn - ut) - (Urn - (1 - K(urn)) ur ) 

= 2 (Ul - urn) + 2 'PP(UI) - (2 - K(Ul)) 'P~(UI) - K(urn) Ur 

= -21'P~(Ul) - 'PP(ut}l- K(urn) IUr - 'P~(urn)1 

+ (2 Ul + K( Ul) 'P~( uz)) - (2 Urn + K( urn) 'Pa( Urn)). 

The first two terms are non-positive and may vanish. For the last two terms we use 
the assumption made in (1.11) that 2u+'Pa(u)K(u) is non-decreasing. 
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[V(Uh(to))] 

= Ul + ,l(Ul) - (2 - K(Ul)) cp~(Ul) + (Ur - cpD(Ul)) 

- (Urn - Ul) - (Urn - (1 - K ( urn)) ur) 

= 2 (Ul - urn) - (2 - K(Ul)) cp~(Ul) + (2 - K(urn)) Ur 

= -12 - K(urn)llcp~(ut} - uri + (2 (Ul - Urn) + cp~(ut) (K(UI) - K(Urn ))) , 

and we conclude as in Case RC-1. 

Case RN: We have 0 < Ul < Urn and Ur = cpD(Urn), thus 
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[V(Uh(to))] = (Ul + cpD(UI) - (2 - K(UI)) cp~(UI)) + (cpD(UI) - cpD(Urn)) - (urn - Ul) 

- (Urn + cpD(Urn) - (2 - K(urn)) CP~(Urn)) 

= (2 Ul + 2 cpD(Ul) - (2 - K(UI)) cp~(ut)) 

- (2 Urn + 2 cpD ( urn) - (2 - K ( urn)) cp~ ( urn) ) , 

which is non-positive since the function 2 U + 2 cpD - (2 - K) cp~ is non-decreasing by 
(1.11). 

Case CR-l: We have cp~(ut) :S Ur < Urn :S 0 < Ul, thus 

[V(Uh(to))] = (Ul - (1- K(Ul)) ur) - (Ul - (1- K(UI)) Urn) - (urn - ur) 

= -K(UI) IUrn - uri· 

Case CR-2: This case is trivial and 

[V(Uh(to))] = (Ul + cpD (Ul) - (2 - K(UI)) cp~(Ul)) + (cpD( Ul) - ur) 

- (Ul - (1 - K(Ul)) urn) - (urn - ur) 

= -K(ut) IUrn - cp~(ul)l- 2Icp~(UI) - cpD(ul)l· 

[V(Uh(to))] = (Ul + cpD(UI) - (2 - K(UI)) cp~(ut)) + (u r - cpD(UI)) 

- (Ul - (1 - K ( ut}) Urn) - (urn - ur) 

= -K(UI) IUrn - cp~(ul)l- 2Icp~(Ul) - Uri· 

Case CC-l: We have cp~(urn) :S Ur < Urn < Ul. When Ur ~ 0 the result is trivial 
and 
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When U r < 0 we have 

[V(Uh(to))] = (Ul - (1 - K(UI)) ur) - (Ul - um) - (um - (1 - K(um)) ur) 

= -IK(UI) - K(um)llurl, 

which is non-positive since K is non-decreasing. 

Case CC-2: We have rp~(UI) ::; Um < Ur ::; rp~(um) ::; Ul. When Ur ::; 0 we find 

[V(Uh(to))] = (Ul - (1- K(ut))ur) - (Ul - (1- K(UI))Um) - (ur - um) 

= -12 - K(uZ)llur - uml· 

When U r > 0 we find 

[V(Uh(to))] = (Ul - ur) - (Ul - (1- K(UI)) um) - ((1- K(um)) Ur - um) 

= -12 - K(UI)lluml-12 - K(um)llurl, 

since U m ::; O. 

Case CC-3: This case does not occur here since the function rp~ is non-increasing. 

Case CN-l: We have 0 ::; Um < Ul and rp~(UI) ::; Ur = rpi>(um), thus 

[V(Uh(to))] = (Ul - (1- K(UI)) rpP(um)) - (Ul - um) 

- (um + rpP(um) - (2 - K(um)) rp~(Um)) 

= (2 - K(um)) (rp~(um) - rpP(um)) + (K(UI) - K(um)) rpP(um). 

When Urn ::; f3 the result is immediate (same formula as in Case CC-l): 

When Urn > f3 we write 

[V(Uh(to))] = - (2 - K(UI)) IrpP(Urn) - rp~(ul)1 

- ((2 - K( Ul)) rp~( Ul) - (2 - K( urn)) rp~(Urn)) ::; 0 

since (2 - K(u)) rp~(u) is non-decreasing for U ~ f3 by the second inequality in (1.11). 

Case CN-2: We have rp~(UI) ::; Urn ::; 0 and Ur = rpP(urn ), thus 

[V(Uh(to))] = (Ul- rpP(urn )) - (Ul - (1- K(uz)) Urn) 

- (-Urn - rpP(urn ) + (2 - K(urn)) rp~(Urn)) 

= -12 - K(UI)llurnl-12 - K(urn)llrp~(urn)l, 

since Urn ::; 0 and rp~(urn) ~ O. 

Case CN-3: We have 0 ::; Urn < Ul and Ur = rpP(urn ) ::; rp~(uz), thus 

[V(Uh(to))] = (Ul + rpP(UI) - (2 - K(UI)) rp~(uz)) + (rpP(Urn) - rpP(UI)) - (Ul - um) 

- (um + rpP(urn ) - (2 - K(urn)) rp~(Urn)) 

= (K( Ul) - 2) rpU(UI) - (K(urn) - 2) rpU(urn ), 
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which is non-positive since (K - 2) cp~ is non-increasing by (1.11). Note that as in 
Case CN-l above, the second inequality in (1.11) is required in the region lui ~ (3, 
only. 

Case NC: We have cp~(uz) :s: Ur :s: cpU(um) :s: Uz and Um = cpP(uz). When Ur :s: 0 we 
find 

[V(Uh(to))] 

= (Ul - (1- K(uz)) ur ) - (uz + cpP(uz) - (2 - K(uz)) cpU(Ul)) - (ur - cpP(uz)) 

= -12 - K(uz)llur - cp~(uz)l· 

When U r ~ 0 we find 

[V(Uh(to))] 

= (Ul - ur ) - (uz + cpP(ut) - (2 - K(Ul)) cp~(Ul)) - ((1 - K(um)) Ur - Um) 

= -12 - K(Ul)llcpU(uz)I-12 - K(um)llurl· 

Case NN: We have Um = cpP(ut) and Ur = cpP(um), thus 

[V(Uh(to))] = (uz - cpP(um)) - (Ul + cpP(Ul) - (2 - K(uz)) cpU (ut)) 

- (-cpP(Ul) - cpP(um) + (2 - K(um)) CP~(Um)) 

= -12 - K(Ul)llcpU(Ul)I-12 - K(um)llcpU(um)l· 

This completes the proof of Theorem 1.3. o 

We now establish the existence of a function K satisfying (1.11). We also estimate 
the rate of decay of the generalized total variation. 

THEOREM 1.4. (Existence of a function K.) Consider a concave-convex flux-function 
f, a kinetic-functions cpP, and constants {3, Cl, C2, C3 satisfying the assumptions (1.2)~ 
(1.5) on an interval 

Ifj,1< := [-(1 + K) {3, (1 + K) {3] 
for some K > O. Then, the function K defined by 

{ 
-K* (u + (3), U:S: -(3, 

K(u) := 0, lui :s: (3, 

K*(u-{3), u~{3, 

(1.12) 

(1.13) 

satisfies the differential inequalities (1.11), provided the constant K * ~ 0 satisfies 

(1.14) 

where 
2~ 2 2 

Ao := IcpQ({3)I ' A l := K{3' A2 := IcpQ({3)I + 2C3 K{3' 

A3 '= 2 (1 - Cl + C2) 

. IcpQ({3)I+(C2+ C3)K{3' 

(1.15) 

(as well as analogous inequalities with IcpQ({3)I replaced with IcpQ( -(3)I). 
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THEOREM 1.5. (Decay rate for generalized total variation.) Under the assumption 
made in Theorem 1.4, consider the piecewise constant approximations uh = uh(x, t) of 
the Cauchy problem (1.1), defined in Section IV-3, based on the nonclassical Riemann 
solver associated with the kinetic function r.p0. Suppose that the range of uh is included 
in the interval I{3,,,.. If in (1.14) we have also the strict inequality 

K* < min(A1,A2)' 

then at each interaction time to involving three constant states Ul, Urn, and ur , we 
have the decay rate 

(1.16) 

for some uniform constant c > 0, where the cancelled strength eh(to) is defined 
using the classification in Section IV-3 by 

REMARK 1.6. 

IUrn - uti, 

IUr - urnl, 

IUr - r.p~(ul)l, 

Ir.p~(urn) - r.p~(ul)l, 

0, 

Cases RC-1, RC-2, RC-3, 

Cases CR-2, CC-2, CN-2, 

Cases CN-1 (when IUrnl :2: 1.81), NC, 

Case NN, 

other cases. 

(1.17) 

• When f(u) = u3 we find r.p~(u) = -u/2. Therefore the inequalities (1.14) on 
K* become 

.8 . ( 1 1 1 - C1 + C2 ) 
C3 < - K* < mIll -, , ( )' - 4 - 2 Ii 1 + 2 C3 Ii 1 + 2 C2 + C3 Ii 

which, under the assumption made in (1.2), always determines a non-empty 
interval of values K *, if Ii is sufficiently small at least. (Either C3 < 1 - C1 + C2 

and we can find Ii sufficiently small satisfying these inequalities, or else C3 = 
K * = 1 - C1 + C2 = 0 and there is no constraint on Ii.) 

• More generally, for general concave-convex flux-functions we observed ear­
lier (Chapter II) that r.p~(u) rv -u/2 near the origin, so that (1.14) always 
determines a non-empty interval of K* if attention is restricted to a small 
neighborhood of the origin. Observe that when Cl, C2, and C3 are close to 1/2 
we can take Ii close to 1/2. 

• In the special case (1.6) with C1 = 1 and C2 = C3 = 0, we find K == ° and 

_( ) ._ {31r.p~(U_)1 if u+ = r.p°(u_), 
(J u_, u+.- lu+ _ u_1 in other cases. 

We have also 

Ao =0, 

and, concerning the constants Wi defined below, W3 = W4 = 0. 
• In view of the condition Ao ::; K* in (1.14) (assuming that C3 =f 0), we see that 

K* tends to infinity when.8 -+ 0, so that the approach in this chapter is limited 
to the (large) class of kinetic functions admitting a threshold parameter. 0 
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Theorem 1.4 gives us a new proof for the uniform estimate of the total variation 
established earlier in Theorem IV-3.2. We can restate here this result as follows. 

THEOREM 1. 7. (Existence result for the Cauchy problem.) Given a concave-convex 
flux-function f, a kinetic function cpP, and constants (3, C1, C2, and C3 satisfying (1.2)­
(1.5) on some interval1j3,K' then provided (3 and Ii are sufficiently small we have the 
following property. For all initial data Uo in L1 n BV with range included in the 
interval 1j3,K, consider the sequence of piecewise constant approximations u h based 
on the associated nonclassical Riemann solver and defined in Section 1V-3. Then, 
the total variation of uh remains uniformly bounded, and the sequence u h converges 
almost everywhere to a weak solution of the Cauchy problem (1.1). 

Observe that if the range of the initial data is included in the interval 1j3,K, then 
by our assumptions the same is true for the (approximate and exact) solution at time 
t. Theorem 1. 7 covers general concave-convex functions in a neighborhood of the 
origin and a large class of kinetic functions satisfying a threshold condition. Still, the 
assumptions made here on the kinetic function are stronger than the one required in 
the analysis of Section IV-3. But, the result here is also stronger since we determine 
the decay rate of the generalized total variation at each interaction. The interest of 
the present approach lies in the fact that it can be generalized to systems, as we will 
see in Section 3. 

PROOF OF THEOREMS 1.4 AND 1.5. Observe that the inequalities (1.11) are trivially 
satisfied in the region lui :S {3 since K == O. We will determine K* > 0 so that 
(1.8) and (1.11) hold in the range u E ({3, (1 + Ii) (3), say. Dealing with the interval 
(-(1 + Ii) (3, -(3) is completely similar. 

To guarantee K :S 2 we need that K ((1 + Ii) (3) :S 2, that is, 

2 
K* :S Ii (3. 

To guarantee that Icp"1 K' :::; 2 -lcp"'1 K we need 

(lcpQ({3)1 + C3 (u - (3)) K* :S 2 - C3 K* (u - (3), 

that is, 
2 

K* < Q • - Icp ({3) I + 2C3 Ii {3 

To guarantee that (K - 2) cp"' :S Icp~1 K' we need 

that is, 

(2-K*(u-{3))C3:S (lcpQ({3)I+c2(u-{3))K*, uE [(3,(1+1i){3], 

2C3 
K* 2: IcpQ((3)I. 

Finally, to guarantee that Icp~1 K' :S 2 + 2 cpP' + (K - 2) cp~' we need 

(lcpQ({3)1 + C3 (u - (3)) K* :S 2 - 2C1 + (2 - K* (u - (3)) C2, 

that is, 
2 (1 - C1 + C2) 

K * :S -,------;----,--,.:.,------,------':--
I cpQ ((3) I + (C2 + C3) Ii {3 . 

This completes the derivation of the inequalities (1.16) and (1.17). 
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We now estimate the rate of decay when the constants 

and 
W2:= inf (2+K'(u)4?a(u)+K(u)4?a'(u)) 

O::;wS(Ht<),8 

22- (I4?Q({3)1 + 2 C3 ~ {3) K* > 0 
are positive. For completeness in the calculation, we also use the notation 

W3 : = inf ((2 - K(u)) 4?a' (u) - K'(u) 4?a(u)) 
,8::;u::;(Ht<),8 

2 I4?Q (/3) I K * - 2 C3 2 0 

and 
W4:= inf (2+24?i>'(u)+K'(u)4?a(u)+(K(u)-2)4?a'(u)) 

O::;u::;(Ht<),8 

22 - 2C1 + (2 - K* ~{3) C2 - (I4?Q({3)1 + C3 ~{3) K* 2 O. 
Under our assumptions, W3 and W4 may well vanish however. (See an example in 
Remark 1.7.) 

Case RC-l : In the first subcase 

and in the second one 

Case RC-2 : 

Case RC-3 : 

CaseRN: 

Case CR-l : 

which vanishes for Ul :::; {3. 

Case CR-2 : 

Case CR-3 : 

[V(uh(to))] = -K(ud IUm - 4?a(ul)l- 214?a(UI) - 4?i>(ul)1 :::; o. 
Note in passing that the estimate becomes 

[V(uh(to))] :::; -2lum - uri 

in the special case that Um = 4?a(UI) and Ur = 4?i>(UI)' 
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Case CR-4 : 

The estimate becomes 
[V(Uh(to))] :::; -2lum - uri 

in the special case U m = 'P~ ( ut) . 

Case CC-l : In the first sub case 

and in the second one 

which vanishes as U r -+ O. 

Case CC-2 : In both subcases 

Case CN-l : When U m :::; f3 we have 

When U m > f3 we find 

Case CN-2 : 

since IUm - (l(um)1 :::; 21um - 'P~(um)1 by our assumptions (1.3) and (1.5). 

Case CN-3 : 

Case NC : In both subcases 

Case NN: 
[V(Uh(to))] :::; -w11'P~(ut)l- w11'P~(um)l, 
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which is bounded away from zero. This completes the proof of Theorems 1.4 and 1.5. 
D 
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2. A generalized weighted interaction potential 

The (linear) functional described in Section 1 is non-increasing, but fails to be de­
creasing in some interaction cases. Our aim in the present section is to determine a 
(quadratic) functional which will be strictly decreasing at each interaction. Consider 
the generalized weighted interaction potential 

Q( u) := L q( u_ (x), u+(x)) a(u_(x), u+(x)) a( u_ (y), u+(y)), (2.1) 
x<y 

where a is the generalized strength defined in (1.7) and q is a weight determined so 
that a nonclassical shock located at x is regarded as being non-interacting with waves 
located on its right-hand side y > x. This is motivated by the fact that nonclas­
sical shocks for concave-convex equations are slow undercompressive. See also the 
classification in Section IV -3. 

We generalize here the definition (IV-4.8) introduced first for classical solutions. 
Setting u± := u±(x,t) we define the function q(u_,u+) by 

1, ° ::; u_ ::; u+, 
a(p(u_,u+),u+), IP"(u_)::; u+ ::; u_ and u_ > 0, 

q(u_,u+):= 0, u+ = 'l(u-), (2.2) 
a(p(u_,u+),u+), u_::; u+ ::; IP"(u_) and u_ < 0, 

1, u+ ::; u_ ::; 0. 

where p( u_, u+) =t u_, u+ (when u_ =t u+) is defined by 

f(p(u-,u+)) - f(u-) f(u+) - f(u-) 
p(u_, u+) - u_ u+ - u_ 

and a( u, v) is a variant of the generalized strength defined earlier: 

a( u v) '= { Iv - ul, 
,. lu-(I-K(u))vl, 

uv:::: 0, 

uv::; 0. 
(2.3) 

We suppose that the function K is defined by (1.13) to (1.15). The main result 
in this section is: 

THEOREM 2.1. (Generalized interaction potential.) Consider solutions with total 
variation less than some fixed constant V. Let f be a concave-convex flux-function f 
and 8,"\ E (0,1) be sufficiently small constants. Then, consider positive constants (3, 
K, CI, c~, and C2, C3 satisfying (1.2) and c~ < 1 together with 

(I+K)(3::;8, 
2 (1- Cl + C2) K(3 \ (2.4) 
Q < ", lIP ((3)1 + (C2 + C3) K(3 -

and let IP~ be any kinetic function satisfying (1.3)-(1.5) and (1.10) on the interval 
1/3,1<' Then, for every constant C* such that 

C*8V::;,.\, C*82 ::; "\(3, 

the piecewise constant approximations uh of Section IV-3 (with range included in 1/3,1< 
and total variation less than V) satisfy at each interaction (for some uniform c > 0): 

[V(uh(to)) +C* Q(uh(to))] ::; -c I [V(uh(to))] l-cq(UI, Um) IUI-Umllum -Uri· (2.5) 
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REMARK 2.2 . 
• In fact we have 

[ - h - h ] {-clur - <p~(ul)1 
V(u (to)) + C* Q(u (to))::; -cq(UI, um) lUI - umllum - uri 

in Case NC, 

in other cases. 

Observe that Case NC is the only interaction when a nonclassical shock meets 
some classical wave on its right-hand side: in that case, the interaction po­
tential between the two incoming wave vanishes (according to the definition 
(1.19)) but the generalized total variation of the solution decreases strictly . 

• Under the conditions (1.2) there always exist some f3 and 8 (sufficiently small) 
such that the hypotheses (2.4) hold. This is clear since for K, -) ° the second 
condition in (2.4) is trivial. On the other hand, K, cannot be arbitrary large 
since the same condition with K, -) 00 becomes 2 (1-C1 +C2) ::; (C2 +C3) which 
would contradict (1.2). 0 

PROOF. Note first that the second condition in (2.4) combined with (1.14)-(1.15) 
guarantees that 

K* K,f3::; A (2.6) 
and in particular that K (u) ::; A. Note also that the function p satisfies 

Ip(UI, ur ) - p(UI' um)1 ::; (1 + 0(8)) IUm - uri, 

lUI - Um - p(um, ur ) + p(UI' ur)1 ::; C 81ul - uml· 
(2.7) 

When f(u) = u3 these inequalities are obvious since p(u, v) = -u - v. For a general 
flux-function p( u, v) rv -u - v and these inequalities hold in a sufficiently small 
neighborhood of 0, at least. 

We consider the same decomposition as in the proof of Theorem IV-4.3: 

(2.8) 

where P1 contains products between the waves involved in the interaction, P2 between 
waves which are not involved in the interaction, and P3 products between these two 
sets of waves. 

On one hand, we have 

since there is only one outgoing wave or else the two outgoing waves are regarded as 
non-interacting in view of the definition (2.2). 

On the other hand, P2 = ° since the waves which are not involved in the interac­
tion are not modified. 

Call WI and Wr the (weighted) total strength of waves located on the left- and 
right-hand side of the interaction point, respectively. Let us decompose P3 accord­
ingly, say 

P3 = P31 + P3r · 
In view of the definition of the potential and the fact that the generalized strength 
diminishes at interaction (see (1.14)) the contribution to Q involving waves located 
on the left-hand side of the interaction is non-increasing: 
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To deal with waves located on the right-hand side of the interaction point we set 
P3r = Dr Wr with 

Dr: =q(Ul,U~)&(Ul,U~)+q(U~'Ur)&(U~'Ur) 
- q( Ul, Urn) &(Ul' Urn) - q( Urn, Ur) &(urn , ur), 

(2.9) 

where we assume that the outgoing pattern contains a wave connecting Ul to some in­
termediate state u~ plus a wave connecting to Ur. We will show that either Dr ::; ° or 
else the term Dr Wr can be controlled by the cancellation determined in Theorem 1.4. 
We need only consider cases when one of the states under consideration at least is 
above the threshold (3 since, otherwise, the desired estimate was already established 
in Theorem IV -4.4. 

The notation 0(8) refers to a term which can be made arbitrarily small since 
we are restricting attention to values sufficiently close to the origin. In view of the 
classification given in Section IV -3 we can distinguish between the following cases. 

Case RC-l: When U r 2: 0, we obtain 

Dr = (( 1 - K (p( Ul, ur))) Ur - p( Ul, Ur )) (Ul - ur) - (urn - Ul) 

- ((1- K(p(urn,Ur))) Ur - P(Urn,Ur)) (Urn - ur) 

= -(1 + (1 + K*8) 0(8)) IUrn - ull ::; 0, 

provided 8 and K*8 are sufficiently small. When Ur < 0, we obtain similarly 

Case RC-2 : 

Dr = (ur - p(Ul,Ur)) (Ul - (1- K(Ul)) ur) - (Urn - Ul) 

- (ur - P(Urn,Ur)) (um - (1- K(urn))ur) 

= -(1+ (1 + K*8) 0(8)) IUrn - ud ::; 0. 

Dr = ('P'(Ul) - ur) - (Urn - Ul) - (ur - p(urn,Ur)) (urn - (1- K(um))ur) 

::; ('PI> ( Ul) - 'PI> ( urn)) - (urn - Ul) 

::; -(1 - cd IUm - uti· 

Case RC-3: Using 'P"(urn) ::; 'P'(Ul) we obtain 

Dr = (p( 'P" ( Ul), ur) - (1 - K (p( 'P" ( Ul), ur))) Ur) (ur - 'P' ( Ul) ) 

- (Urn - Ul) - (ur - P(Urn,Ur)) (Urn - (1- K(urn))ur) 

When Urn -+ Ul we have Ur -+ 'P~ ( Ul) and p( 'P" ( Ul), ur) -+ Ul, thus Dr converges 
toward 

(Ul - (1- K(ut) 'P~(ud) ('P~(ut) - 'P"(Ul)) 

- ('P~(Ul) - 'P"(Ul)) (Ul - (1- K(Ul)'P~(Ut)), 
which vanishes identically. Therefore, in the general case we have 
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Or =(,i(uz) - <P~(Urn)) - (Urn - Uz) 

~ - (1 - cd IUrn - uzl. 

Case CR-l : 

Or = (ur - p( Uz, Ur )) (uz - (1 - K (uz) ) ur) 

Case CR-2 : 

- (Urn - p(Uz, Urn)) (uz - (1- K(uz)) Urn) - (urn - ur) 

= -(1 + 0(8)) IUrn - uri. 

Or = (( 1 - K (p( Uz, Ur ))) Ur - p( Uz, Ur )) (uz - ur) 

- ((1 - K(p(uz, Urn))) Urn - p(uz, Urn)) (uz - Urn) - (ur - urn) 

= - (1 + (1 + K*8) 0(8)) IUrn - uri ~ o. 

Case CR-3 : 

Or =(,i(uz) - ur) - (urn - p(uz,urn )) (uz - (1- K(uz)) Urn) - (urn - Ur) 

= -I,l(uz) - Urnl-IUrn - p(uz,urn)lluz - (1- K(uz)) urnl. 

Case CR-4: 

Or = (p( <P~ ( Uz), Ur) - (1 - K (p( <P~ ( Uz), Ur ))) Ur) (ur - <P~ ( Uz) ) 

- (Urn - p(Ul' Urn)) (Ul - (1- K(Ul)) Urn) - (Urn - ur). 

By construction, we have Or = 0 in the limiting case Ur = Urn = cpU ( Ul) since then 
p(cp"(Ul),Ur) = Ul and p(uz,urn ) = cp"(Ul). Therefore, in the general case we find 

Or =(1 + K*8) 0(8) IUr - <pU(ul)1 + (1 + K*8) 0(8) IUrn - <p~(ul)I-lurn - uri 

= - (1 + (1 + K*8) 0(8)) IUrn - uri ~ o. 

Case CC-l: When U r ~ 0 we have 

Or = ( (1 - K (p( Uz, Ur ))) Ur - p( Ul, Ur )) (Ul - ur) 

- ((1- K(p(Ul,Urn ))) Urn - p(uz,Urn )) (Ul- Urn) 

- ((1- K(p(urn,Ur))) Ur - P(Urn,Ur)) (urn - ur) 

= -(p(uz,Ur) - p(uz,Urn )) (uz - Urn) 

- (uz - Urn - p(urn , ur) + p(uz, ur)) (urn - ur) 

- ( - K (p( Uz, urn)) Urn + K (p( Uz , Ur )) ur) (uz - urn) 

+ (-K(p(uz, ur)) + K(p(urn , ur))) U r (urn - ur), 
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therefore 

by (2.6)-(2.7). 

Or :S -(P(UI, Ur) - p(UI, Um)) (Ul - Um) 
- (Ul - Um - p( Um, Ur) + p( Ul, Ur)) (Um - Ur) 

+ (K*8 + maxK) lUI - umllum - uri 

:S -(1- K*8 + maxK + 0(8)) lUI - umllum - uri 

When U r < 0 we have along similar lines 

therefore 

Or = (ur - p( Ul, Ur )) (Ul - (1 - K (Ul)) ur) 

- ((1- K(p(ul, Um))) Um - P(UI,Um)) (Ul - um) 

- (ur - P(Um,Ur)) (um - (1- K(um))ur) 

= - (um - Ur - p(UI,Um) + P(UI,Ur)) (Ul - um) 

- (p( Ul, ur) - p( Um, Ur )) (um - ur) 

- (ur - p(um, Ur)) K(um) Ur + (Ur - p(UI, Ur)) K(UI) Ur 
+K(p(UI,Um))Um (Ul-Um), 

Or = - (P(UI,Ur) - P(UI,Um)) (Ul- Um) 

- (Ul - Um + p(UI,Ur) - P(Um,Ur)) (Um - Ur) 

+ (K*8 + (2 + 0(8)) maxK) lUI - umllUm - uri 

:S - C lUI - Urn I I Urn - uri, 
where we also used Iurnl, IUrl :S IUr - urnl· 

Case CC-2: When U r :S 0 we have 

Or = (ur - p(UI,Ur)) (Ul - (1- K(UI))Ur) 

- (um - p(UI,Urn )) (Ul - (1- K(UI)) Urn) 

- (p(Urn , ur) - (1 - K(p(urn,Ur))) Ur) (ur - Urn) 

= 0(8) IUr - urnl, 
which can be controlled by the cancelled strength IUr - uml in (1.16)-(1.17), provided 
C* 8TV(uh (t)) is sufficiently small. When Ur > 0 we find 

Or =( (1- K(p(UI,Ur))) Ur - P(UI,Ur)) (Ul - Ur) 

- (um - p( Ul, Urn)) (Ul - (1 - K ( Ul)) Urn) 

- (P(Um,ur) - ur) (Urn - (1- K(urn))ur). 

In the formal limit Ur --+ Urn (possible only if, simultaneously, Um --+ 0) we find 
Or --+ O. Therefore, using IUrnl, IUrl :S IUr - Urn I we obtain 

Or =Ul ((1- K(p(UI,Ur))) Ur - Urn + p(UI,Urn ) - P(UI,Ur)) + 0(8) IUr - Urn I 
=0(8) IUr - urnl, 

which can be controlled by the cancelled strength. 
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Case CN-l: The case Um ::; {3 is the same as the case CC-1 with Ur < O. When 
U m > {3 we have 

Or =«l( Um) - p( (l(um), uz)) (Ul - (1 - K( Ul)) cpP(um)) 

- ((1 - K(p(UI, Um))) Um - p(UI, um)) (Ul - Um) 

But, when Ul decreases toward Um, the value cp~(Ul) increases and one reaches first 
equality in the inequality cp~ (uz) ::; U r = cpP ( U m), and one can check that Or is non­
positive when cp~(UI) = Ur : this is actually a special case of Case CN-3 treated below. 
Hence, by continuity we find 

Or::; 0(0) IcpP(um) - cp"(UI) I = 0(0) IUr - cpU(Uz) I, 
which can be controlled by the cancelled strength. 

Case CN-2 : 

Or = (( 1 - K (p( Ul, cpP ( urn) ) )) cpP ( um) - p( Ul, cpP ( um) )) (uz - cpP ( Um ) ) 

- (um - p(uz,um)) (Ul - (1- K(uz))um) 

::; 0(0) IUr - uml, 

which is controlled by the cancelled strength. 

Case CN-3: Since IcpP(UI) - cpP(um)1 ::; lUI - uml we have 

Or =(P(cpP(UI),cpP(Um)) - (1- K(p(cpP(UI),CPP(Um)))) cpP(um)) (cpP(um) - cpP(UI)) 

- ((1- K(p(UI,Um))) Um - P(Ul,Um)) (Ul- Um) 

::; -luI - uml ( - p(cpP(UI), cpP(um)) - p( Uz, Um) 

+ (1 - K(p(uz, um))) Um - (1 - K(p(cpP(uz), cpP(um)))) cpP(um)). 

But we have 

(1 - K(p( Ul, Um))) Um - (1 - K(p( cpP (Ul), cpP (um)))) cpP (um)). 

~um(l-maxK)~O. 

and for 0 sufficiently small 

-pC cpP( Ul), cpP (um)) - p( Ul, um) ~ (1 + 0(0)) (Ul + cpP( Ul) + Um + cpP(um)) ~ O. 

Therefore Or ::; O. 

Case NC: When U r ::; 0 we find 

Or =(ur - P(Ul,Ur )) (Ul- (1- K(UI))Ur ) 

- (p( cpP ( Ul), ur ) - (1 - K (p( cpP ( Ul), ur ))) ur ) (ur· - cpP ( uz) ). 

In the limiting case Ur = cpP(UI) we have p(UI,Ur ) = cpP(UI), p(cpP(UI),Ur ) = Ul, and 
thus Or = O. Therefore, in the general case we find 

Or = 0(0) IUr - cp~(uZ)l, 

which can be controlled by the cancelled strength. 
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When U r 2 0 we find 

Or = ( (1 - K (p( UI, Ur ) ) ) Ur - p( UI , Ur )) (UI - ur) 

- (p(l(uL), ur) - ur) ((1 - K(l(UI))) Ur - (l(Ul)) 

Formally, if Ur ---t <p~ ( Ul) we would find p( UI, ur) = <pP (Ul), p( <pP (UI), ur) = UI, and 
Or = O. Therefore, in the general case we have 

Or = 0(8) IUr - <p~(uI)I, 

which can be controlled by the cancellation. 

Case NN: We have Um = <pP(Ul) and Ur = <pP(um), thus 

Or = ((1- K(p(<pP(Um),UI))) <pP(um) - p(<pP(Um),UI)) (UI - <pP(um)) 

= 0(8) IUr - ud = 0(82), 

which, thanks to our condition C* 82 ~ A (3, is controlled by the cancelled strength 
which is 

IUr - <p~(udl ~ I<pQ((3) I = 0((3) 
This completes the proof of Theorem 2.1. 

3. Existence theory 

We now turn to the Cauchy problem for the system of conservation laws 

OtU + oxf(u) = 0, U = u(x, t) E U 

o 

(3.1) 

under the usual assumptions of strict hyperbolicity in U = 8(80 ). Following Chap­
ters VI and VII, we assume that (1.1) admits genuinely nonlinear or concave-convex 
characteristic fields. (The analysis can be extended to linearly degenerate or convex­
concave fields.) Throughout this section we strongly rely on the notations and as­
sumptions introduced in Sections VI-2 to VI-4. In particular, a parameter J.li is 
provided for each i-wave family and, for each concave-convex characteristic field, it is 
normalized so that 

J.li(U) = 0 if and only if VAi(U) . Ti(U) = O. 

Based on the parameter J.li we defined the critical value J.l~ in Lemma VI-2.3. On the 
other hand in Section VI-4, to determine the admissible nonclassical shock waves in 
each concave-convex i-family we prescribed a kinetic function J.l~. Finally, from the 
parameter J.l~ we defined the companion value J.l~ (see the formula (VI-4.3)). 

Beyond the assumptions made in Section VI-4 we also postulate the existence of 
a threshold value for the mapping J.l~, that is: there exists (3i : U \ Mi f-+ IR which 
is defined and smooth away from the critical manifold 

Mi := {u E U I VAi(U) . Ti(U) = O} 
and satisfies the following four properties for some constant (37 > 0: 

• V(3i' Ti < 0 on Mi U Mi, where 

M; := {U E U IVAi' Ti(U) ~ o}, 



3. EXISTENCE THEORY 207 

• (3i(U) E (-2(3;,-(3;;2) for all u E Mi, while (3i(U) E ((3;;2,2(3;) for all 
uEMi, 

• and 
JL~(u) = JL~(u) when IJLi(U)1 ~ l(3i(U)I. (3.2) 

• Additionally, the kinetic function JL~ is smooth everywhere but possibly only 
Lipschitz continuous along the threshold manifolds 

The condition (3.2) means that, in a neighborhood of the manifold Mi the nonclassical 
Riemann solution described in Section VI-4 reduces to the classical one (Section VI-
2). Our assumptions cover the examples of interest arising in continuum physics; see 
Remark III-5.4 for instance. 

Figure VIII-2 : Critical and threshold manifolds. 

To solve the Cauchy problem associated with the system (3.1) we follow the strat­
egy developed in Chapter VII, the novelty being that we now rely on the nonclassical 
Riemann solver. We will only stress here the main differences with the classical case. 
The approximate solution may contain classical and nonclassical shock fronts, rarefac­
tion fronts, and artificial fronts. By definition, an approximate nonclassical wave 
front is a propagating discontinuity connecting two states satisfying the Hugoniot 
relations and the kinetic relation (up to possible errors of order O(h)). 

Based on the study in Section 1 above we introduce a generalized total vari­
ation functional for systems, defined for piecewise constant functions u : IR --+ U 
made of single wave fronts. Given such a function u = u(x) we set 

x 

where the summation is over the points of discontinuity of u. The generalized 
strength 0-( u_, u+) will be defined shortly so that 

~ lu+ - u_1 ~ 0-( u_, u+) ~ C lu+ - u_1 
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for some uniform constant C > 1, implying that the functional 11 is equivalent to the 
standard total variation: 

1 -
C TV(u) ::; V(u) ::; CTV(u). (3.3) 

Depending upon the kind of i-wave connecting u_ to u+, we define the strength 
o-(u_,u+) = o-i(U-,U+) as follows: 

_( ) ._ { Ifti(U+) - fti(u-)I genuinely nonlinear i-field, 
(1 u_, u+.- I I (3.4) 

u+ - u_ artificial front, 

and, for every concave-convex i-characteristic field, 

o-(u_,u+) 

{ 

Ifti(U+) - fti(u-)I, 
Ifti(U-) - (1- Ki(u_)) fti(u+)I, 

. Ifti(U-) + ft~(u_) - (2 - Ki(U-))ft~(u-)I, 

fti( u+) fti(U-) ~ 0, 

fti( u+) fti( u_) ::; ° 
and Ifti(U+)1 ::; Ift~(u-)I, 
fti(U+) = ft~(u-), 

(3.5) 

which is the natural generalization of the definition (1.7) introduced for scalar equa­
tions. Here, the mapping Ki : U -t IR is Lipschitz continuous and is given (by analogy 
with (1.15)) by 

{ 
-K; (t-ti(U) + !3i(U», 

Ki(U) := 0, 

K; (fti(U) - !3i(U)), 

fti(U) ::; !3i(U) ::; 0, 

It-ti(U)1 ::; l!3i(U)I, 
fti(U) ~ !3i(U) ~ 0, 

(3.6) 

where K; E [0,1) are sufficiently small constants. Observe that when all waves 
are classical and remain within the region Ifti ( u) I ::; l!3i (u) I the generalized strength 
coincides with the strength defined earlier in Section VII-I. 

Next, following the discussion in Section 2 above let us introduce the generalized 
interaction potential 

(3.7) 

with 

Qd( u) := L 0-( u_(x), u+(x») 0-( u_(y), u+(y)) (3.8) 
x<y 

and 

x<y 

in which the summation is done over all pairs of jumps in the function U = u(x). In 
Qd(U) we count all products between waves of different families provided the left-hand 
wave is faster than the right-hand one. In Qs(u), we include products between waves 
of the same characteristic family, say i-waves. We define the weight by 

q( U_, u+) := 1, genuinely nonlinear fields, 
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and for concave-convex i-field by 

1, 0::::: J..Li(U-) ::::: J..Li(U+), 

where 

ai (Pi(U-, u+), u+), 

0, 

ai (Pi( U_, u+), u+), 
1, 

J..L~(u_) ::::: J..Li(U+) ::::: J..Li(U-) and J..Li(U-) > 0, 

J..Li(U+) = J..L~(u_), 
J..Li(U-) ::::: J..Li(U+) ::::: J..L~(u_) and J..Li(U-) < 0, 

J..Li(U+) ::::: J..Li(U-) ::::: 0, 
(3.10) 

A ( ) ._ { lJ..Li(V) - J..Li(u)l, J..Li(V) J..Li(U) ~ 0, (311) 
(7i U,V.- lJ..Li(U) _ (1 - Ki(U)) J..Li(v)l, J..Li(V) J..Li(U) ::::: 0, . 

which is the natural generalization of (2.2)-(2.3). Given any two distinct vectors 
u_ and u+ satisfying the Hugoniot conditions, we denoted by Pi (u_, u+) i=- U± the 
solution of 

-Xi(U_, u+) (Pi(U-, u+) - u_) + f(Pi(u-, u+)) - f(u-) = 0. 

(See the discussion in Lemma VI-2.5). 
We follow the general strategy in Chapter VII. To initial data Uo : IR -t U we 

associate a sequence of piecewise constant approximations uS : IR -t U containing at 
most C /h jumps and such that 

ug -t Uo in the L 1 norm, 

TV(ug) -t TV(uo) as h tends to zero. 
(3.12) 

At each discontinuity on the line t = ° we solve a Riemann problem using the non­
classical solver constructed in Section VI-4 and based on prescribed kinetic functions 
J..L~. Locally in time, the corresponding approximate solution uh : IR x IR+ -t U is 
made of admissible (classical or nonclassical) shock fronts and rarefaction fronts (with 
strength::::: h), only. To extend the solution further in time, approximate interaction 
solvers are considered, an accurate one and a rough one, which we use depending on 
the size of the incoming waves and of some threshold £(h) -t 0, as was explained in 
Section VII-2. 

THEOREM 3.1. (Existence theory for nonclassical entropy solutions.) Consider the 
strictly hyperbolic system of conservation laws (3.1) defined in U = 13(50 ) together 
with some sufficiently small 51 < 50. Suppose that each characteristic field of (3.1) is 
either genuinely nonlinear or concave-convex. Then, there exist a constant c, C > ° 
such that the following result holds for ° < C' < C". 

Let 52 ::::: 51. Let Cl, C2,. .. be constants that are sufficiently close to 1/2 and 
satisfy 

Cl ~ C4, C2 ~ C3. (3.13) 
For each concave-convex i-family let J..L~ (u) be a kinetic function satisfying the threshold 
condition (3.2) for some (3i ( u) satisfying 

C' 5~ ::::: (3i(U) ::::: C" 52, 

together with the inequalities 

V'J..L~(u) . ri(u) 
-Cl < ::::: -C4, 

- V'J..L~(u), ri(u) 
(3.14) 
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Given some initial data Uo : IR -t B(82 ) with small total variation: 

TV(uo) < c, (3.13) 

the approximation scheme based on the corresponding nonclassical Riemann solver 
generates a globally defined sequence uh : IR x IR+ -t B(80 ) such that for suitable 
constants C*, M, Ki > 0 the function 

(3.16) 

at each interaction time. The sequence uh converges almost everywhere to a weak 
solution u : IR x IR+ -t B(80 ) of (3.1) with 

TV(u(t)) :S CTV(uo), t ~ o. 

Observe that the result in Theorem 3.1 applies to solutions with total variation 
less than a fixed constant c. The threshold f3i ( u) can be taken to be sufficiently small 
so that nonclassical shocks can exist in the ball B(62). However, for 62 fixed, the 
inequality C" 6~ :S f3i(U) prevents the threshold f3i(U) to become arbitrary small; in 
fact, as f3i -t 0 the size 62 of the neighborhood B(62) shrinks to the origin. Classical 
entropy solutions are covered by Theorem 3.1 by taking J.L~ ( u) = J.L~ ( u) = J.L~ ( u) and 
recalling Lemma VI-2.4. 

The key to the proof of Theorem 3.1 is deriving a uniform bound on the total 
variation of uh, which is based on the following generalization of Theorem VII-I.I. 

THEOREM 3.2. (Wave interaction estimates for nonclassical solutions.) For all Ul, Urn, 
and Ur E B( 8d we have the following property. Suppose that Ul is connected to Urn by 
a i-wave front and that Urn is connected to Ur by a j -wave front (1 :S i, j :S N). Then 
the outgoing wave strengths a-k (Ul' ur ) satisfy (1 :S k :S N) 

a-k(Ul, ur ) :S a-k(Ul, urn) + a-k(Urn , ur ) + 0(1) Q-(Ul' Urn, ur ), 

{ 

a-i(Ul, urn) + 0(1) Q-(Ul' Urn, ur ), 

a-j(urn , ur ) + 0(1) Q-(Ul' Urn, ur ), 

- a-i(UZ, ~rn) + a-j (urn , ur ) + 0(1) Q-(Ul' Urn, ur ), 

0(1) Q-(Ul' Urn, ur ), 

k = i =1= j, 

k = j =1= i, (3.17) 

k =j = i, 

otherwise, 

where the generalized interaction potential between the two incoming waves is 
defined as 

i > j, 
i = j. 

(3.18) 

D 



4. POINTWISE REGULARITY PROPERTIES 211 

4. Pointwise regularity properties 

In this section we state without proof some regularity properties of the solution ob­
tained in Theorem 3.1. 

THEOREM 4.1. (Structure of shock curves). Let u = u(x, t) be a solution of (3.1) 
given by Theorem 3.1. For each (sufficiently small) c: > 0 there exists finitely many 
Lipschitz continuous curves, x = Zk(t) for t E (tk, t~) , k = 1, ... ,Ke, such that 
the following holds. For each k and all (but countably many) times to E (tk, t~) the 
derivative Zk (to) and the left- and right-hand limits 

(4.1) 
exist and determine a shock wave with strength lak(t)1 2:: c:j2, satisfying the Rankine­
Hugoniot relations: it is either a classical shock satisfying Lax shock inequalities or a 
nonclassical shock satisfying the kinetic relation. Moreover, the mappings t f-+ ak(t) 
and oft f-+ Zk(t) are of uniformly bounded (with respect to c:) total variation. At each 
point (xo, to) outside the set 

Je(u):= {(Zk(t),t) jt E (tk,t~), k = 1, ... ,Ke} 

and outside a finite set Ie ( u), the function u has small oscillation: 

We have also: 

limsup lu(x, t) - u(xo, to)1 ::; 2c:. 
(x,t)-+(xo,to) 

(4.2) 

o 

THEOREM 4.2. (Regularity of solutions). Let u be a solution of (1.1) given by The­
orem 3.1. Then there exists an (at most) countable set I(u) of interaction points 
and an (at most) countable family of Lipschitz continuous shock curves 

J(u) := {(Zk(t), t) It E ('Lk,'J\), k = 1,2, ... } 

such that the following holds. For each k and each t E ('Lk, Tk ) such that (zdt), t) rt. 
I(u), the left- and right-hand limits in (4.1) exist at (Zk(t),t); the shock speed Zk(t) 
also exists and satisfies the Rankine-Hugoniot relations. The corresponding propa­
gating discontinuity is either a classical shock satisfying Lax shock inequalities or a 
nonclassical shock satisfying the kinetic relation. Moreover, u is continuous at each 
point outside the set J (u) U I( u). 0 



CHAPTER IX 

CONTINUOUS DEPENDENCE OF SOLUTIONS 

In this chapter, we investigate the L1 continuous dependence of solutions for 
systems of conservation laws. We restrict attention to solutions generated in the limit 
of piecewise approximate solutions and we refer to Chapter X for a discussion of the 
uniqueness of general solutions with bounded variation. In Section 1 we outline a 
general strategy based on a L1 stability result for a class of linear hyperbolic systems 
with discontinuous coefficients. The main result in Theorem 1.5 shows that the sole 
source of instability would be the presence of rarefaction-shocks. In Section 2 we apply 
the setting to systems with genuinely nonlinear characteristic fields; see Theorem 2.3. 
One key observation here is that rarefaction-shocks never arise from comparing two 
classical entropy solutions to systems of conservation laws. In Section 3 we provide a 
sharp version of the continuous dependence estimate which shows that the L1 distance 
between two solutions is "strictly decreasing"; see Theorem 3.2. Finally, in Section 4 
we state the generalization to nonclassical entropy solutions. 

1. A class of linear hyperbolic systems 

For solutions u = u(x, t) and v = v(x, t) of the system of conservation laws 

OtU + oxf(u) = 0, u = u(x, t) E U, x E JR, t ;::: 0, 

we want to establish the L1 continuous dependence estimate 

Ilu(t) - v(t)II£1(IR) :'S C Ilu(O) - v(O)II£1(IR), t;::: 0, 

(1.1) 

(1.2) 

for some uniform constant C > O. In (1.1), U := B(c5) C JRN is a ball with sufficiently 
small radius 15, and the flux f : U --+ JRN is a given smooth mapping. We assume that 
D f (u) is strictly hyperbolic for all u E U, with eigenvalues 

>'l(U) < ... < >'N(U) 

and left- and right-eigenvectors l j ( u) and r j (u) (1 :'S j :'S N), respectively, normalized 
so that 

li ( u) r j ( u) = 0 if i # j, and li ( u) r i ( u) = 1. 
To motivate the results in this section we outline our general strategy of proof to 

derive the estimate (1.2). Consider any averaging matrix A = A(u,v) satisfying, 
by definition, 

A(u, v) (v - u) = f(v) - f(u), 

A(u, v) = A(v,u), u,v E U. 
For instance, one could choose 

A(u, v) = 11 Df((l-(})u+(}v)d(}. 

(1.3) 

P. G. LeFloch 
© Birkhauser Verlag 2002

Hyperbolic Systems of Conservation Laws
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We denote by "Xj(u,v) the (real and distinct) eigenvalues of the matrix A(u,v) and 
by Ij (u, v) and fj (u, v) corresponding left- and right-eigenvectors, normalized in the 
standard way. 

Let u = u(x, t) and v = v(x, t) be two entropy solutions of (1.1). Clearly, the 
function 

'I/J :=v-u (1.4) 

is a solution of 

Ot'I/J+Ox(A(u,v)'I/J) =0. (1.5) 

Therefore, to establish (1.2) it is sufficient to derive the L1 stability property 

11'I/J(t)II£1(m) ~ C 11'I/J(O)II£1(m), t;::: 0 (1.6) 

for a class of matrices A = A(x, t) and a class of solutions 'I/J = 'I/J(x, t) of the linear 
hyperbolic system 

(1.7) 

covering the situation of interest (1.4) and (1.5). 
The present section is devoted, precisely, to deriving (1.6) for solutions of (1.7) 

(and, more generally, of (1.12) below.) As we will see, the characteristic curves (in the 
(x, t)-plane) associated with the matrix-valued function A will playa major role here. 
We begin with some assumption and notation. Throughout we restrict attention to 
piecewise constant functions A = A(x, t) and piecewise constant solutions 'I/J = 'I/J(x, t). 
By definition, A admits finitely many polygonal lines of discontinuity and finitely 
many interaction times t E I(A) at which (or simplicity in the presentation) we 
assume that exactly two discontinuity lines meet. The set of points of discontinuity 
of A is denoted by J(A). At each (x, t) E J(A) we can define the left- and right­
hand limits A±(x, t) and the corresponding discontinuity speed AA(x, t). On the other 
hand, the matrix A(x, t) is assumed to be strictly hyperbolic at each point (x, t), with 
eigenvalues denoted by A1(x, t) and left- and right-eigenvectors denoted by l1(x, t) 
and r1(x, t), respectively, (1 ::; j ::; N). We also use the notation l1±(x, t) and 
r1±(x, t) for the limits at a point of discontinuity. 

We suppose that the eigenvalues are totally separated in the following sense: 
There exist disjoint intervals [Ajin, Ajax] (j = 1, ... , N) having sufficiently small 
length (that is, I Ajax - Atn I < < 1), such that 

AA(X t) E [Amin Amax] 
J' J' J . (1.8) 

Similarly, we assume at each (x, t) E J(A) there exists some index i such that 

(1.9) 

and we refer to the propagating discontinuity located at this point (x, t) as a i-wave 
front. More precisely, we assume that the matrix A may also contain artificial wave 
fronts which do not fulfill (1.9) but, by definition, propagate at a fixed and constant 
speed AN+! satisfying 

AiVax < AN+!. (1.10) 

Such a propagating discontinuity is also called a (N + I)-wave front. 
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DEFINITION 1.1. Depending on the respective values of the left- and right-hand limits 
,Xf± = ,Xf±(x, t) and the propagation speed,XA = ,XA(x, t), an i-wave front (1 :=::; i :=::; N) 
located at some point (x, t) E J(A) is called 

• a Lax front if 
,XA >,XA > ,XA ,- - - ,+, 

• a slow undercompressive front if 

min ( ,Xf_ , ,Xf+) > ,X A, 

• a fast undercompressive front if 

max(,Xf_, ,Xf+) < ,XA, 

• or a rarefaction-shock front if 

,Xf_ :=::; ,XA :=::; 'xf+. 

Note that Definition 1.1 is slightly ambiguous: So, for definiteness, an i-wave 
front having ,Xf_ = ,X = ,Xf+ (but A_(x, t) =j:. A+(x, t) if (x, t) E J(A)) will be 
called a Lax front (rather than a rarefaction-shock front). We will use the notation 
£(A), S(A), F(A), R(A), and A(A) for the sets of all Lax, slow undercompressive, 
fast undercompressive, rarefaction-shock, and artificial fronts, respectively. When it 
will be necessary to specify which family the wave front belongs to, we will use the 
corresponding notation £i(A), Si(A), Fi(A), and Ri(A), respectively (1 :=::; i :=::; N). 
Finally, we denote by Ji(A) the set of all i-wave fronts (1 :=::; i :=::; N + 1), so that we 
have 

J(A) = £(A) U S(A) U F(A) U R(A) U A(A), 
Ji(A) = £i(A) U Si(A) U Fi(A) U Ri(A), 1 ~ i ~ N, 

IN+1(A) = A(A). 
Suppose that we are given a vector-valued function g = g(x, t) consisting (for 

each time t) of finitely many Dirac masses located on the discontinuity lines of A, 
that is, 

J(g) C J(A), (1.11) 
where, by extension, J(g) denotes the set of locations of Dirac masses in g. Let 
M(JR) be the space of all bounded measures on JR and, for each time t, denote by 
Ilg(t)IIM(lR) the sum of all Dirac masses in g(t). Then, consider piecewise constant 
solutions'IjJ = 'IjJ(x, t) of the linear hyperbolic system with measure right-hand 
side 

(1.12) 

The source term g will be necessary later (Section 2) to handle approximate solutions 
of the systems of conservation laws (1.1). 

To derive the estimate (1.6) we introduce a weighted L1 norm which will be non­
increasing in time for the solutions of (1.12). So, given a piecewise constant function 
'IjJ = 'IjJ(x, t), define its characteristic components 0: = (0:1,'" ,O:N) by 

N 

'IjJ(x, t) = L O:j(x, t) r1(x, t). 
j=l 

With any piecewise constant "weight" 

W = (Wb'" ,WN) such that Wj > 0(1:=::; j:=::; N), 

(1.13) 
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we associate the weighted L1 norm of 'ljJ 

N 

111'ljJ(t)lllw(t):= 1 Llaj(x,t)IWj(x,t)dx. 
m j=l 

(1.14) 

Note that the weighted norm depends upon both wand A. As long as there exists 
uniform constants wmin and wmax (independent of the number of discontinuity lines 
in A and'ljJ but possibly dependent upon the LOO norms or total variation of A and 
'ljJ) such that 

0< wmin :::; Wj(x, t) :::; wmax for all j and (x, t), (1.15) 

the weighted norm (1.14) is clearly equivalent to the standard L1 norm. 
It is convenient to a priori assume that the lines of discontinuity in ware either 

lines of discontinuity in A or else characteristic lines associated with the matrix A. 
In other words, the weight W satisfies the following property at all (but finitely many) 
points (x, t): 

If (x, t) E J(w) \ J(A), then the discontinuity speed AW(X, t) 

coincides with one of the characteristic speeds A~(X, t) 

and wj+(x,t) = Wj_(x,t) for all j but j = i. 

(1.16) 

To begin with, we derive now a closed formula for the time-derivative of the weighted 
norm. 

LEMMA 1.2. For each solution 'ljJ of (1.12) and at all but finitely many times t we 
have 

where 
(3j-(x,t):= (AA(x,t) - A1_(x,t)) laj-(x,t)l, 

(3j+(x, t) := (A1+(x, t) - AA(x, t)) laj+(x, t)l. 

(1.17) 

(1.18) 

PROOF. Consider the family of polygonal lines of discontinuity t ~ Yk(t) (k describ­
ing a finite set of integers) in any of the functions A, 'ljJ, and w. In the forthcoming 
calculation, we exclude all of the interaction times i of the vector-valued function 
(A, 'ljJ, w). For instance, we exclude times when a discontinuity line in A, for instance, 
crosses a discontinuity line in 'ljJ while the speeds AA and AWare distinct. The dis­
continuity lines are straight lines in any interval disjoint from i and the following 
calculation makes sense. 

In each interval (Yk(t), Yk+1(t)) all of the functions are constant and we can write 
with obvious notation 
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hence 

where 

N 

+ L(>.f,k+(t) t - Yk(t)) laj,k+(t)1 Wj,k+(t), 
j=1 

>.f,k+(t):= >.t+(Yk(t),t) = >.t-(Yk+1(t),t) =: >.f,k+l-(t). 
After summing over j we arrive at 

N 

111'l/J(t)lllw(t) = L L(Yk(t) - >.f,k-(t) t) laj,k-(t)1 Wj,k-(t) 
k j=1 

At all t but interaction times we can differentiate this identity with respect to t: 

N ! II I'l/J(t) II Iw(t) = L L(y~(t) - >.f,k-(t)) laj,k-(t)1 Wj,k-(t) 
k j=1 (1.19) 

In view of the conditions (1.11) and (1.16) on g and w, respectively, we need to 
distinguish between three cases only, as follows: 

• If A has a jump discontinuity at (Yk(t), t) propagating at the speed ).A and 
associated with some i-family, then we have 

which leads to the desired terms in (1.17) and (1.18). 
• If both A and 'l/J are continuous but W is discontinuous at (Yk(t), t), we deduce 

from (1.16) that the speed y~(t) coincides with some characteristic speed of 
the matrix A: All the components Wj but the i-component Wi are continuous. 
In (1.19) the latter is multiplied by 

>'~±(Yk(t), t) - y~(t) = >'~(Yk(t), t) - >'~(Yk(t), t) = o. 
Again the corresponding term in (1.19) vanishes identically. 

• Finally, if A is continuous near (Yk(t), t) while 'l/J contains a discontinuity prop­
agating at some speed A, we find from (1.11) and (1.12): 

which implies that A is an i-eigenvalue of the matrix A(x, t) and that the jump 
of 'l/J is an i-eigenvector. Hence, all of the components aj, but possibly the 
i-component ai, are continuous. The coefficient in front of ai is 

Hence, the corresponding term in (1.19) vanishes identically. 
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We conclude that it is sufficient in (1.17) and (1.18) to sum up over jumps in J(A), 
only. This completes the proof of Lemma 1.2. D 

Next, in view of (1.18) we observe that for each i-wave front located some point 
of discontinuity (x, t) we have (dropping the variable (x, t) for simplicity) 

and 

± f3j± ~ 0, j < i, 
± f3j± ~ 0, j > i, 

f3i± ~ 0, Lax front, 

±f3i± ~ 0, 

±f3i± ~ 0, 

f3i± ~ 0, 

slow undercompressive, 

fast undercompressive, 

rarefaction-shock. 

(1.20i) 

(1.20ii) 

Let us introduce some more notation. We assume that the matrix A = A(x, t) is 
associated with a scalar-valued function cA = cA(x, t), called the strength of the 
propagating discontinuity located at (x, t) E J(A), such that 

~ IA+(x, t) - A_(x, t)1 ~ cA(x, t) ~ C IA+(x, t) - A_(x, t)l. (1.21) 

for some uniform constant C ~ 1. 

LEMMA 1.3. The coefficients introduced in (1.18) satisfy 

N 

If3j+1 = If3j-1 + O(cA) L: If3k-1 + O(g), 1 ~ j ~ N, (1.22) 
k=1 

where 9 denotes simply the (constant) mass of the measure source-term in (1.12) along 
the line of discontinuity under consideration. 

PROOF. The Rankine-Hugoniot relation for the system (1.12) reads 

Thus, we have 

N N 

L:(,\A - ,\1+) CYj+ r1+ = L:(,\A - '\1-) CYj_ r1- - g. 
j=1 j=1 

Multiplying by 11+ and using the normalization lA- rA = 0 if i =J j and lA- rA- = 1, 
we arrive at 

N 

(,\A -,\1+) CYj+ = (,\A-'\1_) CYj_+ L:(,\A_,\:_) CYk-11+ (rL -r:+) -11+ g. (1.23) 
k=1 

From (1.23) we deduce that (1 ~ j ~ N) 

N 

(,\A-'\1+) CYj+ = (,\A-'\1_) CYj_+O(IA+-A_I) L:1(,\A_'\:_)CYk_I+O(g), (1.24) 
k=1 

which yields (1.22) in view of (1.18) and (1.21). D 
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Lemma 1.3 shows that the components l,6j-1 and I,6H 1 coincide "up to first-order" 
in cA. Therefore, in view of the signs determined in (1.20) it becomes clear that the 
natural constraints to place on the weight in order for the right-hand side of (1.17) to 
be ("essentially") non-positive are the following ones: For each i-wave front and each 
15:j5:N 

{ 

::::: 0, j < i, 
5: 0, j = i and slow undercompressive, 

W+-W'_ 
J J ::::: 0, j = i and fast undercompressive, 

5: 0, j > i. 

(1.25) 

Indeed, if such a weight exists, then from (1.17), (1.20), (1.22), and (1.25) we can 
immediately derive the following estimate away from interaction times: 

d 
dt lll1,b(t)lllw(t) + L IWj-(x, t) - wH(x, t)ll,6j-(x, t)! 

+ 

(x,t)E.:Ti(A) 
l$:i:#j~N 

(x,t)EL:i(A) 
l~i~N 

+ L IWi-(X,t)-Wi+(X,t)ll,6i-{X,t)1 
(x,t)ESi(A)uFi(A) 

l~i::;N 

L (Wi-(X,t) +Wi+(x,t)) l,6i-(X,t)1 
(x,t)ERi (A)U.A(A) 

l$i'5,N 

+ L O(eA(X, t» l,8j-(x, t)1 + 0(1) IIg(t)IIM(ill)' 
(x,t)E.:T(A) 
l~j~N 

(1.26) 

To control the remainder arising in the right-hand side of (1.26) our strategy will 
be to choose now IWj-(x, t) - Wj+(x, t)1 = K lOA with a sufficiently large K > 0, 
so that the favorable term in the left-hand side of (1.26) becomes greater than the 
last term in the right-hand side. Recall that a weight satisfying (1.25) was indeed 
determined for scalar conservation laws, in Chapter V. An additional difficulty arises 
here to treat systems of conservation laws: The conditions (1.25) are somewhat too 
restrictive and must be relaxed. Strictly speaking, it would be possible to exhibit a 
weight W satisfying (1.25) for systems for every choice of matrices A and solutions 1,b. 
But, such a weight would strongly depend on the number of lines of discontinuity in 
A and 1,b and the corresponding estimate (1.6) would not be valid for a general class 
of piecewise constant solutions. Alternatively, it would not be difficult to construct a 
weight W independent of the number of lines of discontinuity in A and 1,b but exhibiting 
(uncontrolled) jump discontinuities in time at each interaction. 

To weaken (1.25), our key observation is the following one: 

The conditions (1.25) on the jump wH - Wj_ are not necessary 
for those components ,6j± which are "small" (in the sense (1.27), below) 
compared to other components. 
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DEFINITION 1.4. Consider a solution 'ljJ = 'ljJ(x, t) of (1.12) together with its character­
istic components aj± and (3j± defined by (1.13) and (1.18), respectively (1 :s: j :s: N). 
For each j = 1, ... ,N we shall say that the component (3j- is dominant if and only 
if for some uniform constant C > 0 

N 

l(3j-1 ;::: C c;A L l(3k-1 + C Igl· (1.27) 
k=l 

For each i-wave front the i-characteristic components ai± are said to be dominant 
if and only if for some uniform constant c > 0 

clai±l;::: Llak±l· 
k#i 

Later, we will need that the constant c in (1.28) is sufficiently small. 
We now prove the main result in this section. 

(1.28) 

THEOREM 1.5. (£1 stability for linear hyperbolic systems.) Consider a matrix-valued 
function A = A(x, t) satisfying the assumptions given above and whose strength c;A is 
sufficiently small. Let'ljJ = 'ljJ(x, t) be a piecewise constant solution of (1.12). Suppose 
that there exists a weight satisfying the following strengthened version of the conditions 
(1.25) but for dominant components (3j- only: 

KC;A, j < i, 
K c;A or - K c;A , j = i and undercompressive, 

Wj+ - Wj_ = -K C;A, 

Kc;A, 

-K c;A, 

j = i, slow undercompressive, ai± dominant, 

j = i, fast undercompressive, ai± dominant, 

j > i. 
(1.29) 

Then, for some sufficiently large K and uniform constants C1 , C2 > 0 the weighted 
norm of'ljJ satisfies the inequality (for all t ;::: 0) 

where the dissipation terms and the remainder are defined by 

and 

D 2 (s) := L l(3i-(X,s)l, 
(x,s)ECi(A) 
l~i:SN 

D3(S) := L c;A(x, s) l(3j-(x, s)1 ds 
(x,s)E.7(A) 

l$j$N 

R(s) := Ilg(s)IIM(m) + TV('ljJ(s)) sup c;A(x, T) 
(x,T)E'R(A) 

TE(D,') 

+ 11'ljJ(s)llu"'(m) sup L c;A(x, T). 
TE[O,t] (x,T)EA(A) 
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Since the weighted norm is equivalent to the standard L1 norm, the estimate in 
Theorem 1.5 is also equivalent to 

for some uniform constant C3 > 0, where now the corresponding dissipation terms 
and remainder are 

and 

D2(S) := L IZi-(x,s) (A_(x, s) - ,\(x, s)) 7/L(X, s)l, 
(x,a)EC i (A) 

l:<;i:<;N 

D3(S) := L IA+(x, s) - A_(x, s)11 (A_(x, s) - '\(x, s)) 'lj;_(x, s)l, 
(x,s)E.J'(A) 

R(s) := Ilg(s)IIM(Hl) + TV('lj;(s)) sup IA+(X,7) - A_(x, 7)1 
(x,'I')ER(A) 

'I'E(O,t) 

+ 11'lj;(s) II UX' (Hl) sup L IA+(X,7) - A_(x, 7)1· 
rE(O,t) (x,r)EA(A) 

The following important remarks concerning (1.30) are in order: 
• Only rarefaction-shocks, artificial fronts, and the source-term g may amplify 

the L1 norm. In particular, in the special case that 

g = 0, R(A) = A(A) = 0, 

(1.30) implies the solutions 'ljJ of the Cauchy problem associated with (1.12) 
are unique and stable. In the following sections, (1.30) will be applied with a 
sequence of approximate solutions (of (1.1)) for which the last three terms in 
the right-hand side of (1.30) precisely vanish in the limit. 

• Theorem 1.5 provides a sharp bound on the decay of the L1 norm. Note that 
the left-hand side of (1.30) contains cubic terms associated with undercom­
pressive wave fronts of A, and quadratic terms associated with Lax fronts. 

PROOF. We now consider each kind of i-wave front successively, and we derive a 
corresponding estimate for the boundary term 

N 

B := L (3j- Wj_ + (3j+ wj+. 
j=1 

Throughout we often use that by (1.27) 

l(3j-1 + O(g), 
j ,Bj - dominant 

provided lOA is sufficiently small. In view of (1.22) we have 

N N 

B = L((3j- Wj_ + sgn((3j+) l(3j-1 wj+) + O(cA ) L l(3k-1 + O(g), 
j=1 k=1 

(1.31) 

(1.32) 
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that is, since by (1.20i) the signs of the f3j± is determined for all j i= i, 

N 

- I)wj+ - Wj_) lf3j-I-2:]wj- - wj+) lf3j-1 + O(c:A ) L lf3k-1 + O(g). 
j<i j>i k=l 

In view of (1.29), for j i= i the dominant components f3j- are associated with a 
favorable sign of the jump wj+ - Wj _. On the other hand, non-dominant components 
f3j- for j i= i can be collected in the first-order remainder. So, we obtain 

B =(Wi- sgn(f3i-) + Wi+ sgn(f3i+)) lf3i-l- K c:A L lf3j-1 
j#i 

dominant 

N 

+ O(c:A ) L lf3k-1 + O(g), 
k=l 

where the first sum above contains dominant components f3j- only and, relying on 
(1.32), can absorb the first-order remainder, provided we choose K sufficiently large 
so that K c:A dominates O(c:A ). We obtain 

B:::; (Wi- sgn{f3i-)+Wi+ sgn(f3i+)) lf3i_I+O{c:A ) lf3i-l-~ c:A L lf3j-I+O(g). (1.33) 
#i 

It remains to deal with the term lf3i-l, which can be assumed to be dominant 
otherwise the argument above would also apply to the i-component and we would 
arrive to the desired estimate for B. We distinguish now between four main cases: 
Lax, undercompressive, rarefaction-shock, and artificial fronts. 

Case 1: If the i-wave is an i-Lax front, we have sgn{f3j_) = sgn(f3j+) = -1 and 
therefore, by (1.33) and (1.15), 

So we obtain 

B:::; _2wmin lf3i-1 + O{c:A ) lf3i-l- ~ c:A L lf3j-1 + O(g). 
#i 

B:::; _wmin lf3i-l- ~ c:A L lf3j-1 + O{g), 
#i 

and, therefore, for c:A sufficiently small 

K N w min 

B :::; - 2" c:A L lf3j-1 - -2- lf3i-1 + O(g) for Lax fronts. 
j=l 

Case 2: Next, we consider an undercompressive front and we prove that 

K N 
B:::; -"3 c:A L lf3j-1 + O(g) for undercompressive fronts. 

j=l 

Suppose, for instance, that the front is slow undercompressive. 

(1.34) 

(l.35) 
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First of all, the case that both OH and (3i- are all dominant is simple, since 
sgn«(3i-) = -1 and sgn«(3i+) = 1 while Wi+ - Wi- = -K cA. Therefore, from (1.33) 
we have 

which yields (1.35) by choosing K sufficiently large. 
Second, we already pointed out that the case that (3i- is non-dominant is obvious 

in view of (1.32). 
Thus, it remains to consider the case where one of the characteristic components 

ai± is non-dominant. Suppose, for instance, that ai- is non-dominant and that (3i­
is dominant. Using that (see (1.28)) 

lai-I :::; c L lak-I 
k=/-i 

and the condition IWi+ - wi-I = K lOA from (1.29) (since (3i- is dominant), we obtain 

l(3i-llwi- - Wi+ I = K lOA l(3i-1 :::; O(cA ) K (.xrax - .xrill) lai-I 

:::; O(cA ) K (.xrax - .xrill) L laj-I, 
j=/-i 

:::; O(cA ) K (.xrax - .xrill) L l(3j-l· 
j=/-i 

On the other hand, since .x~ax - .x~ill < < 1 by assumption, we observe that 

O(cA ) K (.xrax - .xrin) < ~ cA. 

Therefore, we conclude that the term l(3i-llwi- - Wi+ I can be controlled by the term 

in (1.33), and we arrive again at the inequality (1.35). 

Case 3: Consider next the case of an i-rarefaction-shock, for which no constraint 
has been imposed on the component Wi. Here, we will show that 

N 

B :::; C cA I'¢+ - ,¢-I - ~ cA L l(3j-1 + O(g) for rarefaction-shocks. 
j=l 

From (1.33) we get 

and we distinguish between two subcases: 

(1.36) 

(1.37) 
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- If lli- llH 2: 0, then by (1.24) in the proof of Lemma 1.3 we have 

N 

(,XA - ,X~+) llH + (,X~_ - ,XA) lli- = O(cA ) 2: If3j-1 + O(g). 
j=1 

The two terms on the left-hand side above have the same sign, therefore 

N 
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If3HI + If3i-1 = I(,XA - ,X~+) lli+1 + I('x~_ - ,XA) lli-I = O(cA ) 2: If3j-1 + O(g). 
j=1 

From (1.37) and by absorbing the term O(cA ) above by taking K sufficiently large, 
we deduce that 

K 
B'5: -3 cA 2: If3j-1 + O(g), 

#i 

which -using once more the previous inequality- implies (1.36). 

- If lli- llH < 0, then we observe that 

We conclude that 

If3i-1 = I'x~_ - ,XAlllli_1 '5: I'x~ - 'x~_llllH - lli-I 

'5: O(cA ) I7/!+ - 7/!-I· 
(1.38) 

where, in the latter, the estimate (1.38) on If3i-1 was used once more. This proves 
(1.36). 

Case 4: Finally, it is easy to derive 

B '5: C max(I7/!-I, I7/!+ I) cA + O(g) for artificial fronts. (1.39) 

The estimate (1.30) follows from (1.34)-(1.36) and (1.39), and the proof of The-
orem 1.5 is completed. 0 

2. £1 Continuous dependence estimate 

We show here that the framework developed in Section 1 applies to (classical) en­
tropy solutions of conservation laws. For simplicity, we assume that the system under 
consideration is genuinely nonlinear. Theorem 1.5 provides us with the desired L1 
continuous dependence estimate (1.2), provided we can exhibit a weight-function sat­
isfying the requirements of Section 1, especially the conditions (1.29). Our first key 
observation is: 
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THEOREM 2.1. (First fundamental property.) Consider the strictly hyperbolic system 
(1.1) defined in the ballU = B(8) with 8> 0 sufficiently small. Suppose that all of the 
characteristic fields of (1.1) are genuinely nonlinear. Let A be an averaging matrix 
satisfying the two conditions (1.3). Then, if u = u(x, t) and v = v(x, t) are any two 
piecewise constant functions made of classical shock fronts associated with (1.1) (and 
defined in some region of the (x, t)-plane, say), the averaging matrix 

A(x,t) :=A(u(x,t),v(x,t)) 

cannot contain rarefaction-shocks. 

PROOF. Since "Xj(u,u) = Aj(U) and A is symmetric (see (1.3)) we have 

- - 1 
V1Aj(U,U) = V2Aj(U,U) = "2VAj(u), 1 s: j s: N. (2.1) 

The function u and v play completely symmetric roles. Consider, for instance, a shock 
wave in the solution u connecting a left-hand state u_ to a right-hand state u+, and 
suppose that the solution v is constant in a neighborhood of this shock. It may also 
happen that two shocks in u and v have the same speed and are superimposed in 
the (x, t)-plane, locally. However, this case is not generic and can be removed by an 
arbitrary small perturbation of the data. (Alternatively, this case can also be treated 
by the same arguments given now for a single shock, provided we regard the wave 
pattern as the superposition of two shocks, one in u while v remains constant, and 
another in v while u remains constant.) 

According to the results in Chapter VI, u+ is a function of the left-hand state u_ 
and of some parameter along the Hugoniot curve, denoted here by c:. For some index 
i we have 

u+ =: u+(c:) = u_ + c:ri(U-) + 0(c:2), (2.2) 

By convention, c: < 0 for classical shocks satisfying Lax shock inequality 

since we imposed the normalization V Ai . ri == 1. We claim that the averaging wave 
speed "Xi is decreasing across the shock, that is, 

(2.3) 

uniformly in v. In particular, this implies that the inequalities characterizing a 
rarefaction-shock (that is, "Xi (u_, v) s: "Xi (u_, u+) s: "Xi (u+, v) in Definition 1.1) can­
not hold simultaneously, which is precisely the desired property on A. 

Indeed, by using the expansion (2.2) the inequality (2.3) is equivalent to saying 

- - - 2 
Ai(U-, v) > Ai(U-, v) + c: V lAi( u_, v) . ri(u_) + O(c: ), 

or 
V1"Xi(U-, v) . ri(U_) + O(c:) > O. 

Expanding in term of Iv - u_1 and using (2.1), we arrive at the equivalent condition 

However, since VAi' ri == 1 and 1c:1 + Iv - u_1 s: 0(8), the above inequality, and thus 
(2.3), holds for 8 sufficiently small. This completes the proof of Theorem 2.1. 0 
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We will also need the following observation which, in fact, motivated us in for­
mulating Definition 1.4. Note that the entropy condition does not playa role here. 

THEOREM 2.2. (Second fundamental property.) Under the same assumptions as in 
Theorem 2.1, consider now two piecewise constant functions u and v made of classical 
shock fronts and rarefaction fronts (see Section VII-1 for the definition), and set (see 
(1.13)) 

Recall the notation 

N 

'l/J :=v -u = LOjrt. 
j=1 

A - A Aj (x, t) = Aj(U(X, t), v(x, t)), rj (x, t) = Tj(U(X, t), v(x, t)). 

(2.4) 

Then, for each wave front of A propagating at the speed AA and associated with a 
wave front in the solution u we have 

(2.5) 

The opposite sign is found for wave fronts of A associated with wave fronts in the 
solution v. 

PROOF. We use the same notation as in the proof of Theorem 2.1. Consider an i-wave 
front connecting u_ to u+ while the other solution v is locally constant. Using the 
decomposition 

we can write 

N 

V - u± = L aj± Tj(U±, v), 
j=1 

A A - -Ai+ - A = Ai(U+,V) - Ai(U-,U+) 
- 2 =\!2Ai(U_,U+)·(v-u_)+0(lv-u_l) 

= ai- (1/2 + O(lu+ - u_1 + Iv - u_I)) + 0(1) L laj-I 
#i 

= (1/2 + 0(8)) ai- + 0(1) L laj-I· 
#i 

This proves that, when c lai-I ;::: E#i laj-I where c is sufficiently small, the terms 
Af+ - AA and ai- have the same sign for wave fronts associated with wave fronts in 
the solution u. The opposite sign is found for waves associated with wave fronts in 
the solution v. The calculation for Af_ is completely similar. 0 

Finally, we arrive at the main result in this section. 

THEOREM 2.3. (Continuous dependence of classical entropy solutions.) Consider the 
strictly hyperbolic system (1.1) in the ball U = l3(8) with small radius 8 > O. Suppose 
that all of its characteristic fields are genuinely nonlinear. Let u h and v h be two 
sequences of piecewise constant, wave front tracking approximations (see Chapter VII) 
and denote by u and v the corresponding classical entropy solutions obtained in the 
limit h -.., O. Then, for some uniform constant C > 0 we have the inequality 

Ilvh(t) - uh(t) II £1 (ffi) ~ C Ilvh(O) - uh(O)II£1(ffi) + O(h), t;::: 0, (2.6) 



226 CHAPTER IX. CONTINUOUS DEPENDENCE OF SOLUTIONS 

which, in the limit, yields the L1 continuous dependence estimate 

Ilu(t) - V(t)II£1(m) :S C Ilu(O) - V(O)II£1(m), t 2: O. (2.7) 

PROOF. Step 1 : Convergence analysis. Recall from Section VII-2 that uh and 
vh have uniformly bounded total variation 

(2.8) 

and converge almost everywhere toward u and v, respectively. Each wave front in uh 

(and similarly for vh ) is one of the following: 
• A Lax shock front satisfying the Rankine-Hugoniot jump conditions and Lax 

shock inequalities and propagating at the speed A = Xi(u~(x,t),ui(x,t)) + 
O(h). 

• A rarefaction front violating both of Lax shock inequalities and having small 
strength, i.e., 

lu~(x, t) - u~(x, t)1 :S C h for rarefaction fronts. (2.9) 

For some i = I,... ,N, ui (x, t) lies on the i-rarefaction curve issuing from 
u~(x, t). The jump propagates at the speed A = Xi(U~(X, t), ui(x, t)) + O(h). 

• An artificial front propagating at a large fixed speed AN +1. Denote by A the 
set of all artificial fronts. The total strength of waves in A vanishes with h, 
precisely 

I: lu~(x,t)-u~(x,t)I:SCh, t~O. (2.10) 
xl (x,t)EA 

Moreover, the Glimm interaction estimates (Section VII-I) hold at each interaction 
point. The interaction of two waves of different families i i= if produces two principal 
waves of the families i and if, plus small waves in other families j i= i, if whose 
total strength is quadratic with respect to the strengths of the incoming waves. The 
interaction of two i-waves generates one principal i-wave, plus small waves in other 
families j i= i. 

Furthermore, by an arbitrary small change of the propagation speeds we can 
always assume that: 

• At each interaction time there is exactly one interaction between either two 
fronts in uh or else two fronts in vh . 

• The polygonal lines of discontinuity in uh and vh cross at finitely many points 
and do not coincide on some non-trivial time interval. 

We now apply the general strategy described at the beginning of Section 1. Ob­
serve that the approximate solutions uh and vh satisfy systems of equations of the 
form 

(2.11) 

where gl,h and g2,h are measures on IR x IR+ induced by the facts that rarefaction 
fronts do not satisfy the Rankine-Hugoniot relations and that fronts do not propagate 
with their exact wave speed. Define 

Ah := A(uh, vh), 'ljJh = vh _ uh, gh:= g2,h _ gl,h. 
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The matrix Ah satisfies our assumptions in Section 1 (uniformly in h) and the function 
'ljJh is a solution of 

(2.12) 

Observe here that any wave interaction point (x, t) for the averaging matrix Ah 
• is either a point of wave interaction for uh while vh remains constant, or vice­

versa, 
• or else a point where both uh and vh contain single wave fronts crossing at 

(x, t). 
We define the wave strength cA for the matrix Ah (see (1.21)) to be the (modulus 

of) usual strength of the wave fronts in uh or in v h , whichever carries the jump. 
Relying on the assumption of genuine nonlinearity, we now prove that the strength 
cA is equivalent to the standard jump of A h, that is, uniformly in v 

(2.13) 

for any shock connecting a left-hand state u_ to a right-hand state u+ and for some 
constant C ~ 1. 

To derive (2.13), we simply regard A(u+,v) - A(u_,v) as a function 'ljJ(c) of the 
wave strength parameter c along the j-Hugoniot curve. Using the expansion (2.2) we 
find 

'ljJ'(O) = DU1A(u_,v)rj(u_). 

Since u_, u+, and v remain in a small neighborhood of a given point in JRN, it is 
enough to check that B := DUIA(u,u)rj(u) =I- 0 for every u and j. But, since A is 
symmetric (see (1.3)) we have DUIA(u,u) = DU2A(u,u) = DA(u)/2. Multiplying the 
identity 

by the left-eigenvector lj(u) yields 

This shows that the gradient of'ljJ(c) does not vanish, for small c at least, and estab­
lishes (2.13) and thus (1.21). 

Next, we claim that gh -t 0 strongly as locally bounded measures, precisely 

lT Ilg1,h(t)IIM(lR) dt -t 0 for every T > O. (2.14) 

We can decompose the contributions to the measure source-term gl,h in three sets. 
First, shock waves satisfy (2.12) almost exactly, with 

gl,h = 0(1) O(h) cA locally. 

Second, for an i-rarefaction front connecting two states u_ and u+ and propagating 
at some speed A = "Xi (u_, u+) we find 

gl,h = "/ bX=At' 

,h := -("Xi(u_, u+) + O(h)) (u+ - u_) + f(u+) - f(u-). 
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But, in view of (2.9) we have 

bhl ::; C lu+ - U_12 + C h lu+ - u_1 ::; O(h) lu+ - u_l· 

Summing over all rarefaction waves in IR X [0, TJ, for any fixed T we find 

loT Ilg1,h(t)IIM(ffi) dt ::; O(h), (2.15) 

which gives (2.14). Finally, using the same notation and for artificial waves we obtain 

I,ll := 1- AN+! (u+ - u_) + f(u+) - f(u-)I ::; C lu+ - u_l, 

and so again (2.15) thanks to the estimate (2.10). This establishes (2.14). 
We conclude that the assumptions in Theorem 1.5 are satisfied and, provided 

we can construct a suitable weight function, we obtain the stability estimate (1.30). 
Thanks to Theorem 2.1 the set of rarefaction-shocks in Ah is included in the union 
of the sets of rarefaction fronts and artificial fronts in uh and vh . From the estimates 
(2.14) it then follows that the last three terms in the right-hand side of (1.30) converge 
to zero with h -+ ° and, therefore, that (2.6) holds. Since 

'ljJh -+ 'ljJ := v - u almost everywhere 

the desired £1 stability estimate (2.7) is obtained in the limit. 

Step 2 : Reduction step. To simplify the notation we drop the exponent h in 
what follows. In Step 3 below, we will construct a weight satisfying (1.15) and (1.16) 
together with the following constraint: for each i-discontinuity associated with the 
solution u and for each j = 1, ... ,N, provided aj_ aJ+ > 0, we will impose 

{ 

KsA, j < i, 
- K SA, j = i, undercompressive, and ai± > 0, 

Wj+ - Wj_ = K sA, j = i, undercompressive, and ai± < 0, 

_KsA, j > i. 

(2.16) 

For discontinuities associated with the solution v similar conditions should hold, sim­
ply exchanging the conditions ai± > ° and ai± < 0 in the two cases j = i. Note that 
no constraint is imposed when aj_ aJ+ < 0. 

Let us here check that the conditions (2.16) do imply the conditions (1.29) needed 
in Step 1 in order to apply Theorem 1.5. Indeed, consider an i-discontinuity for which 
some component (3j- is dominant. Then, it follows from (1.24) that 

(2.17) 

When j =f:. i, the term AA - At+ has the same sign as AA - At-, so from (2.17) we 
deduce that 

sgn(aJ+) = sgn(aj_), 

so that (2.16) can be applied, which implies the conditions in (1.29) for j =f:. i. 
On the other hand, for the i-component of an undercompressive i-wave, again the 

terms AA - Af+ and AA - Af_ have the same sign, therefore by (2.17) and provided 
(3i- is dominant we have again 
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Relying on Theorem 2.2 and restricting also attention to dominant components oH 

we see that 
slow undercompressive, 

(2.18) 
Cti-, Cti+ < 0, fast undercompressive. 

Therefore, in view of (2.18), the conditions in (2.16) for j = i imply the corresponding 
ones in (1.29). 

Step 3 : Constructing the weight-function. It remains to determine a weight 
W = w(x, t) satisfying (1.15), (1.16), and (2.16). The construction of each component 
of W will be analogous to what was done in the proof of Theorem V-2.3 with scalar 
conservation laws. Given some index j, the (piecewise constant) component Wj will 
be uniquely defined -up to some (sufficiently large) additive constant- if we prescribe 
its jumps (wj+(x, t) - Wj_(x, t)). Additionally, the weight can be made positive and 
uniformly bounded away from zero, provided we guarantee that the sums of all jumps 
contained in any arbitrary interval remain uniformly bounded, i.e., 

i L (wj+(x, t) - Wj_(x, t))i ::; C, (2.19) 
xE(a,b) 

where the constant C > 0 is independent of h, t and the interval (a, b). 
The function Wj will be made of a superposition of elementary jumps propagating 

along discontinuity lines or characteristic lines of the matrix A. It will be convenient 
to refer to some of these jumps as particles and anti-particles, generalizing here a 
terminology introduced in Section V-2. 

Decompose the (x, t)-plane in regions where the characteristic component Ctj keeps 
a constant sign. For simplicity in the presentation we may assume that Ctj never 
vanishes. Call n+ a region in which Ctj > O. (The arguments are completely similar 
in a region where Ctj < 0.) Observe that no constraint is imposed by (2.16) along 
the boundary of n+. (As a matter of fact, the boundary is made of fronts which 
either are Lax or rarefaction-shock fronts of the j-family or else have a non-dominant 
component (3j_.) The weight Wj is made of finitely many particles and anti-particles, 
with the possibility that several of them occupy the same location. However, within 
n+ a single particle will travel together with each i-discontinuity for i =1= j and with 
each undercompressive i-discontinuity. That is, in n+ we require that for each i­
discontinuity with i =1= j 

{ K E:(x, t) if j < i, 
wj+(x, t) - Wj_(x, t) = () 

-KE:x,t ifj>i, 

and for each undercompressive i-discontinuity: 

{ -KE:(x,t) 
wj+(x, t) - Wj_(x, t) = 

K E:(x, t) 
for a jump in the solution u, 
for a jump in the solution v. 

(2.20) 

(2.21 ) 

To construct the weight we proceed in the following way. First of all, we note 
that the weight Wj can be defined locally near the initial time t = 0+ before the 
first interaction time: we can guarantee that (2.20)-(2.21) hold at each discontinuity 
satisfying Ctj_ Ctj+ > 0: each propagating discontinuity carries a particle with mass 
±K 10 determined by (2.20)-(2.21) while, in order to compensate for it, an anti-particle 
with opposite strength =fK 10 is introduced and propagate together with discontinuities 
satisfying Ctj_ Ctj+ > O. (Alternatively, Wj could be taken to be continuous at the 
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latter.) We now describe the generation, dynamics, and cancellation of particles and 
anti-particles within n+. 

When a wave with strength (in modulus) e enters the region n+ it generates a 
particle with strength ±K e determined by (2.20)-(2.21) and propagating together 
with the entering wave and, in order to compensate for the change, it also generates 
an anti-particle with opposite strength ~K e propagating along the boundary of n+. 

When a wave exits the region n+ its associated particle remains stuck along with 
the boundary of n+. 

At this stage we have associated one particle and one anti-particle to each wave 
in n+. Then, as a given wave passes through regions where (Xj remains constant, it 
creates an oscillating train of particles and anti-particles. Clearly, the property (2.19) 
holds with a constant C of the order of the sum of the total variations of the solutions 
u and v. 

But, particles and anti-particles can also be generated by cancellation and inter­
action effects. When two waves with strength e and el (associated with the solution u, 
say) meet within a region n+ their strengths are modified in agreement with Glimm's 
interaction estimates. Basically, the change in strength is controlled by the amount of 
cancellation and interaction ()u. For the interaction of a shock and rarefaction wave 
of the same family we have ()U = Ie - ell + eel, while, in all other cases, ()U = eel. 
New waves with strengths eel may also arise from the interaction. 

To carry away the extra mass of order ()U and for each of the outgoing waves we 
introduce particles leaving from the point of interaction and propagating with the local 
j-characteristic speed. The oscillating train of particles and anti-particles associated 
with each of the incoming fronts is also decomposed so that, after the interaction time, 
we still have waves with attached particles and associated anti-particles. Additionally, 
new particles are attached to the new waves and new anti-particles propagating with 
the local j-characteristic speed are introduced. 

More precisely, in the above construction the local j-characteristic speed is used 
whenever their is no j-front or else the front is undercompressive; otherwise the parti­
cle or anti-particle under consideration propagates with the j-front. We use here the 
fact that the constraint in (2.21) concerns undercompressive fronts only. 

Finally, we impose that a particle and its associated anti-particle cancel out when­
ever they come to occupy the same location: Their strengths add up to 0 and they 
are no longer accounted for. 

In conclusion, to each wave with strength e within a region n+ we have associ­
ated an oscillating train of particles and anti-particles with mass ±K e, propagating 
along lines of discontinuity or characteristic lines of the matrix A. Additionally, we 
have oscillating trains of particles and anti-particles associated with interaction and 
cancellation measures ()U and ()v. 

In turn, the estimate (2.19) holds: for every interval (a, b) we have 

! L (Wj+(x, t)-Wj_(x, t))! ~ C1 (TV(uh(t))+TV(vh(t))+ L()U(x',t')+()V(X',t' )), 
xE(a,b) t'''5.t 

where the sums are over interaction points (Xl, t l ). Since the total amount of cancel­
lation and interaction is controlled by the initial total variation, we arrive at 

! L (wj+(x, t) - Wj_(x, t))! ~ C2 (TV(uh(O)) + TV(Vh(O))), 
xE(a,b) 
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which yields the uniform bounds (1.15), provided the total variation of the solutions 
is sufficiently small. This completes the proof of Theorem 2.3. D 

REMARK 2.4. For certain systems the L1 continuous dependence estimate (2.7) re­
mains valid even for solutions with "large" amplitude. Consider for instance the 
system of nonlinear elasticity 

OtV - oxO'(w) = 0, 

OtW - oxv = 0, 
(2.22) 

where the stress-strain function O'(w) is assumed to be increasing and convex so that 
the system (2.22) is hyperbolic and genuinely nonlinear. It is not difficult to check 
that the fundamental properties discovered in Theorems 2.1 and 2.2 are valid for 
solutions of (2.22) having arbitrary large amplitude. D 

3. Sharp version of the continuous dependence estimate 

In this section, we derive a sharp version of the L1 continuous dependence property 
of entropy solutions established in Theorem 2.3. This version keeps track of the 
dissipation terms which account for the "strict decrease" of the L1 distance between 
two solutions. Throughout this section, the flux-function is defined on U := 8(6) and 
admits genuinely nonlinear fields. 

To state this result we introduce some concept of "wave measures" associated 
with a function of bounded variation u : m -+ U. Denote by J(u) the set of jump 

du 
points of u. The vector-valued measure J..L( u) := dx can be decomposed as 

J..L(u) = J..La(u) + J..LC(u) , 

where J..La(u) and J..LC(u) are the corresponding atomic and continuous parts, respec­
tively. For i = 1, ... ,N the i-wave measures associated with u are, by definition, the 
signed measures J..Li ( u) satisfying 

J..Li( u) = J..L't( u) + J..LH u), (3.1a) 

where on one hand the continuous part J..L't ( u) is characterized by 

1m cpdJ..LHu) = 1m cpli(u), dJ..LC(u) (3.1b) 

for every continuous function cp with compact support, and on the other hand the 
atomic part J..L't ( u) is concentrated on J ( u) and is characterized by 

(3.1c) 

Ii (u_, u+) being the strength of the i-wave within the Riemann solution associated 
with the left and right-data u± = u(xo±). It is easily checked that the functional 

N 

V(u;x):= L:1J..Li(U) I ((-oo,x)), x Em, 
i=l 

is "equivalent" to the total variation of u 

TV':oo(u) = 1 1 ddu I, x Em, 
(-oo,x) x 
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in the sense that 

c_ TV':oo(u) ~ V(u; x) ~ C+ TV':oo(u), x E JR, 

where the positive constants C± depend on the flux-function f and the parameter 8, 
only. 

We also consider the measure of potential interaction associated with the function 
u = u( x) and defined by 

q(u)(I):= L (1Ilj(u)I®llli(u)I)({(X,y)EIXI/x<y}) 
1'5.i<j'5.N 

N 

+ L (Ili ( u) ® I Ili (u) I) ( { (x, y) E I x I / x i= y } ) 
i=1 

(3.2) 

for every interval I c JR, where we have called Il; (u) the positive and the negative 
parts of the wave measure, respectively: 

lli(U) =: Ilt(U) - Ili(u), 1l;(U)?:: 0, 

Illi(U)1 := Ilt(u) + Ili(u), 

Finally, the modified wave measures are by definition 

where c > 0 is a (sufficiently) small constant. Observe that jli are indeed bounded 
measures and satisfy 

N N 

lJ-ti(U) I + (1 - c6) L lJ-tj(u)1 ::; Mi(U) ::; lJ-ti(U) I + (1 + c6) L lJ-tj(u)l, 
j=1 j=1 

where 8:= V(u;+oo). Like for the lli'S, they determine a functional which is com­
pletely "equivalent" to the total variation of u. 

The advantage of the measures jli (u) is their lower semi-continuity, as is the total 
variation functional. (See the bibliographical notes for a reference.) 

LEMMA 3.1. (Lower semi-continuity of the modified wave measures.) The functionals 
u 1--+ jli( u) (i = 1, ... ,N) are lower semi-continuous with respect to the L1 conver­
gence, that is, if uh : JR --+ U is a sequence of functions with uniformly bounded vari­
ation converging almost everywhere to a function (of bounded variation) u : JR --+ U, 
then for every interval I c JR 

jli(U)(I) ~ liminf jli(Uh)(I). 
h-O 

D 

We now define some nonconservative products associated with two given functions 
of bounded variation, u,v : JR --+ U. Recall that A( u, v) denotes the averaging matrix 
defined in (1.3). We set 

Wij(U, v) := Ilj(u) . (A(u, v) - Ai(U)) (v - u)l. 

For i, j = 1, ... ,N the dissipation measures Vij (u, v) are defined as follows: 

Vij( u, v) = v1j( u, v) + vfj( u, v), (3.3a) 
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where the atomic and continuous parts are uniquely characterized by the following 
two conditions (with an obvious notation): 

(3.3b) 

and 
(3.3c) 

for x E J(u), where u_ := u(x-), etc, and Xi(u_,u+) denotes the (smallest for 
definiteness) wave speed of the i-wave (fan) in the Riemann solution corresponding 
to the left and right-data u±. Finally, the (a priori formal) nonconservative product 
Wij (u, v) dlki ( u) is now well-defined as 

Wij(u,v)djii(u):= lIij(U,V). 

In the following we use the above definition for functions u and v depending on 
time also, and so we use the obvious notation Wij (u, v, t), etc. 

THEOREM 3.2. (Sharp L1 continuous dependence.) Consider the strictly hyperbolic 
system of conservation laws (1.1) where the flux-function f : IR -t U = B(c5) has 
genuinely nonlinear fields and 15 is sufficiently small. Then, there exist constants 
c > 0 and C ~ 1 such that for any two entropy solutions u,v : IR x IR+ -t U of suf­
ficiently small total variation, that is, TV (u), TV (v) < c, the sharp L1 continuous 
dependence estimate 

IIv(t) - u(t)II£1(m) + lot (D2(S) + D3(S)) ds :::; C IIv(O) - u(O)II£1(m) (3.4) 

holds for all t ~ 0, where 

N 

D2(S) := L L (Wii(U-(X), v_(x), s) + Wii(V-(X), u_(x), s)), 
i=1 (x,s)E.ci(.A) 

N 

D3(S) := 1m i~1 (Wij(U, v, s) djii(u, s) + Wij(V, u, s) djii(v, s)). 

Here, Ci(A) denotes the set of all Lax i-discontinuities associated with the matrix 
A(u,v), in other words, points (x,t) where the shock speed>. satisfies 

Xi(u_,v_) ~ >. ~ Xi(u+,v+). 

Let us point out the following important features of the sharp estimate (3.4): 
• Each jump in u or in v contribute to the strict decrease of the L1 distance. 
• The contribution of each jump is cubic in nature. 
• Furthermore, Lax discontinuities provides a stronger, quadratic decay. 

The rest of this section is devoted to proving Theorem 3.2. Denote by uh wave­
front tracking approximations with uniformly bounded total variation and converging 
to some entropy solution u : IR x IR+ -t U. The local uniform convergence of the 
sequence uh was discussed in Section VII-4. Recall that for all but countably many 
times t, the functions x f--> uh (x) := uh (x, t) satisfy: 

• If Xo is a point of continuity of u, then for every c: > 0 there exists rJ > 0 such 
that for all sufficiently small h 

luh(x) - u(xo)1 < c: for each x E (xo - rJ, Xo + rJ). (3.5) 
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• If Xo is a point of jump discontinuity of u, then there exists a sequence xa E IR 
converging to Xo such that: for every E > 0 there exists TJ > 0 such that for all 
sufficiently small h 

luh(x) - u-(xo)1 < E 

luh(x) - u+(xo)1 < E 

for each x E (x~ - TJ,x~), 

for each x E (x~, x~ + TJ). 
(3.6) 

To each approximate solution uh we then associate the (approximate) i-wave 
measures ft~,h(t). By a standard compactness theorem, there exist some limiting 
measures ft~,OO(t) and jl~,OO(t) such that, for all but count ably many times t, 

(3.7a) 

and 
(3.7b) 

in the weak sense of bounded measures. Actually the convergence in (3.7a) holds in 
a stronger sense. We state with proof (see the bibliographical notes) the following 
important property of wave measures: 

THEOREM 3.3. (Convergence of the i-wave measures.) For i = 1, ... ,N and Jor all 
but countably many times t, the atomic parts of the measures ft~,OO(t) and fti(U, t) 
coincide. In other words, we have 

(3.8) 

at each jump point Xo oj the Junction x f-t u(x, t), with u± = u(xo±, t). 

Two main observations needed in the proof of Theorem 3.2 are summarized in 
the following preparatory lemmas: 

LEMMA 3.4. (Convergence of dissipation measures.) Let u h and vh be wave Jront 
tracking approximations associated with two entropy solutions u and v respectively. 
Then Jor each i, j = 1, ... ,N and Jor all but countably many times t, we have 

Co r Wij(u,v,t)djl~,OO(t)::::; lim r Wij(uh,vh,t)djl~,h(t) (3.9) 
~ h_O~ 

Jor some constants Co > O. 

LEMMA 3.5. (Convergence of dissipation measures on Lax shocks.) Consider the sets 

.L:i(Ah) and .L:i(A) oj all Lax shock discontinuities in the averaging matrices Ah and 
A associated with the approximate and exact solutions, respectively. Then, Jor each 
i = 1, ... ,N and Jor all but countably many times t, we have 

lim 
h_O 

(X,t)E.Li(Ah ) (X,t)E.Li(A) 

Furthermore, the following estimate is a direct consequence of the definition (3.3): 

LEMMA 3.6. For all Junctions oj bounded variation u, it, v, V, w defined on IR we have 

J: Wij(U,v) dfti(W) - J: Wij(it,v)dfti(w) 

::::; C (Ilit - uIILOO(a,{3) + Ilv - vIILOO(a,{3)) TV[a,{3] (w), 
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where the constant C > 0 only depends on the range of the functions under consider­
ation. 

PROOF OF LEMMA 3.4. Throughout the proof, a time t > 0 is fixed at which the 
results (3.5) and (3.6) hold. Given E > 0 we select finitely many jumps in u and v, 
located at Yl, Y2, ... Yn, so that 

L lu+(x) - u_(x)1 + Iv+(x) - v_(x)1 < E. 

x7"Yk 
k=1,2, ... ,n 

(3.10) 

To each point Yk we associate the corresponding point y~ in uh or in vh . To simplify 
the notation we restrict our attention to the case 

Yk < y~ < Yk+l < Y~+1 for all k, 

the other cases being entirely similar. By the local uniform convergence property, for 
h sufficiently small we have 

n 

(a) L L lui(Y~) - u±(Yk)1 + Ivi(Y~) - v±(Yk)1 ~ E, 

k=l ± 
n (3.11) 

(b) L luh(x) - u(Yk+)1 + Ivh(x) - v(Yk+)1 ~ E, x E (Yk, y~), 
k=l 

for the "large" jumps and, in regions of "approximate continuity" , 

(3.12) 

Based on (3.10) it is not difficult to construct some functions Ue; and Ve; that are 
continuous everywhere except possibly at the points Yk and such that the following 
conditions hold: 

(3.13) 

as well a as completely similar statement with u replaced with v, where C is indepen­
dent of E. 

For a constant Co to be determined, consider the decomposition 
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that is, 

n(h)=t( r Wij(uh,vh)dji~,h-Co r Wij(u,v)dji~'oo) 
k=1 J{y~} J{Yk} 

+ t(l Wij(uh,vh)dji~,h-co 1 Wij(u,v)dji~'OO) 
k=O (Y~ 'Y~+l) (Yk ,Yk+ll 

(3.14) 

Here y8 = Yo = -00 and Y~+1 = Yn+1 = +00. 

In view of Theorem 3.3 we have 

Passing to the limit in the inequality J..l~,h :s ji~,h we find J..l~,oo :s ji~'oo and therefore 

with Uk± = U± (Yk). On the other hand, by definition, 

Using that uh is a piecewise constant function, we have 

with u~± = u~Jy~). Therefore we arrive at the following key inequality 

n 

0.1 (h) :s (1 + co) L wij(uL, v~_) l'Yi(uL, u~+)I- Co Wij( Uk-, Vk-) l'Yi( Uk-, uk+)I· 
k=1 

Thus, choosing Co large enough so that Co 2: (1 + co) we find 

with 

n 

fh(h) := L wij(uL, vZ-) l'Yi(uL, u~+)I- Wij(Uk-, Vk-) l'Yi(Uk-, Uk+)I· 
k=1 

But, since the functions 'Yi are locally Lipschitz continuous 

n 

\n1(h)\ :s C L L lu~± - uk±1 + Iv~± - vk±1 :s C E: (3.15) 
k=1 ± 

by the property (3.11a), provided h is sufficiently small. So 

limsupn1(h) :s o. 
h-+O 
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Using that Co 2 1 and relying on the inequalities Yk < y~ < Yk+l < Y~+1 for all 
k, we consider the following decomposition: 

02(h)::; n2(h):= t 1 Wij(uh,vh)dfl~,h -Wij(u,v)dfl~'OO 
k=O (Y~ ,Yk+il 

-t 1 Wij(u,v)dfl~'OO + t 1 Wij(u\vh)df.L~,h 
k=O (Yk,Y~l k=O [Yk+l'Y~+l) 

=:02,1(h) + 02,2(h) + 02,3(h). 
(3.16) 

We will show that n2 (h) -+ O. 
Consider first O2,2 (h) and O2,3 (h) which are somewhat simpler to handle: 

02,2(h) = t 1 h ( - Wij( u(y), v(y)) + Wij( U(Yk+), V(Yk+))) dfl~'OO(y) 
k=O (Yk,ykl 

-t 1 Wij(U(Yk+),V(Yk+))dfl~'OO(y). 
k=O (Yk,Y~l 

Therefore, with Lemma 3.6 we obtain 

Since Y~ -+ Yk, we have for h sufficiently small 

(3.17) 

A similar argument for 02,3(h), but introducing now the left-hand values U-(Yk) and 
V-(Yk) and relying on (3.11b), shows that 

(3.18) 

Next consider the decomposition 

( h h) d-u,h () d-u,oo Wij U ,V f.Li - Wij U, V f.Li 

= (Wij (U\ vh) dfl~,h - Wij (u, V) dfl~,h) + (Wij (u, V) dfli( uh) - Wij (Ue;, v,:) dfl~'h) 

+ (Wij (Ue;, Ve;) dfl~,h - Wij (Ue;, Ve;) dfl~'OO) + (Wi j (Ue;, Ve;) dfl~'oo - Wij (u, V) dfl~'oo ) . 

With obvious notation, this yields a decomposition of the form 

(3.19) 
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Using Lemma 3.6 and the consequence (3.llb) of the local convergence property, we 
obtain 

n (3.20) 

~ c' L ( sup Iuh - ul + sup Ivh - vi) ~ c' E. 
k=O (Y~ ,Yk+il (Y~ ,Yk+il 

Next using Lemma 3.6 and (3.13) we have 

IM2(h)1 ~ C t 1 djl~,h ( sup lu - uel + sup Iv - Vel) 
k=O (Y~ ,Yk+Il (Y~ ,Yk+t) (Y~ ,Yk+l) (3.21 ) 

~ C' E. 

Dealing with M4(h) is similar: 

IM4(h)1 ~ C t 1 djl~'OO ( sup lu - uel + sup Iv - Vel) 
k=O (Y~ ,Yk+t) (Y~ ,Yk+1) (Y~ ,Yk+1) (3.22) 

~CE. 

Finally to treat M3 (h) we observe that, since Ue and Ve are continuous functions on 
each interval (yZ, Yk+l) and since jl~,h is a sequence of bounded measures converging 
weakly toward jl~'oo, we have for all h sufficiently small 

Combining (3.19)-(3.23) we get 

In2,1(h)! ~ CEo 

Combining (3.17), (3.18), and (3.24) we obtain 

In2 (h)1 ~ C E 

and thus, with (3.14)-(3.15), 

n( h) ~ C E for all h sufficiently small. 

Since E is arbitrary, this completes the proof of Lemma 3.4. 

(3.23) 

(3.24) 

o 

PROOF OF LEMMA 3.5. Fixing some i = 1, ... ,N and excluding count ably many 
times t only, we want to show that 

lim ~ Wii(U~(X),v~(x)) = ~ Wii(U-(X),v_(x)). (3.25) 
h-->O L.J L.J 

xE.c i (Ah) xE.c i (A) 

Let Yk for k = 1,2, ... be the jump points in U or V. Denote by YZ the correspond­
ing jump points in uh or vh . Extracting a subsequence if necessary we can always 

assume that for each k either YZ E 'cic;t) for all h, or else yJ ~ 'ci(Ah) for all h. 
Then we consider the following three sets: Denote by J1 the set of indices k such that 

yZ E 'ci(Ah) and Yk E 'ci(A). Let Jz the set of indices k such that YZ ~ 'ci(Ah) and 

Yk E 'ci(A). Finally h is the set of indices k such that Y~ E 'ci(Ah) and Yk ~ 'ci(A). 
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First of all the local convergence property (3.6) implies 

(Indeed, given c > 0, choose finitely many jump points as in (3.10) and impose (3.11a) 
with c replaced with c IU+(Yk) - u-(Yk)I·) 

On the other hand for indices in hUh we claim that 

L Wii(U~(Y~),v~(y~)) ----t 0, (3.27) 
kEhuh 

while 
(3.28) 

kEhuh 

Indeed, for each k E J2 , Yk is a Lax discontinuity but y~ is not. Extracting a subse­
quence if necessary, the Lax inequalities are violated on the left or on the right side 
of y~ for all h. Assuming that it is the case on the left side, we have 

while 
-( h h) -( h h) Ai U-(Yk),V-(Yk) - Ai U-(Yk),U+(Yk) ~ 0 

for all h. We have denoted here by "Xi (u, v) the i-eigenvalue of the matrix A( u, v). 
But the latter converges toward the former by the local uniform convergence, which 
proves that 

"Xi (u_ (Yk), v_ (Yk)) - "Xi (u_ (Yk), U+(Yk)) = 0 

and, by the genuine nonlinearity condition, v_ (Yk) = U+ (Yk). In this case, we finally 
get 

D 

PROOF OF THEOREM 3.2. From the analysis in Sections 1 and 2 (Theorems 1.5 and 
2.3) it follows immediately that for all t ;::: 0 

Ilv(t) - u(t)II£1(m) + r lim sup L 10 h--+O -h 
(x,s)E.7(A ) 

I (A~(x, s) - "Xh(x, s)) (v~(x, s) - u~(x, s)) Ids 

~ c Ilv(O) - u(O) II £1 (m), 

since the contributions from the rarefaction fronts and artificial waves vanish as h --+ O. 
-h -h 

Here li denote the left-eigenvectors of the matrix A . 
Using that 

IA~(x, s) - A~(x, s)1 ;::: c Iu~(x, s) - u~(x, s)1 
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for discontinuities in uh and 

I (A~(x, s) - Xh(x, s)) (v~(x, s) - u~(x, s)) I 
N 

2 c ~]l~_(x, s) . (A~(x, s) - Xh(x, s)) (v~(x, s) - u~(x, s)) I, 
j=1 

we arrive at 

Ilv(t) - U(t)II£1(IR) 
t N 

+ { ( L lim sup (wij(uh,vh,s)dji,~,h(s) +wij(vh,uh,s)dji,~,h(s)) ds 
Jo JIR ij=1 h-.O 

+ t t lim sup L (Wii(U~(X), v~(x), s) + Wii(V~(X), u~(x), s)) ds Jo . h-.O 
2=1 (X,S)ECi(Xh) 

:::; c Ilv(O) - u(O) 11£1 (IR)· 

Applying Lemmas 3.4 and 3.5 we deduce from (3.29) that 

Ilv(t) - u(t) II £1 (lR) 

t N 

+ 10 Li~ (wij(u,v,s)dji,~'OO(s)+wij(v,u,s)dji,~'OO(s))ds 
t N 

+ 10 L L _ (Wii(U-(X),v_(x),s) +Wii(V_(X),u_(x),s)) ds 
2=1 (X,S)ECi(A) 

:::; c' Ilv(O) - u(O)II£l(lR). 

(3.29) 

(3.30) 

To conclude we use Lemma 3.1 for instance for u: by lower semi-continuity we 
have 

(3.31) 
in the sense of measures, for all but count ably many times s and for some constant 
c> O. Finally, it is clear from the definition of nonconservative products that (3.31) 
implies the same inequality on the nonconservative products. This completes the 
proof of Theorem 3.2. 0 

4. Generalizations 

Nonclassical entropy solutions determined in Chapter VIII should satisfy an analogue 
of the stability results derived in Sections 2 and 3. In particular, we conjecture that: 

THEOREM 4.1. (Ll continuous dependence of nonclassical solutions.) Under the no­
tations and assumptions in Theorem VIII-3.1, any two nonclassical entropy solutions 
u = u(x, t) and v = v(x, t), generated by wave front tracking and based on a prescribed 
kinetic relation, satisfy the Ll continuous dependence property 

Ilu(t) - v(t)II£l(lR) :::; C* Ilu(O) - v(O)II£1(lR), t 2 o. (4.1) 

where the constant C* > 0 depends on the kinetic function and the LOO norm and 
total variation of the solutions under consideration. 



CHAPTER X 

UNIQUENESS OF ENTROPY SOLUTIONS 

In this chapter, we establish a general uniqueness theorem for nonlinear hyperbolic 
systems. Solutions are sought in the space of functions with bounded variation, 
slightly restricted by the so-called tame variation condition (Definition 1.1). The 
results of existence and continuous dependence established in previous chapters cov­
ered solutions obtained as limits of piecewise constant approximate solutions with 
uniformly bounded total variation (in Chapters IV and V for scalar conservation laws 
and in Chapters VII to IX for systems). Our purpose now is to cover general functions 
with bounded variation and to establish a general uniqueness theory for hyperbolic 
systems of conservation laws. 

It is convenient to introduce a very general notion, the (<I>, 'If;) - admissible entropy 
solutions, based on prescribed sets of admissible discontinuities <I> and admissible 
speeds 'If; . Roughly speaking, we supplement the hyperbolic system with the "dy­
namics" of elementary propagating discontinuities. The definition encompasses not 
only classical and nonclassical solutions of conservative systems but also solutions 
of hyperbolic systems that need not be in conservative form. Under certain natural 
assumptions on the prescribed sets <I> and 'If; we prove in Theorem 3.1 that the associ­
ated Cauchy problem admits one solution depending L1 continuously upon its initial 
data, at most. In turn, our framework yields the uniqueness for the Cauchy problem 
in each situation when the existence of one solution depending L1 continuously upon 
its initial data is also known; see Theorems 4.1 and 4.3. 

1. Admissible entropy solutions 

Consider a nonlinear hyperbolic system of partial differential equations in non­
conservative form 

Otu+A(u)Oxu=O, u=u(X,t)EU, XEIR,t>O, (1.1) 

where the N x N matrix A(u) depends smoothly upon u and need not be the Jacobian 
matrix of some vector-valued mapping. All values u under considerat ion belong to an 
open and bounded subset U C IRN ; interestingly enough, this set need not be small 
nor connected. For each u in U, the matrix A( u) is assumed to admit N real (but 
not necessarily distinct) eigenvalues 

and basis ofleft- and right-eigenvectors lj(u), rj(u), 1 ::; j ::; N, normalized such that 
Ii (u) r j (u) = 8ij . It is also assumed that there exists a bound XX> for the wave speeds: 

sup I'\j(u) I < ,\00. 
l~j~N 

uEU 

P. G. LeFloch 
© Birkhauser Verlag 2002

Hyperbolic Systems of Conservation Laws
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We are interested in the Cauchy problem associated with (1.1), in a class of 
functions with bounded variation. By definition, a space-like segment is a set of 
the form 

f:= {(X,t) / x E [Xl,X2], t = ,(x) := ax +,B} 

for some Xl < X2 and a,,B E IR with lal < 1/)..00. In particular, an horizontal 
segment is a set of the form 

r:= {(x,to)/x E [Yl,Y2l} 
for some YI < Y2 and some fixed time to· 

YI TV(u; t) 

Figure X-I: The tame variation condition. 

Y2 

By definition, the segment f lies inside the domain of determinacy of r if 
we have 

By definition, the total variation along the segment f of some function u = u(x, t) 
is the total variation of its restriction to the segment f and is denoted by TV ( u; r). 

The class of functions under consideration in this chapter is defined as follows. 
Our condition (1.2) below requires that the total variation does not grow too wildly 
as time increases. From now on, some positive constant K, is fixed. (See Figure X-I.) 

DEFINITION 1.1. (Notion of tame variation.) A map u : IR x [0,00) --t U is said to be 
a function with tame variation if u = u(x, t) is a bounded, Lebesgue measurable 
function and for every space-like segment f the restriction of u to the segment r is a 
function with bounded variation satisfying 

TV(u;f) ~ K,TV(u;r), (1.2) 

provided the segment f is inside the domain of determinacy of the horizontal segment 
r. D 

In particular, any function with tame variation satisfies 

TV(u(t)) ~ K,TV(u(O)) < 00, t E IR+. (1.3) 

For instance (Theorem 4.1 below), solutions of (1.1) obtained as limits of wave front 
tracking approximations are functions with tame variation. 

We recall here some standard properties of functions with bounded variation. 
(Additional results can be found in the appendix.) If a function u = u(x, t) has 
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tame variation, it has also bounded variation in both variables (x, t) on each set 
IR x (0, T), that is, the distributional derivatives OtU and oxu are Radon measures in 
IR x (0, T). For such a function there exists a decomposition of the form 

IR x IR+ = C ( u) u .J ( u) U I ( u), 

where C(u) is the set of points of Ll approximate continuity, .J(u) is the set of 
points of approximate jump, and I(u) is the set of interaction points of the 
function u. The latter is negligible in the sense that HI (I(u)) = 0, where HI denotes 
the one-dimensional Hausdorff measure in the plane. At each point (xo, to) E .J ( u) 
there exist left- and right-approximate limits u± (xo, to) and a propagation 
speed AU(XO, to) such that, setting 

_ { u_(xo, to), x < Xo + AU(XO, to) (t - to), 
u(x, t) := 

u+(xo, to), x> Xo + AU(XO, to) (t - to), 
(1.4) 

we have 

1 l to+h l xo+h 
lim h2 lu(x, t) - u(x, t)1 dxdt = O. 
h---.O to-h xo-h 

(1.5) 

The right-continuous representative u+ of u is defined HI-almost everywhere as 

(x, t) E C(u), 
(x, t) E .J(u), 

and the nonconservative product A( u+) oxu is the radon measure such that, for every 
Borel set Be IR x (0, T), 

J rr A(U+)Oxu=Jrr A(u)oxu+ r A(u+)(u+-u_)dH1 • (1.6) 
} B } BnC(u) } BnJ(u) 

To define the notion of entropy solutions for (1.1) we prescribe a family of ad­
missible discontinuities 

if>cUxU 

and a family of admissible speeds 

'IjJ: if> ~ (_AOO,AOO ) 

satisfying the following consistency property for all pairs (u_, u+) E if>: 

where the function rJ = rJ(E:) 20 is increasing and satisfies rJ(E:) ~ 0 as E: ~ O. 

DEFINITION 1.2. (General concept of entropy solution.) Let if> c U x U be a set of 
admissible jumps and 'IjJ : if> ~ (-A 00 , ). 00) be a family of admissible speeds satisfying 
(1.7). A function u with tame variation is called a (if>,'IjJ)-admissible entropy 
solution of (1.1) or, in short, an entropy solution if the following two conditions 
hold: 

• The restriction of the measure OtU + A( u+) oxu to the set of points of approx­
imate continuity of u vanishes identically, that is, 

J L OtU + A(u+) oxu = 0 for every Borel set Be C(u). (1.8) 
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• At each point of approximate jump (x, t) E 3(u) the limits u±(x, t) and the 
speed AU ( x, t) satisfy 

(u_(x,t),u+(x,t)) E <1>, AU(X,t) = 'lj!(u_(x,t),u+(x,t)). (1.9) 

o 
From (1.6), (1.8), and (1.9) we deduce that if u is an entropy solution then, for 

every Borel set B, 

J Ie (8t u + A(u+) 8x u) 

= J" [ (8tu + A(u) 8x u) + r (_AU + A(u+)) (u+ - u_) d1t1 (1.10) 
iBnC(u) iBn:r(u) 

= [ (A(u+) -'lj!(u_,u+)) (u+ -u_)d1t1. 
iBn:r(u) 

REMARK 1.3. 
• Roughly speaking, (1.7) guarantees that, as the wave strength lu+ -u_1 van­

ishes, the propagating discontinuity connecting u_ to u+ approaches a triv­
ial solution of the linear hyperbolic system 8t u + A(u+) 8x u = 0 (specifically, 
'lj!(u_,u+) = Ai(U+) and u_ = u+ + o:ri(u+) for some integer i and real 0:). 
Examples of admissible jumps and speeds are discussed below (Section 4). 

• The right-continuous representative is chosen for definiteness only. Choosing 
u_ in (1.8) leads to a completely equivalent definition of solution. 

o 

Some important consequences of the tame variation condition are now derived. 

LEMMA 1.4. Let u : IR x IR+ ---+ U be a function with tame variation. 
• Then, at every point (xo,to) E 3(u), the L1 approximate traces u_(xo,to) 

and u+(xo, to) of u considered as a function with bounded variation in two 
variables coincide with the traces of the one-variable function x I--t u(x, to) at 
the point Xo. 

• Moreover, u is L1 Lipschitz continuous in time, i.e., 

Ilu(t2) - u(t1)11£1(lli) ~ M It2 - t11, tt, t2 E IR+, 

where the Lipschitz constant is M := 2N'o ~(~ + l)TV(u(O)). 

PROOF. Given some point (xo, to) E 3(u) and c > 0, in view of (1.5) we have 

1 l to +
h l xo+

h 
h2 lu(x, t) - u(x, t) I dxdt ~ c 

to-h xo-h 

for all sufficiently small h and, in particular, 

1 lto+hmin(1,1/(2>.OO)) l xo ->.OO(t-tO) 

2" lu(x, t) - u_ (xo, to) I dxdt 
h to xo-h+>.oo(t-to) 

1 lto+hmin(1,1/(2>.OO)) l xo+ h->.OO(t-tO) 

+ 2" lu(x, t) - u+(xo, to)1 dxdt ~ c. 
h to xo+>.oo(t-to) 

(1.11) 

(1.12) 
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On the other hand, denoting by iL and u+ the traces of the function x 1--+ u(x, to) at 
the point xo, we can always choose h sufficiently small so that 

E 
TV(u(to); (xo - h, h)) + TV(u(to); (xo,xo + h)) :; -. t;, 

(See Figure X-2.) 

--------------------~--------~-----------tO+h 

Xo - h 
----'-----------to 

xo+h 

Figure X-2 : The two notions of traces coincide. 

With the tame variation condition (1.2) we deduce that 

lu(x, t) - u-I :; E, t E (to, to + h), 
x E (xo - h + )..oo(t - to), Xo - )..oo(t - to)), 

lu(x, t) - u+1 :; E, t E (to, to + h), 
x E (xo + )..oo(t - to),xo + h - )..oo(t - to)). 

Comparing with this pointwise estimate with the integral estimate (1.12), since E is 
arbitrary we conclude that 

u± = u±(xo, to). 
We now check that the map t 1--+ u(t) is Lipschitz continuous. Consider any 

interval [h, t2J and set T := (t2 - tl) > o. At every point x E IR we can apply (1.2) 
by taking r to be the segment with endpoints (tl' x - T ).00), (h, x + T ).00), and r to 
be the segment with endpoints (t2' x), (tl' X + T ).00). This yields 

IU(t2' x) - U(tl' x)1 :; IU(t2' x) - U(tl' X + T )..00)1 + IU(tl' x + T ).00) - U(tl' x)1 
:; (t;, + 1) TV(U(tl); [x - T).oo, X + T ).00]) 
= G(x + T ).00) - G(x - T ).00), 

where G(x) := TV( u(tt); (-00, xl). After integration one finds i: IU(t2' x) - U(tl' x) I dx :; 2T).00 (t;, + 1) TV(u(td) 

:; 2(t2 - td).oo t;,(t;, + 1) TV (u(o)) , 

where we also used (1.3). This completes the proof of Lemma 1.4. o 
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2. Tangency property 

Our aim is proving that the Cauchy problem associated with (1.1) has at most one 
solution depending continuously on its initial data. In the present section we derive 
the following key estimate: 

THEOREM 2.1. (Tangency property.) Consider the hyperbolic system (1.1) together 
with prescribed admissible jumps ~ and speeds 'IjJ satisfying the property (1.7). Let u 
and v be two entropy solutions with tame variation. Denote by i c IR+ the projection 
on the t-axis of the set I(u) U I(v) of all interaction points of u or v. Then, at each 
time to ~ i such that 

u(to) = v(to) 
we have the tangency property 

lim -l-llu(t) - v(t)II£1(IR) = o. 
'~'o t - to 
'>'0 

REMARK 2.2 . 

(2.1) 

• Since 1i1(I(u)) = 1i1(I(v)) = 0 the set i is of Lebesgue measure zero. Since 
these points of wave interaction in u or in v are excluded in Theorem 2.1, 
the existence and the uniqueness of the solution of the associated Riemann 
problem is completely irrelevant to the derivation of (2.1) . 

• In view of (1.11), the weaker estimate 

Ilu(t) - v(t)II£1(IR) 

:::; Ilu(t) - u(to) II £1 (IR) + Ilu(to) - v(to)II£1(IR) + Ilv(t) - v(to)II£1(IR) 

:::; C (t - to) 

is valid for every time t :2: to at which u(to) = v(to). 
o 

The proof of Theorem 2.1 will rely on two technical observations. Lemma 2.3 
below provides us with a control of the space averages of a function by its space and 
time averages. Lemma 2.4 provides us with a control of the £1 norm of a function 
from its integrals on arbitrary intervals. The first observation will be used near large 
discontinuities of the solutions (Step 1 below) while the second one will be useful in 
regions where the solutions have small oscillations (Step 3). 

LEMMA 2.3. Let w = w(~, T) be a bounded and measurable function satisfying the £1 
Lipschitz continuity property 

for some constant K > O. Then, for each h > 0 we have 

whenever the right-hand side is less than K. 
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PROOF. Given h, h' > ° we can write 

[: Iw(~, h) - w(~, h')1 d~ ::; K Ih - h'l, 

thus 

~ [hh Iw(C h)1 d~ ::; ~ J:h Iw(~, h')1 d~ + ~ Ih - h'l· 

For each € E (0,1) integrate the above inequality on the interval h' E (h - €h, h): 

1 Jh 1 lh Jh K €h 
h -h IW(h)1 d~ ::; €h 2 h-eh -h Iwl d~dT + h 2 

(2.2) 

::; h\ (h Jh Iwl d~dT + K€. 
€ Jo -h 2 

The optimal value for € is the one minimizing the right-hand side of (2.2), that is, 

The condition € < 1 is equivalent to saying that the right-hand side of the desired 
inequality is less than K. The conclusion then follows from (2.2). 0 

LEMMA 2.4. For each function win LI((a,b);JRN ) we have 

IlwIILl(a,b) = a<Zl ~~;<.,,<b k=~,,,.\l:k+l w(x) dX\ ' (2.3) 

where the supremum is taken over all finite sub-divisions of the interval (a, b). 0 

The formula (2.3) is obvious if w is piecewise constant. The general case follows 
by approximation (in the L1 norm) by piecewise constant functions. 

PROOF OF THEOREM 2.1. Let u and v be two (if>,¢)-admissible entropy solutions 
of (1.1), having tame variation and satisfying, for some time to ~ i, 

u(to) = v(to). 

Given € > ° arbitrary, we want to estimate the integralllu(to + h) - v(to + h)II£l(ffi) 
by O(h€), which will establish (2.1). We decompose the proof in several steps. 

Step 1 : Estimate near large jumps. Let Xl, X2, ... ,xp be the finite set of all large 
jumps in u(t) such that 

IU+(Xk, to) - U-(Xk' to)1 ~ €, 1::; k ::; p. (2.4) 

Since (Xk' to) ~ I(u) by assumption, we have (Xk' to) E .J(u). Since u is an entropy 
solution (see (1.9) in Definition 1.2) the pair (Uk-,Uk+) := (U-(Xk,tO),U+(Xk,tO)) 
belongs to the set if> of admissible jumps and, therefore, the corresponding speed 
¢( Uk-, Uk+) is well-defined and coincides with the shock speed in the solution U at 
that point. Precisely, for all t ~ to and all X, we define 

_ ( ) {Uk-' X - Xk < ¢(Uk-, Uk+) (t - to), 
Uk x,t = 

Uk+, X - Xk > ¢(Uk-,Uk+)(t - to). 
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to+h 

---------~-------------to 

xk 

Figure X-3 : Near a point of "large" jump. 

According to (1.5) the function 'ih is a good approximation of the solution u in the 
neighborhood of the point (Xk' to) E :T( u). Hence, given 'r/ > 0, for all h sufficiently 
small we have (Figure X -3) 

1 l to+h l xk+x,oh 
h2 lu(x, t) - Uk(X, t) I dxdt ~ 'r/, 

to Xk-AOOh 

in which we will choose 
e2 

'r/:= 2Kp2' 

1 ~ k ~ p, 

K being a uniform Lipschitz constant for all functions u - Uk, k = 1, ... ,po 
Applying Lemma 2.3 with w(~, 7) := (u - Uk)(Xk +,Xoo~, to + 7), we deduce that 

(2.5) 

for 1 ~ k ~ p and all h sufficiently small. (One can always take e/p < K so that the 
assumption in Lemma 2.1 holds.) Since veto) = u(to), we can set 'Uk := Uk and the 
function v satisfies a completely analogous estimate obtained by replacing u and Uk 
by v and 'Uk respectively. Hence, by (2.5) we arrive at 

1 P lxk+Aooh h{; Xk-A""h lu(x,to+h)-v(x,to+h)ldx 

1 p lxk+Aooh 
~ h {; xk_Aooll(u - Uk)(X, to + h)1 + i('Uk - v)(x, to + h)j) dx 

(2.6) 

~ 2e 

for all h sufficiently small. 

Step 2: Using the tame variation property. Choose p = pee) > 0 such that 
2p < mink#m IXk - xml and for every interval (a, b) 

TV(u(to); (a, b)) ~ e when b - a < 2p and (a, b) n {Xl, .. ' ,Xp} = 0. (2.7) 
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Next, select points Yl (l = 1,2, ... ) to obtain a locally finite covering of 

IR \ {Xl, ... ,xp} 
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by intervals of the form (Yl - p, Yl + p). We can always assume that each point of the 
x-axis belongs to two such intervals, at most. 

To describe the domain of determinacy of the interval 11(0) = (Yl - p, Yl + p), 

0 1 := {(x, t) / x E (Yl - P + AOO(t - to), Yl + p - AOO(t - to)), to:S t :s to + h}, 

we introduce the intervals 

Il(h) = (Yl - P + Aooh, Yl + P - AOOh). 

Clearly, (2.7) together with the tame variation property (1.2) imply that the oscillation 
of u is small in each intervallz(h) , i.e., 

lu+(x, to + h) - U+(Yl, to)1 :s (2/1; + 1) e, x E Il(h), l = 1,2,... (2.8) 

for h sufficiently small. Of course, the same estimate is satisfied by the function v. 

Step 3 : Estimate in regions of small oscillations. We define now an approximation 
adapted to points of approximate continuity of u and to points where the jump in 
u(to) is less than e. Fix some index l E {I, 2, ... } and, for simplicity in the notation, 
set 

A:= A(u+(yz, to)), ~j:= Aj (U+(YI, to)), Ij := lj(U+(YI,tO))' 
Let :y, = :y,(x, t) be the solution of the linear hyperbolic problem 

Ot:y, + A ox:y, = 0, t 2: to, 
:y,(to) = u(to). 

(2.9) 

On one hand, we can multiply (2.9) by each Ij and obtain N decoupled equations for 
the characteristic components Ij :y, 

(2.10) 

On the other hand, the solution u of (1.1) satisfies an equation similar to (2.10), 
but containing a source-term. Namely, since u is a (<I>, 'lj; )-admissible solution, accord­
ing to (1.10) it solves the equation 

OtU + A(u+) oxu = JL, (2.11) 

where JL is the measure concentrated on the set .J (u) and given by 

JL(B):= r (A(u+) - 'lj;(u_, u+)) (u+ - u_) dH I (2.12) J BnJ(u) 

for every Borel set B c IR x IR+. In view of (2.11) we have 

OtU + Aoxu = (A - A(u+)) oxu + JL, 

and so, after multiplication by Ij (1 :s j :s N), 

ot(Iju) +~jox(Iju) =Ij (A-A(u+))oxu+IjJL, (2.13) 

which resembles (2.10). Combining (2.10) and (2.13) we arrive at 

Ot(Ij (u -:y,)) + ~j ox(Ij (u -:y,)) = Ij (A - A(u+)) OxU + Ij JL. (2.14) 
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Since the matrix-valued function A depends Lipschitz continuously upon its ar­
gument, the coefficient A - A(u+) in the right-hand side of (2.14) satisfies 

! (A - A(u+))(x, to + h)! ::; C !U+(Yl, to) - u+(x, to + h)! 
::; C (2/1; + 1) £, X E II(h), l = 1,2, ... 

(2.15) 

for all small h, where we have used the estimate (2.8). 
To estimate the measure J.L in the right-hand side of (2.14) we use the consistency 

property (1.7) together with (2.8). For every region with polygonal boundaries (for 
simplicity) B C 0 1 we find that 

(2.16) 

where (B)t := {x / (x, t) E B}. (See (A.l1) in the appendix.) 
We will now integrate (2.14) on some well-chosen sub-regions of the domain of 

determinacy 0 1 of the interval II (0). For each j = 1, ... ,N and each x', x" in II (h) 
we consider (Figure X-4) 

which is a subset of Oz. By using Green's formula for functions with bounded varia­
tion, since 1!(to) = u(to) we obtain 

Hence, integrating (2.14) over O~"XII we get 

Using (2.15) and (2.16) we arrive at the estimate 

X" 11, Ij (u -1!)(Y, to + h) dyi 

l to+h 
::; C 17(£) TV( u(t); (Xl + (t - to - h)~j' x" + (t - to - h)~j)) dt. 

to 

(2.17) 
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1l(h) 
------------~--~--~------------------~tO+h 

X' X" 

Yl 
----~----~--~----~------------~----~to 

X, + Mj 1l(0) Yl + p 

x'-M· J 

Figure X-4 : In a region with small oscillations. 

Next, in view of Lemma 2.4 and summing (2.17) over finitely many intervals we 
find 

j IIj (u - ~)(x, to + h) I dx ::; C 1](C:) l to+h TV(u(t); h(t - to)) dt. 
II(h) to 

The same estimate holds for the solution v as well and, therefore, 

j ~
tO+h 

IIj (u-v)(x, to+h) I dx ::; C1](C:) (TV( u(t); II(t-tO))+ TV( v(t); II (t-to) ) ) dt 
~(~ ~ 

for each j = 1, ... ,N. Since lu - vi ::; C I:f=l IIj (u - v) I we conclude that 

j I (u - v) (x, to + h) I dx 
II (h) 

l to+h 
:::; C 1] (c:) (TV( u(t); Il(t - to)) + TV( v(t); ft(t - to))) dt. 

to 

(2.18) 

Step 4: Conclusion. Summing up the estimates (2.18) for alli = 1,2, ... we obtain 

l YI + p->.OOh lto+h 

l=~ ... YI-p+>'OOh I(u - v)(x, to + h)1 dx ::; O(c:) to (TV(u(t)) + TV(v(t))) dt 

::;(O(c:) + 1](C:)) h, 
(2.19) 

since two intervals, at most, may overlap and the function TV(u(.)) + TV(v(.)) is 
uniformly bounded. Finally, since the intervals (Yl - P + A 00 h, Yl + P - A 00 h) and 
the intervals (x k - A 00 h, x k + A 00 h) form a covering of the real line, we can combine 
the main two estimates (2.6) and (2.19) and conclude that for each c: > 0 and all 
sufficiently small h 

~ 1m I(u - v)(x, to + h)1 dx::; O(c:) + 1] (c:) , 

hence (2.1) holds. This completes the proof of Theorem 2.1. o 
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3. Uniqueness theory 

We introduce the following notion of semi-group. 

DEFINITION 3.1. (General concept of semi-group of entropy solutions.) Consider the 
hyperbolic system (1.1) together with admissible jumps <I> and speeds 'l/J satisfying 
the property (1.7). By definition, a semi-group of entropy solutions is a mapping 
S : K x [0,(0) -t K defined on a non-empty subset K of functions with bounded 
variation on IR such that the following three properties hold: 

• Semi-group property: for all tl, t2 20 and Uo E K, we have S(tl)UO E K 
and S(t2) 0 S(tl)UO = S(t2 + tt)uo. 

• Continuous dependence: For some fixed constant K > 0 and for all 
Uo, Vo E K and t 2 0, 

IIS(t)uo - S(t)voll£1(m) ::; K Iluo - voll£1(m). (3.1) 

• Entropy solution: For each function Uo E K the map t t--t S(t)uo is an en­
tropy solution with tame variation. 

o 
Of course, since functions of tame variation are Lipschitz continuous in time by 

Lemma 1.4, a semi-group in the sense of Definition 3.1 satisfies actually 

IIS(t2)UO - S(tt)vo 11£1 (m) ::; K Iluo - voll£1(m) + K It2 - iII (3.1') 

for all Uo, Vo E K and tl, t2 20, where K' := max ( K, 2).'Xl ~(~ + l)TV(u(O))). 

THEOREM 3.2. (Uniqueness of entropy solutions.) Consider the hyperbolic system 
(1.1) together with a pair of admissible jumps <I> and speeds '¢ satisfying the property 
(1. 7). Assume that there exists a semi-group S : K x [0,(0) -t K of entropy solutions 
with tame variation satisfying the following: 

Consistency property with single jumps of (<I>, 'l/J): If a function v = 
v(x,t) is made of a single (admissible) jump discontinuity (v_,v+) E <I> prop­
agating with the speed 'l/J(v_,v+), then v(O) E K and 

v(t) = S(t)v(O), t 2 o. 
Then, if u is an entropy solution with tame variation assuming the initial data Uo E K 
at time t = 0, we have 

u(t) = S(t)uo, t 2 o. (3.2) 

In particular, there exists a unique entropy solution with tame variation of the 
Cauchy problem associated with (1.1). 

It is clear that the consistency property above is necessary, for otherwise one could 
find two distinct solutions starting with the same initial data and the conclusion of 
Theorem 3.2 would obviously fail. 

On one hand, for the consistency property to hold, the set <I> must be "sufficiently 
small" , so that any initial data made of a single admissible jump (u_, u+) E <I> cannot 
be decomposed (as time evolves) in two (or more) admissible waves. Indeed, sup­
pose there would exist a semi-group of admissible solutions satisfying the consistency 
property with single admissible jumps and suppose also that 

(v_, v+), (v_,v*), (v*, v+) E <I>, 
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where the three constant states v_, v*, and v+ are distinct and their speeds are 
ordered: 

'ljJ(v_,v+) < 'ljJ(v_,v*) < 'ljJ(v*,v+). 
Consider the single jump solution 

together with the sequence 

x < 'ljJ(v_,v+)t, 

x> 'ljJ(v_, v+) t, 

x < 'ljJ(v_,v*)t, 

'ljJ(v_,v*)t < x < E+'ljJ(V*,v+)t, 

x> E+'ljJ(V*,v+)t. 

The solution v~ contains two propagating discontinuities and converges in the Ll 
norm toward 

{ 
v_, x < 'ljJ(v_, v*) t, 

V2(X, t) = v*, 'ljJ(v_, v*) t < x < 'ljJ(v*, v+) t, 
v+, x > 'ljJ( v*, v+) t. 

According to the consistency property with admissible jumps we have 

S(t)Vl(O) = Vl(t), S(t)v~(O) = vHt). 

This leads to a contradiction since the semigroup is L 1 continuous, and VI (0) = V2 (0) 
but Vl(t) 'I V2(t) for t > O. 

On the other hand, to establish the actual existence of a semi-group of admissible 
solutions, the set <I> should be "sufficiently large" to allow one to construct the solution 
of the Riemann problem, at least. As we will check later in Section 4, for several classes 
of systems and sets of interest, our results in previous chapters of these notes do imply 
the existence of a semi-group satisfying the properties in Definition 3.1, allowing us 
to complete the well-posedness theory. 

The proof of Theorem 3.2 is based on Theorem 2.1 together with the following 
observation. 

LEMMA 3.3. For every Uo E K and every time-dependent function with bounded vari­
ation u : IR x IR+ ~ U satisfying the initial condition u(O) = Uo the semi-group of 
solutions satisfies the estimate 

rT 1 
Ilu(T) - S(T)uoIIL1(lli) :s; K Jo li~-!~f h11u(t + h) - S(h)u(t)IIL1(lli) dt. 

PROOF. Consider the (bounded) function 

1 
L(t) := li~-!~f h11u(t + h) - S(h)u(t)IIL1(lli) 

together with the (Lipschitz continuous) functions 

M(t) := IIS(T - t)u(t) - S(T)u(O)IIL1(lli)' N(t):= M(t) - K fat L(s) ds. 

(3.3) 

We will show that N'(t) :s; 0 for almost every t, which implies the desired inequality 

N(t) :s; N(O) = O. 



254 CHAPTER X. UNIQUENESS OF ENTROPY SOLUTIONS 

By standard regularity theorems there exists a set Z of zero Lebesgue measure 
such that for all t ~ Z the functions M and N are differentiable at the point t, while 
t is a Lebesgue point of the function L. Hence, we have 

N'(t) = M'(t) - K L(t). (3.4) 

On the other hand by definition we have 

M(t + h) - M(t) 

= IIS(T - t - h)u(t + h) - S(T)u(O) II £1 (lli) -IIS(T - t)u(t) - S(T)u(O) II £1 (lli) 

~ IIS(T - t - h)u(t + h) - S(T - t)u(t) II £1 (lli) 

= IIS(T - t - h)u(t + h) - S(T - t - h) S(h)u(t) II £1 (lli) 

~ K Ilu(t + h) - S(h)u(t) II £1 (lli)' 

Dividing by h and letting h -t 0 we find 

M'(t) ~ K L(t). 

The conclusion follows from (3.4) and (3.5). 

(3.5) 

o 

PROOF OF THEOREM 3.2. In view of (3.3) we see that (2.1) precisely implies that 
the integrand in the right-hand side of (3.3) vanishes almost everywhere, provided 
Theorem 2.1 can be applied. 

In fact, to complete the proof we will need a slightly generalized version of Theo­
rem 2.1. We shall say that a point (x, to) is a forward regular point for u if either 
it is a (Lebesgue) point of approximate continuity for u in the set IR x [to,+oo), or 
else there exist some traces u±(x, to) and a speed ).U(x, to) such that 

1 I to+p l x+P 
lim 2 lu(y, t) - u(y, t)1 dydt = O. 
p-+O P to x-p 

(3.6) 

Next, observe that the values u(t) and v(t) with t 2: to, only, are relevant in the 
statement of Theorem 2.1. Indeed, consider two functions u and v which are defined 
and are admissible solutions on the set IR x [to, +00), such that for every x E IR the 
point (x, to) is a forward regular point of both u and v. Given a point of jump (x, to), 
we have (u_ (x, to), u+(x, to)) E <P and ,XU(x, to) = 1P( u_ (x, to), u+(x, to)). Then, it is 
clear from the proof of Theorem 2.1 that (2.1) still holds. 

Let u be a (<P,1P)-admissible solution of (1.1) assuming some initial data uo at 
time t = O. We want to show that u(t) coincides with w(t) := S(t)uo for all t 2: O. 
Consider any to 2: 0 with to ~ I( u) which is also is a Lebesgue point of the (bounded) 
function t I-t TV(u(t)). Define 

v(t) := S(t - to)u(to) for t 2: to. 

We claim that, for every x E IR, the point (x, to) is a forward regular point of v. 
Indeed, consider any point of continuity x of the function u( to). The tame variation 
property (1.2) implies easily 

y~li,IP~to Iv(y, t) - u(x, to) I = 0 
t>to 

and that (x, to) is a point of approximate continuity for the function v. 
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Next, consider any point of jump x of the function u(to). Since u is an admissible 
solution the limits u± := u±(x, to) determine a pair in the set <P. Call u the jump 
propagating at the speed 'lj; ( u_ , u+). According to the consistency condition assumed 
in Theorem 3.2 we have 

S(h)u(to) = u(to + h) for all h. 

Using the Lipschitz continuity of the semi-group, for p = >..00 h we have 

1 l to + h l x + p->.OO(t-tO) 

-h Iv(y, t) - u(y, t) 1 dydt 
p to x-p+>'oo (t-to) 

1 l to + h l x + p->.oo(t-tO) 

= - IS(t - to)u(to) - S(t - to)u(to) 1 dydt 
hp to x-p+>.oo(t-to) 

K l x+p 
:S - lu(to) - u(to)1 dy ---+ 0, 

p x-p 

(3.7) 

since x is a point of jump of the function u(to). Thus (x, to) is a point of approximate 
jump for the function v. 

This completes the proof that (x, to) is a forward regular point of v for every 
x Em. In view of the preliminary observation above the conclusion in Theorem 2.1 
holds for the two solutions u and v at time to: 

This proves that the integrand on the right-hand side of (3.3) vanishes at almost every 
t. Thus u(T) := S(T)uo for every T > ° which completes the proof of Theorem 3.2. 

o 

4. Applications 

This section contains some important consequences to the uniqueness theory presented 
in Section 3. 

For strictly hyperbolic systems of conservation laws 

OtU + oxf(u) = 0, u = u(x, t) E U, ( 4.1) 

it is natural to define the admissible speeds 'lj;RH from the standard Rankine-Hugoniot 
relation, that is, 

The second ingredient in Definition 1.2, the set <P, determines which discontinuities 
are admissible. Classical solutions are recovered by setting 

<pc := {(u_,u+) satisfies Rankine-Hugoniot relations and Liu entropy criterion}. 

Another choice is to include, in the set <P, jumps violating Liu criterion in order to 
recover nonclassical entropy solutions selected by a kinetic relation (applied to those 
characteristic fields which are not genuinely nonlinear, only), more precisely: 

<pnc := {(u_,u+) satisfies Rankine-Hugoniot relations, 

a single entropy inequality, and a kinetic relation}. 
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So, to each of the classical or nonclassical solvers constructed in previous chapters 
we can associate a set of admissible jumps, <I>c or <I>nc, while defining 'ljJRH by the 
Rankine-Hugoniot relation. 

Relying on Theorem IX-2.3 for classical entropy solutions and assuming the va­
lidity of Theorem IX-4.1 concerning nonclassical entropy solutions, we arrive at the 
following uniqueness result, which is a corollary of Theorem 3.2. 

THEOREM 4.1. (Uniqueness of classical and nonclassical entropy solutions.) Consider 
the strictly hyperbolic system of conservation laws (4.1) under the following assump­
tions: The set U C JRN is a ball with sufficiently small radius and each characteristic 
field of (4.1) is either genuinely nonlinear or concave-convex. To each concave-convex 
field let us associate a kinetic relation as was done in Chapter VI. Let <I> be the corre­
sponding family of classical or nonclassical shock waves occurring in the classical or 
nonclassical Riemann solvers described in Chapter VI, respective. Let 'IjJ = 'ljJRH be 
the speed given by the Rankine-Hugoniot relation (4.2). 

• Then, there exists a unique semi-group of (<I>, 'IjJ) -admissible entropy solutions . 
• Any two (<I>, 'IjJ)-admissible entropy solutions with tame variation satisfy the 

Ll continuous dependence property 

for some fixed constant K > O. 

PROOF. Let uo and vo be some initial data and choose piecewise constant approx­
imations uh(O) and vh(O), with uniformly bounded total variation and converging 
pointwise toward uo and Vo, respectively. Consider the approximate solutions uh 
and vh constructed by wave front tracking (Theorems IX-2.3 or IX-4.1) from from 
the initial data uh(O) and vh(O). We rely on the continuous dependence estimate 
(Chapter IX) 

Ilvh(t2) - Uh(t2)1I£1(m) ::; K Ilvh(tt} - Uh(tl)IIL1(m) + o(h), tl, t2 E JR+, (4.4) 

where o(h) -+ 0 when h -+ O. Extracting a subsequence if necessary we define 

S(t) uo := lim uh(t), t ~ O. 
h-+O 

(4.5) 

The notation makes sense since the function limh-+o uh is independent of the particular 
discretization of the initial data and the particular subsequence. Indeed, if uh(O) -+ Uo 
and vh(O) -+ Uo and (for some subsequence) u h -+ u and vh -+ v, we have the estimate 
(4.4) with, say, s = 0, and after passing to the limit 

Ilv(t) - u(t)II£1(m) ::; K Iluo - uoll£1(m) = 0, t E JR+, 

which implies that v == u. By a very similar argument one can check that the formula 
(4.5) defines a semi-group, that is, the condition 1 in Definition 3.1 holds. 

Furthermore, the solutions are known to remain uniformly bounded in the total 
variation norm. It is not difficult to return to the argument of proof and, applying 
the same arguments but now along space-like segments, to check the tame variation 
estimate (1.2) for uh , where the constant /'i, is independent of h. Fix a time t ~ 0 and 
select piecewise constant approximations x f-+ uh(x, t) such that 

TV(uh(t); (a, b)) -+ TV(u(t); (a, b)) 



4. APPLICATIONS 257 

for every interval (a, b). Using the same notation as in Definition 1.1 the right-hand 
side of the inequality 

(4.6) 

converges to TV( u; f) while (by the lower semi-continuity property of the total varia­
tion) the limit of the left-hand side is greater than or equal to TV( u; f). This proves 
the tame variation estimate (1.2) for the semi-group (4.5). 

The first condition in Definition 1.2 is easy since (4.1) is conservative. The second 
condition was the subject of Sections VII-4 and VIII-4: the approximate solutions 
converge in a pointwise sense near each discontinuity and the traces of the solution 
belong the set q> of admissible jumps and propagate with the speed given by the 
Rankine-Hugoniot condition. This completes the proof that (4.5) defines a semi­
group of admissible solutions in the sense of Definition 3.1. The second property 
stated in the theorem is immediate from Theorem 3.2. 0 

The framework presented in this chapter simplifies if one applies it to genuinely 
nonlinear systems in conservative form. 

DEFINITION 4.2. (Concept of entropy solution of genuinely nonlinear systems.) Con­
sider a system of conservation laws (4.1) whose characteristic fields are genuinely 
nonlinear and endowed with a strictly convex entropy pair (U, F). Then, a function 
u with tame variation is called an entropy solution of (4.1) if the conservation laws 
(4.1) and the entropy inequality 

OtU(u) + oxF(u) ::::; 0 

are satisfied in the weak sense. o 
The conditions in Definition 4.1 are equivalent to saying 

f 1 OtU + oxf(u) = 0 for every Borel set B (4.7) 

and f 1 OtU(u) + OxF(u) ::::; 0 for every Borel set B. (4.8) 

Under the assumption that (4.1) has only genuinely nonlinear fields, Definition 4.2 
is fully equivalent to Definition 1.2. For instance, let us show that a solution in the 
sense of Definition 4.2 is also a solution in the sense of Definition 1.2. One one hand, 
from (4.7) we deduce that 

11 OtU + A(u+) OxU = 1 l OtU + oxf(u) = 0 for every Borel set Be C(u). 

On the other hand, from (4.7) and (4.8) it follows that, at each (x, t) E :T(u), 

-AU(X, t) (u+(x, t) - u_(x, t)) + f(u+(x, t)) - f(u-(x, t)) = 0 

and 

which, by definition of the families q> and 'l/J, is equivalent to (1.9). 
Theorem 4.1 is immediately restated as follows. 
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THEOREM 4.3. (Uniqueness of entropy solutions of genuinely nonlinear systems.) 
Consider a system of conservation laws (4.1) whose characteristic fields are genuinely 
nonlinear and endowed with a strictly convex entropy pair (U, F). Restrict attention 
to solution taking their values in a ball U with sufficiently small radius. 

• Then, there exists a (unique) semi-group of entropy solutions in the sense of 
Definition 4.2 . 

• Any two entropy solutions with tame variation satisfy the £1 continuous de-
pendence property (4.3). 

REMARK 4.4. The following example of admissible speeds 'IjJ further illustrates the 
interest of the general framework proposed in this chapter beyond the class of conser­
vative systems. For simplicity, suppose that N = 1 and consider the scalar equation 

(4.9) 

This equation can be written in conservative form, namely 

OtU + oxf(u) = 0, f(u) = JU a(v) dv. (4.10) 

One may define the speed 'IjJ in agreement with the Rankine-Hugoniot relation asso­
ciated with the conservative form (4.10), that is, 

(4.11) 

However, this choice can be regarded to be somehow arbitrary if no conservative form 
of (4.9) were specified in the first place. 

One could set instead 
h(u+) - h(u_) 

'IjJ(u_,u+):= ( ) ( )' g u+ - g u_ 
(4.12) 

where the functions g, h : m -; m are chosen so that 

g'(u) > 0, h'(u) = g'(u) a(u), u Em. (4.13) 

Both choices (4.11) and (4.12) satisfy the consistency property (1.7). As a matter of 
fact, the speed (4.12) corresponds also to the standard Rankine-Hugoniot relation, 
but for another conservative form of (4.9), i.e., 

(4.14) 

Of course, the admissible speeds need not correspond to a conservative form of 
(4.9). In particular, it need not be a symmetric function in (u_,u+). For example, 
suppose we are given two conservative forms of (4.9), like (4.14), associated with two 
pairs (gl, hI), (g2, h2) of conservative variables and flux-functions satisfying (4.13). 
An admissible speed can be defined by 

{ 

_h 1....:....( U--,-+,--) -_h_l (:,--u_-,:-) 
() ()' u_ < u+, 

'IjJ(u_,u+):= gl U+)-gl(U-) 
h2(u+ - h2 u_ 
() () ' u_ > u+. 

g2 u+ - g2 u_ 

D 



APPENDIX 

FUNCTIONS WITH BOUNDED VARIATION 

We first introduce some general notations of use throughout these lecture notes. Given 
an open subset 0 c JRn and p E [1,00], we denote by LP(O) the Banach space of all 
Lebesgue measurable functions whose p-th power is integrable on 0 if p < 00 or which 
are bounded on 0 if p = 00. The corresponding norm is denoted by 1I.IILP(fl). For each 
integer m E [0,00], we denote by Cm(O) the space of all continuous functions whose 
k-th derivatives (k ::::: p) exist and are continuous on n. The corresponding sup-norm 
is denoted by 11.llc=(fl) whenever it is bounded. The subspace of all functions with 
compact support is denoted by C:;"(O). Similarly, for each real T E (0,00), we can 
define the space C:;"(O x [0, T]) of all functions v = v(x, t), x E 0, t E [0, Tj, such that 
for k ::::: m all k-th derivatives of v exist and are continuous on n x [0, T], while v is 
compactly supported in 0 x [0, Tj. When it is necessary to specify the range of the 
functions, say U C JRN, we write LP(n;U), CP(O;U), etc. We also set C(O) := CO(O), 
etc. 

Given some bounded or unbounded interval (a, b), a JRN -valued bounded mea­
sure is a real-valued, bounded linear map JL defined on Cc((a, b);JRN). The associated 
variation measure IJLI is defined by 

IJLI { (a', b')} := sup 
",ECc«a' ,b');lRN) 

",#0 

for every a ::::: a' < b' ::::: b. The value IJLI { (a, b)} is called the total mass of the measure 
JL. Recall the following compactness result. 

THEOREM A,I. (Weak-star compactness of bounded measures.) Given a sequence 
JLh of bounded measures whose total mass on the interval (a, b) is uniformly bounded, 

there exists a bounded measure JL and a subsequence (still denoted by JLh) such that 

JLh ----' JL weak-star, 

that is, 

o 
Let (a, b) be a bounded or unbounded interval. A map u : (a, b) -+ JRN defined at 

every point x E (a, b) is called a function with bounded variation in one variable 
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if its total variation 

q-l 

TV(u; (a, b)) := sup {L IU(Xk+1) - u(xk)1 / a < Xl < ... < Xq < b} (A.l) 
k=l 

is finite. When (a, b) = JR we use the notation 

TV(u) := TV(u;JR). 

We denote by BV((a, b);JRN ) the Banach space of functions with bounded variation 
for which (A.l) is finite, endowed for instance with the norm 

IluIILOO((a,b);lliN) + TV( U; (a, b)). 

It is well-known that a function with bounded variation admits countably many 
points of discontinuity, at most, and at each point of discontinuity, left- and right­
limits u_(x) and u+(x) respectively. The value u(x) need not coincide with one of 
these two traces, and it is often convenient to normalize u by selecting, for instance, 
its right-continuous representative u+ defined at every point X by 

at points of continuity, 

at points of discontinuity. 
(A.2) 

The left-continuous representative u_ could be defined similarly. 
An entirely equivalent definition of the notion of bounded variation is given as 

follows. A function u : (a, b) -+ JRN, defined almost everywhere for the Lebesgue 
measure, belongs to BV((a, b);JRN ) if its distributional derivative 8x u is a bounded 
measure, the total variation of u being then 

TV(u; (a, b)) = sup 
'l'EC~«a,b);IRN) 

'1'''10 

lb U· 8x cpdx 

IlcpIILOO((a,b);lliN) . 
(A.3) 

One can check that (A.l) and (A.3) are equivalent, in the following sense: If u is a 
function defined almost everywhere for which (A.3) is finite, then it admits a rep­
resentative defined everywhere such that (A. 1) is finite and both quantities in (A.l) 
and (A.3) coincide. Conversely, if u is a function defined everywhere for which (A.l) 
is finite then the quantity (A.3) is also finite. Furthermore, from (A.3) it follows that 
when u is smooth 

TV(u; (a, b)) = 118xull£l((a,b);lliN) 

and, for all u with bounded variation 

1 
sup -h Ilu(. + h) - U(·)II£l(a,b) = TV(u; (a, b)), 
h>O 

provided we extend u by continuity by constants outside the interval (a, b). 

(A.4) 

The theory of hyperbolic conservation laws uses the following compactness result. 
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THEOREM A.2. (Helly's compactness theorem.) Given a sequence of functions with 
bounded variation uh : (a, b) --t JRN (defined for every point x) satisfying, for some 
constant C > 0, 

IluhIILOO((a,b);IRN) + TV(uh; (a, b)) ~ C, 

there exist a subsequence (still denoted by uh) and a function with bounded variation, 
u: (a, b) --t JRN, such that 

uh(x) --t u(x) at every x E (a, b). 

Additionally, we have the lower semi-continuity property 

TV(u; (a, b)) ~ lim inf TV( uh; (a, b)). 
h--->O 

(A.5) 

o 

The compactness result in Theorem A.2 extends as follows to time-dependent 
functions. The regularity assumed here is shared by solutions of hyperbolic conserva­
tion laws. 

THEOREM A.3. (Time-dependent version of Helly's theorem.) Given a sequence of 
Lebesgue measurable functions uh : (a, b) x JR+ --t JRN satisfying 

Iluh(t)IILOO((a,b);IRN) + TV(uh(t); (a, b)) ~ C, t E JR+, 

Iluh(t2) - uh(h)II£1((a,b);IRN) ~ C It2 - hi, h, t2 E JR+, 
(A.6) 

for some constant C > 0, there exists a subsequence (still denoted by uh) and a 
function with bounded variation u : (a, b) x JR+ --t JRN such that 

and 

uh(x, t) --t u(x, t) at almost all (x, t) 

uh(t) --t u(t) in Lfoc for all t E JR+ 

Ilu(t)IILOO((a,b);IRN) + TV(u(t); (a, b)) ::; C, t E JR+, 

Ilu(t2) - u(t1)11£1((a,b);IR N) ::; C It2 - t11, t1, t2 E JR+. 
(A.7) 

PROOF. We only sketch the proof. Relying on the first assumptions in (A.6), for each 
rational point t we can apply Theorem A.I and extract a subsequence of uh(t) that 
converges to some limit denoted by u(t). By considering a diagonal subsequence, we 
construct a subsequence of uh such that 

uh(t) --t u(t) for all x E (a, b) and all rational times t. 

Then, the second assumption in (A.6) implies that the limiting function u(t) can be 
extended to irrational times t (in a unique way) and that the desired convergence 
result holds. 0 

We now turn to functions with bounded total variation in two variables. By 
definition, BV(JR x (0, T);JRN) is the Banach space of all locally integrable functions 
u : JR x (0, T) --t JRN whose first-order distributional derivatives OtU and oxu are 
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vector-valued Radon measures in (x, t) and the mass of variation measures IBtul and 
IBxul are finite in JR x (0, T). The variation measure IBxul, for instance, is defined by 

lIu . Bx'PII£l(O) 

II 'PIILoo (0) 

for every open set n c JR x (0, T). Recall that, by Riesz representation theorem, 
Radon measures can be regarded as linear functionals on C~(JR x (0, T)). 

The key theorem in the theory of such functions is now stated. 

THEOREM A.4. (Regularity of functions with bounded variation in two variables.) 
Given a function u E BV(JR X (0, T);JRN ), there exist a representative of u (which 
differs from u on a set with zero Lebesgue measure and is still denoted by u) and a 
decomposition 

JR x (O,T) =C(u) U.J(u) UI(u) 

such that: 
1. C(u) is the set of points of L1-approximate continuity (x,t) in the sense 

that 

lim 12 ( lu(y, s) - u(x, t)1 dyds = 0, (A.8) 
r~O r J Br(x,t) 

where Br(x, t) C JR2 denotes the ball with center (x, t) and radius r > 0. 
2 . .J(u) is the set of points of approximate jump discontinuity (x,t) at 

which, by definition, there exists a propagation speed ,\U(x, t) and left­
and right-approximate limits u_(x, t) and u+(x, t), respectively, such that 

lim \ [ lu(y, s) - u±(x, t)1 dyds = 0, (A.9) 
r~O r J Bf(x,t) 

where 
B;-(x, t) = Br(x, t) n {±(y - ,\U(x, t) s) :?: O}. 

Moreover, the set .J(u) is rectifiable in the sense of Federer, i.e., is the union 
of countably many continuously differentiable arcs in the plane, and 

J lu+ - u_1 d1il < 00. 
:leu) 

3. Finally, the set of interaction points I( u) has zero one-dimensional Haus­
dorff measure: 

o 
In (A.8) and (A.9) we have tacitly extended the function u by zero outside its 

domain of definition JR x (0, T). Based on the regularity properties in Theorem A.4 
one has, for every Borel set Be JR x (0, T), 

and 
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It makes sense to define the right-continuous representative u+ of a function with 
bounded variation for Hl -almost every (x, t) by 

) ._ { u(x, t), (x, t) E C(u), 
u+(x,t .-

u+(x, t), (x, t) E J(u). 

The left-continuous representative u_ could be defined similarly. If 9 : JRN --+ JR is 
any smooth mapping, the product g( u+) oxu is a vector-valued Radon measure such 
that 

1" r g(u+) OxU := J" r g(u) OxU + r g(u+) (u+ - u_) dHl . (A.lO) J B J BnC(u) J BnJ(u) 

We now restrict attention to functions u = u(x, t) satisfying the conditions (A.7). 
Since (A. 7) implies 

Ilotu(t)II£1((a,b);mN) ~ C, t E JR+, 
such a function clearly belongs to BV(JR x (O,T);JR N) for all T > ° and it can be 
checked that 

1" r IOxul = lt2 TV( u(t); (a, b)) dt. 
J(a,b) x (tl h) tl 

(A.11) 

Additionally, for all h < t2, Xl < X2, and A E JR, provided the set 

B := {(x, t) / h < t < t2, Xl + A (t - td < x < X2 + A (t - h)} 

is non-empty, the following Green formulas hold: 

J"r Otu=lx2+A(t2-til u(x,t2)dt-1X2 u(x,h)dx 
J B Xl +A (t2-til Xl 

_lt2 AU_(X2+A(t- h ),t)dt+lt2 AU+(Xl +A(t-td,t)dt, 
tl tl 

J" r Oxu = It2 u_ (X2 +).. (t - h), t) dt _lt2 U+(XI +).. (t - h), t) dt. 
J B tl tl 

Finally, we recall the chain rule 

(A.12) 

valid for every function with bounded variation u : JR x (0, T) --+ JRN and every smooth 
mapping f : JRN --+ JRN, where Volpert's superposition is defined Hl-almost ev­
erywhere by 

~ {Df(U(X,t)), 
(Df(u)) (x,t) := rl 

Jo Df(Ou_(x,t)+(l-O)u+(x,t))dO, 

In particular, we have oxf(u) = Df(u)oxu on C(u). 

(x, t) E C(u), 

(x, t) E J(u). 
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back to the works by Lax and Oleinik. The Riemann problem with non-convex flux­
functions and single entropy inequality (Sections II-3 to II-5) was studied by Hayes 
and LeFloch (1997) (cubic flux-function) and by Baiti, LeFloch, and Piccoli (1999) 
(general flux-functions). A generalization to hyperbolic systems of two conservation 
laws was given by Hayes and LeFloch (1996, 2000) and LeFloch and Thanh (2001a). 
For results on Lipschitz continuous mappings (applied here to the function <p~), see 
for instance the textbook by Clarke (1990). 

Chapter III. Standard textbooks on ordinary differential equations are: Codding­
ton and Levinson (1955), Guckenheimer and Holmes (1983), Hales (1969), and Hart­
man (1964). Classical diffusive and diffusive-dispersive traveling waves for scalar 
equations and systems were studied by many authors, especially Gilbarg (1951), Foy 
(1964), Conley and Smoller (1970, 1971, 1972ab), Benjamin, Bona, and Mahoney 
(1972), Conlon (1980), Smoller and Shapiro (1969), Antman and Liu (1979), Bona 
and Schonbek (1985), and Antman and Malek-Madani (1988). 

Nonclassical diffusive-dispersive traveling waves of conservation laws were dis­
covered by Jacobs, McKinney, and Shearer (1995) for the cubic flux-function (with 
b = Cl = C2 = 1). This model is referred to as the modified Korteweg-de Vries-Burgers 
(KdVB) equation. It is remarkable that its nonclassical trajectories can be described 
by an explicit formula. The earlier work by Wu (1991) derived and analyzed the 
KdVB equation from the full magnetohydrodynamics model. Theorem 1II-2.3 is a 
reformulation of Jacobs, McKinney, and Shearer's result (1995) but is based on the 
concept of a kinetic relation introduced in Hayes and LeFloch (1997). 

The effect of the nonlinear diffusion € (Iuxl uX)x with the cubic flux-function was 
studied by Hayes and LeFloch (1997). For this model too the nonclassical trajectories 
are given by an explicit formula. As a new feature, the corresponding nonclassical 
shocks may have arbitrary small strength, that is, the kinetic function do not coincide 
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with the classical upper bound cpQ near the origin. Interestingly enough, this example 
does enter the existence framework proposed in Section IV-3. 

Hayes and Shearer (1999) and Bedjaoui and LeFloch (200la) established the 
existence of nonclassical traveling waves for general flux-functions. The exposition 
in Sections III-3 to III-5 follows Bedjaoui and LeFloch (2001a). The behavior of the 
kinetic function in the large is also derived by Bedjaoui and LeFloch (2001b). Another 
(fourth-order) regularization arising in driven thin film flows was studied by Bertozzi 
et al. (1999ab, 2000). 

Most of the results in this chapter remain valid for the 2 x 2 hyperbolic system of 
elastodynamics (Example 1-4.4); see Schulze and Shearer (1999) (cubic flux-functions) 
and Bedjaoui and LeFloch (200lc) (general flux-functions). Traveling waves of the 
hyperbolic-elliptic model of phase dynamics (Example 1-4.5) were studied by Shearer 
and Yang (1995) (cubic flux-functions) and Bedjaoui and LeFloch (2001b) (general 
flux-functions). See also Fan (1992, 1998), Fan and Slemrod (1993), Hagan and Serin 
(1984, 1986), Hagan and Slemrod (1983), Slemrod (1983ab, 1984ab, 1987, 1989), 
Truskinovsky (1987, 1993). 

Chapter IV. The explicit formula in Theorem IV-1.1 is due to Hopf (1950) (Burg­
ers equation) and Lax (1954) (general flux-functions). Many generalizations of the 
so-called Lax formula are known. See Lions (1985) and the references therein for 
multi-dimensional Hamilton-Jacobi equations. An explicit formula for the initial and 
boundary value problem for conservation laws was derived independently by Joseph 
(1989) and LeFloch (1988b), and, for conservation laws with non-constant coeffi­
cients, by LeFloch and Nedelec (1985). The entropy inequality (1.2) was discovered 
by Oleinik (1963). Interestingly enough, this inequality also holds for approximate 
solutions constructed by finite difference schemes: Goodman and LeVeque (1986), 
Brenier and Osher (1988). See also Tadmor (1991) for the derivation of local error 
estimates. The uniqueness argument in the proof of Theorem IV -1.3 is taken from 
LeFloch and Xin (1993). 

There is an extensive literature on the existence and uniqueness of classical en­
tropy solutions, and to review it is out of the scope of these notes. We just men­
tion the fundamental papers by Conway and Smoller (1966), Volpert (1967), Kruzkov 
(1970), and Crandall (1972). On the other hand, the wavefront tracking scheme (also 
called polygonal approximation method) for scalar conservation laws (Section IV-2) 
was introduced by Dafermos (1972). It leads to both a general strategy for prov­
ing the existence of discontinuous solutions for scalar conservation laws (as well as 
for systems of equations, see Chapter VII) and an interesting method of numerical 
approximation. General flux-functions were considered in Iguchi and LeFloch (2002). 

The existence of nonclassical entropy solutions (Sections IV-3) was established by 
Amadori, Baiti, LeFloch, and Piccoli (1999) (cubic flux-function) and Baiti, LeFloch, 
and Piccoli (1999, 2000) (general flux-function). The concept of minimal backward 
characteristics used in the proof of Theorem IV-3.2 goes back to the works by Filippov 
(1960) and Dafermos (1977, 1982). 

Theorem IV-4.1 is standard while Theorems IV-4.2 and IV-4.3 are new and due 
to the author. 
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Chapter V. The L1 contraction property for scalar conservation laws (Theorem V-
2.2) was originally derived by different methods by Volpert (1967), Kruzkov (1970), 
Keyfitz (1971), and Crandall (1972). A non-increasing, weighted norm quantifying the 
rate of decay of £1 norm (along similar lines as our Theorem V-2.3) was discovered by 
Liu and Yang (1999a), for piecewise smooth solutions of scalar conservation laws with 
convex flux. The approach presented here in Sections V-I and V-2 and based on linear 
hyperbolic equations was discovered by Hu and LeFloch (2000). The sharp estimate 
for general solutions with bounded variation was established by Dafermos (2000) 
using generalized characteristics and, then, by Goatin and LeFloch (2001a) using the 
technique in Hu and LeFloch (2000). Further generalizations and applications to the 
framework in this chapter are given in LeFloch (2002). 

Chapter VI. Fundamental material on the entropy condition and Riemann problem 
for strictly hyperbolic systems can be found in Lax (1957,1970), Liu (1974,1981), and 
Dafermos (1978a). The Riemann problem described in Sections VI-2 and VI-3 was 
solved by Lax (1957) and Liu (1974), respectively. Hyperbolic systems under non­
convexity assumptions were considered by Oleinik (1957), Ballou (1970), Wendroff 
(1972ab, 1991), Liu (1974, 1975, 1976, 1981), Dafermos (1984), Menikoff and Plohr 
(1989), and Zumbrun (1990, 1993). 

The concept of a kinetic relation and the generalization of Liu's construction 
to encompass nonclassical solutions (Sections VI-3 and VI-4) is due to Hayes and 
LeFloch (1997, 2000). See also the notes for Chapter I above for the references in ma­
terial sciences. Lipschitz continuous mappings are discussed in Clarke (1990), Correia, 
LeFloch, and Thanh (2002), and Isaacson and Temple (1992). In Hayes and LeFloch 
(1998), the authors argue that the range of the kinetic functions (enclosed by the 
extremal choices JL~ and JL~o) may be very narrow in the applications, making partic­
ularly delicate the numerical investigation of the dynamics of nonclassical shocks. For 
numerical works in this direction see Hayes and LeFloch (1998), LeFloch and Rohde 
(2000), and Chalons and LeFloch (2001ab, 2002). 

Important material on the Riemann problem for systems of conservation laws, 
particularly undercompressive shocks in solutions of non-strictly hyperbolic systems, 
is also found in Azevedo et al. (1995, 1996, 1999), CanIc (1998), Hurley and Plohr 
(1995), Hsiao (1980), Isaacson et al. (1992), Isaacson, Marchesin and Plohr (1990), 
Keyfitz (1991, 1995), Keyfitz and Kranzer (1978, 1979), Keyfitz and Mora (2000), 
Plohr and Zumbrun (1996), Schecter, Marchesin, and Plohr (1996), Schecter and 
Shearer (1989), and Shearer, Schaeffer, Marchesin, and Paes-Lemme (1987). 

Chapter VII. The wave interaction estimates and the general technique to derive 
uniform total variation bounds go back to Glimm's pioneering work (1965), based 
on the so-called random-choice scheme. A deterministic version of this method was 
obtained by Liu (1977). The wave front tracking scheme was initially proposed by 
Dafermos (1972) for scalar conservation laws, then extended by DiPerna (1973) to 
systems of two conservation laws, and generalized by Bressan (1992) and Risebro 
(1993) to systems of N equations. The specific formulation adopted in this chapter 
is due to Baiti and Jenssen (1998), as far as genuinely nonlinear fields are concerned. 
Front tracking is also a powerful numerical tool developed by Glimm et al. (1985), 
Chern et al. (1986), Lucier (1986), Klingenberg and Plohr (1991), and many others. 
All of the above papers restrict attention to genuinely nonlinear or linearly degenerate 
fields. 
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The existence theory for non-genuinely nonlinear characteristic fields goes back 
to the extended work by Liu (1981) (and the references therein), based on Glimm's 
scheme. The generalization of the wave front tracking scheme to concave-convex 
characteristic fields (Theorem VII-2.1) is due to the author. The convergence of the 
wave front tracking scheme for N x N systems with more general characteristic fields 
was established by Iguchi and LeFloch (2002). They observed that wave curves of 
such systems are only of class C1 with second-order bounded derivatives (which is 
sufficient to apply Glimm's argument in the proof of Theorem VII-I.1). 

For a non-convex system of two conservation laws arising in elastodynamics, the 
existence of solutions with large total variation was established by Ancona and Marson 
(2000). Other interesting developments on Glimm's scheme and its variants (for phase 
transition dynamics or solutions with a single strong shock, in particular) are found in 
the following papers: Sabh~-Tougeron (1988, 1998), Chern (1989), Temple (1990abc), 
Schochet (1991ab), LeFloch (1993), Young (1993), Asakura (1994, 1999), Corli and 
Sable-Tougeron (1997ab, 2000), Cheverry (1998), and Corli (1999). 

The regularity of the solutions of hyperbolic conservation laws (Section VII-4) 
was investigated by Glimm and Lax (1970), Schaeffer (1973), DiPerna (1976, 1979a), 
Dafermos (1977, 1982, 1985a), Liu (1981, 2000), and Bressan and LeFloch (1999). 

Other approaches to the Cauchy problem for systems of conservation laws were 
discussed, for instance, in Bereux, Bonnetier, and LeFloch (1996), Chen (1997), Chen 
and LeFloch (2000, 2002), Chen and Wang (2002), Perthame (1999), Tartar (1979, 
1982, 1983), and the many references therein. 

Chapter VIII. All of the results in this chapter are based on Baiti, LeFloch, and 
Piccoli (2002ab). 

Chapter IX. The exposition here is based on Hu and LeFloch (2000), which was 
motivated by the earlier results LeFloch (1990b) and LeFloch and Xin (1993). In 
this approach, we basically extend Holmgren's method (more precisely, here, the 
dual formulation due to Haar) to nonlinear systems of conservation laws. Holmgren's 
method was known to be successful for linear PDE's and, by Oleinik's work (1957), for 
scalar conservation laws. Finding a suitable generalization to systems was attempted 
with some success by many authors, including Oleinik (1957), Liu (1976), and LeFloch 
and Xin (1993), who treated piecewise smooth solutions or special systems, only. 
Further generalizations and applications to the framework in Section IX-1 were given 
in Crasta and LeFloch (2002) and LeFloch (2002). 

The continuous dependence of solutions for genuinely nonlinear systems was ob­
tained first by Bressan and Colombo (1995ab) (for systems of two conservation laws) 
and Bressan, Crasta, and Piccoli (2000) (for systems of N equations). These au­
thors developed an homotopy method to compare two (suitably constructed, piecewise 
smooth) approximate solutions and show that the continuous dependence estimate 
held exactly for these approximate solutions. This strategy turned out to be very 
technical. The method was also applied by Ancona and Marson (2000, 2002) to a 
non-convex system of two conservation laws of elastodynamics. 

Next, Liu and Yang (1999a) discovered a functional (equivalent to the £1 norm 
and strictly decreasing in time) for scalar conservation laws with convex flux, opening 
the way to a possible investigation of systems of equations. The research on the 
subject culminated with three papers announced simultaneously in 1998, by Bressan 
et al. (1999), Hu and LeFloch (2000), and Liu and Yang (1999c). These papers 



270 BIBLIOGRAPHICAL NOTES 

provide now three simple proofs of the L1 continuous dependence of solutions for 
systems of conservation laws. A common feature of these proofs is the fact that the 
continuous dependence estimate is satisfied by the approximate solutions up to some 
error term. 

The sharp L1 estimate in Section IX-3 was obtained by Goatin and LeFloch 
(2001b). The technique of nonconservative product was developed (with different 
motivations) by Dal Maso, LeFloch, and Murat (1995) and LeFloch and Liu (1994). 
Lemma IX-3.1 is due to Baiti and Bressan (1997). Theorem IX-3.3 on the convergence 
of the wave measures was established by Bressan and LeFloch (1999) together with 
further regularity results on entropy solutions. The £1 continuous dependence of 
entropy solutions with large total variation for the compressible Euler equations was 
investigated by Goatin and LeFloch (2002). 

Chapter X. The uniqueness of entropy solutions of genuinely nonlinear systems was 
established by Bressan and LeFloch (1997), who introduced the concept of solutions 
with tame variation. A generalization to solutions with tame oscillation was sub­
sequently obtained by Bressan and Goatin (1999). The notion of (<I>,'ljI)-admissible 
entropy solution for general nonlinear hyperbolic systems (including conservative sys­
tems with non-genuinely nonlinear characteristic fields) was introduced by Baiti, 
LeFloch, and Piccoli (2001). The earlier work by Bressan (1995) for systems of conser­
vation laws with genuinely nonlinear fields introduced the new concept of semi-group 
of solutions and established the convergence of the Glimm scheme to a unique limit. 
See also Colombo and Corli (1999) for a uniqueness result involving phase transitions. 

It is an open problem to derive the tame variation property for arbitrary solutions 
with bounded variation. However, based on Dafermos-Filippov's theory of general­
ized characteristics, Trivisa (1999) established that the tame variation property is 
always satisfied by "count ably regular" BV solutions of strictly hyperbolic, genuinely 
nonlinear, 2 x 2 systems of conservation laws. 

Definition X-1.2 covers the concept of weak solutions to nonconservative systems 
in the sense of Dal Maso, LeFloch, and Murat (1990, 1995). See also LeFloch and 
Tzavaras (1996, 1999). For such systems, the existence of entropy solutions to the 
Cauchy problem was established by LeFloch (1988a, 1990a, 1991) and LeFloch and 
Liu (1993). 

Among many earlier results on the uniqueness of entropy solutions, we quote 
the important and pioneering work by DiPerna (1979b) for hyperbolic systems of two 
equations, extended by LeFloch and Xin (2002) to a class of N x N systems. DiPerna's 
method is based on entropy inequalities and covers the case of one arbitrary entropy 
solution and one piecewise smooth solution. It leads to an estimate in the L2 norm, 
to be compared with the L1 estimate in Theorem X-1.6. 

Appendix. For the properties of functions with bounded variation we refer to the 
textbooks by Evans and Gariepy (1992), Federer (1969), Volpert (1967), and Ziemer 
(1989). 
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