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Abstract

This article investigates a nonlinear fifth-order partial differential equation (PDE) in two-mode waves.
The equation generalizes two-mode Sawada-Kotera (tmSK), two-mode Lax (tmLax), and two-mode
Caudrey-Dodd-Gibbon (tmCDG) equations. In 2017, Wazwaz [1] presented three two-mode fifth-order
evolutions equations as tmSK, tmLax, and tmCDG equations for the integrable two-mode KdV equa-
tion and established solitons up to three-soliton solutions. In light of the research above, we examine a
generalized two-mode evolution equation using a logarithmic transformation concerning the equation’s
dispersion. It utilizes the simplified technique of the Hirota method to obtain the multiple solitons as
a single soliton, two solitons, and three solitons with their interactions. Also, we construct one-lump
solutions and their interaction with a soliton and depict the dynamical structures of the obtained solu-
tions for solitons, lump, and their interactions. We show the 3D graphics with their contour plots for
the obtained solutions by taking suitable values of the parameters presented in the solutions. These
equations simultaneously study the propagation of two-mode waves in the identical direction with dif-
ferent phase velocities, dispersion parameters, and nonlinearity. These equations have applications in
several real-life examples, such as gravity-affected waves or gravity-capillary waves, waves in shallow
water, propagating waves in fast-mode and the slow-mode with their phase velocity in a strong and
weak magnetic field, known as magneto-sound propagation in plasmas.

Keywords: Generalized two-mode evolution equation; Simplified Hirota technique; Multiple solitons;
Lump solution; Dependent variable transformation.

1. Introduction

1.1. Motivation

In recent years, the study of the propagation of two-mode different waves in the identical direction
simultaneously [1–6] with different phase velocities, nonlinearity, and dispersion parameters have at-
tracted many researchers and investigators to understand the physical significance of such a model in
gravity-capillary waves, shallow water waves, and magneto-sound propagation in plasma physics. This
model was first noted in 1994 by the Korsunsky [2] to show the deriving of the KdV equation in two-
mode, which is a PDE of second-order in temporal coordinate and governs the propagation of two-mode
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waves in the same direction simultaneously. He proposed the structure of a two-mode equation in a
scaled form with a scaled parameter s for any integrable equation as

utt = s2uxx − λN(u, ux, uxx, ...)− µL(upx, p ≥ 2), (1)

where

λ = (∂t − ξs∂x),

µ = (∂t − ζs∂x),

with

|ξ| ≤ 1, |ζ | ≤ 1, ∂k =
∂

∂k
; k = x, t,

are multiplicative factors with respect to spatial and temporal coordinates with nonlinear parameter ξ
and the dispersion parameter ζ , and N = N(u, ux, uxx, ...) and L = L(upx, p ≥ 2) are nonlinear and
linear terms, respectively. If the second and third terms on the right side of the equation (1) are zero,
then it represents the standard wave equation that has a solution as a sum of two waves propagating in
the opposite directions. One wave with phase x−st propagates in a positive direction, and another wave
with phase x + st propagates in a negative direction. Here, the two-mode wave model propagates two
waves in identical directions simultaneously, making it the required field of study. It supports several
physical models such as gravity-affected waves or gravity-capillary waves, waves in shallow water, and
propagating waves in fast-mode and the slow-mode along with their phase velocity in a strong and weak
magnetic field, known as magneto-sound propagation in plasma physics.

1.2. Aim of the research

By using the equation (1), one can derive the two-mode evolution equation for a known nonlinear
equation. In 2017, Wazwaz [1] formulated two-mode equations of fifth-order for Sawada-Kotera (SK),
Caudrey-Dodd-Gibbon (CDG), and Lax equations and discussed some soliton solutions using the sim-
plified Hirota method. Later in the same year, he proposed a two-mode evolution equation for modified
KdV equation [3] and constructed the solutions for multiple solitons using the tanh-coth method. The
equations

utt = s2uxx − λ

[(

5

3
u3 + 5uuxx

)

x

]

− µu5x, (2)

utt = s2uxx − λ
[(

10u3 + 10uuxx + 5u2
x

)

x

]

− µu5x, (3)

utt = s2uxx − λ
[(

60u3 + 30uuxx

)

x

]

− µu5x, (4)

are the tmSK, tmLax, and tmCDG equations, respectively, where λ and µ stand as in the equation (1).
The equations (2), (3), and (4) contain three nonlinear terms each. The terms uxx and u5x = uxxxxx are
the disperssive terms in all the above said two-mode equations.
This research investigates a generalized two-mode nonlinear equation of fifth-order for SK, CDG, and
Lax equations structured as

utt = s2uxx − λ
[(

C1u
3 + C2uuxx + C3u

2
x

)

x

]

− µu5x, (5)

where C1, C2, and C3 are the constants and u = u(x, t) is the wave surface in x-direction with respect
to the time t. The equation (5) generalizes
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(i) tmSK equation (2) for C1 =
5
3
, C2 = 5, and C3 = 0,

(ii) tmLax equation (3) for C1 = 10, C2 = 10, and C3 = 5,
(iii) tmCDG equation (4) for C1 = 60, C2 = 30, and C3 = 0.
We aim to construct the multi-soliton solutions as one, two, and three soliton solutions and their inter-
actions using the simplified technique of the Hirota method and a one-lump solution and its interaction
with a single soliton. We also desire to show the dynamical structures of the obtained solutions in 2D
and 3D graphics by taking suitable values for the parameters in the solutions for solitons, lump, and
their interactions.

1.3. Literature review

Recently, several researchers have established several two-mode equations for different known equa-
tions using different techniques and used the abbreviation ‘tm’ for two-mode before the name of the
known equation. In literature review, we found many investigators who examine different two-mode
equations for the known equations such as Alquran, Jaradat and Syam [4] studied a two-mode Ko-
rteweg–de Vries–Burgers (tmKdVB) equation and obtained soliton solutions using simplified bilinear
method and Tanh-coth expension method; Wazwaz [5, 6] observed the kink solutions for two-mode
STO (tmSTO) and two-mode fourth-order Burgers (tmfB) equation using simplified Hirota method and
also formulated and analysed the multiple soliton solutions for two-wave mode Kadomtsev–Petviashvili
(tmKP) equation; Kopçasız, Seadawy and Emrullah [7] found dispersive soliton solutions of two-mode
Schrödinger wave equation, using Extended (G′/G) expansion method, Sine-cosine method, and Semi-
inverse variational method; Yu, Zhang et al. [8] studied double-lump solution for two-mode optical
fiber using Hirota method; Gómez [9] constructed exact solutions for a generalized two-mode KdV
(tmKdV) Equation using Improved tanh-coth method; Alquran,Jaradat, et al. [10] studied two-mode
KdV–Burgers–Kuramoto (tmKBK) and two-mode Hirota-Satsuma (tmHS) equations to construct the
soliton solutions using Tanh-coth expension method and Kudryashov method; Kumar, Park et al.
[11] found soliton solutions for two-mode Sawada-Kotera (tmSK) equation using modified Kudryashov
method and new auxiliary equation method; Xiao, Tian et al. [12] created multi-soliton solutions for
two-mode KdV (tmKdV) equation using Bäcklund transformation; Alquran and Jaradat [13] generated
solitary wave solutions for two-mode nonlinear Schrödinger (tmNLS) equation with nonlinearity Kerr
laws; Jaradat, Syam, et al. [14] studied a new two-mode coupled Burgers (tmCB)equation and obtain
kink solutions using simplified Hirota method; Raza, Jhangeer et al. [15] analysied the wave solutions for
two-mode Dynamical analysis and phase portraits of two-mode nonlinear Schrödinger (tmNLS) equation
using Exp-expansion method; Ali, Alquran et al. [16] constructed solitary wave solutions for two-mode
fifth-order Korteweg–de Vries (tmfKdV) equation using Kudryashov-scheme and Sine–cosine function
method; Jaradat, Alquran, et al. [17] studied a two-mode Kuramoto–Sivashinsky (tmKS) equation and
formulated soliton solutions using simplified Hirota method and Tanh-expansion method.
In reviews of the works mentioned above, we observed that two-mode nonlinear evolution equations
have been fascinating to the mathematicians and physicists to observe the propagation of two different
waves in the same direction simultaneously with different phase velocity, nonlinearity, and dispersion.
Many techniques have been used to construct different solutions, such as multiple soliton solutions, kink
solutions, lump solutions, bright-dark solitons, cross-kink waves, rouge waves and others. The different
methods are as the (G′/G)-expansion method, the Lie symmetry method [18–23], the tanh expansion
method, the Hirota bilinear method [24–28], the Bilinear neural network method [29–35], the Darboux
transformation [36, 37], the Kudryshov method, the sech-csch method, the simplified Hirota method,
the sine-cosine method, the Exp-expansion method, the tanh-coth method, the Bäcklund transforma-
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tion [38–40], the Tanh-expansion method, the sinh-cosh method, the new auxiliary equation method,
and many other techniques [41–43].

1.4. Techniques and objective

The simplified Hirota technique [44–47] is a straightforward interpretation of the Hirota method
[48–50] given by Hereman et al. [51]. It is a widely proposed methodology that describes and applies
approaches relevant to nonlinear integrable evolution equations. This technique delivers promising re-
sults for multiple solitons for a broad scope of nonlinear PDEs. This method does not depend on forming
the bilinear form of a nonlinear PDE compared to the Hirota bilinear method; instead, it assumes soliton
solutions as polynomials in the expression of the exponential functions.
We seek a common dependent variable transformation for the tmSK, tmLax, and tmCDG equations
that fulfill the generalized equation’s objective to get a logarithmic transformation. This transformation
with the simplified Hirota technique assists in constructing the multi-soliton solutions as one, two, and
three solitons and the interactions for the generalized equation. We also construct a one-lump solution
and its interaction with a single soliton. For the established lump, soliton, and interaction solutions,
we showcase the dynamics through 3D graphics with their contour plots by choosing appropriate values
for the parameters in the obtained solutions. These solutions in the form of solitons, lumps, and their
interactions can be observed as illustrating the natural phenomena of propagations of waves such as
waves in shallow water, waves in narrow channels, gravity-affected waves or gravity-capillary waves, and
propagating waves in fast-mode and the slow-mode along with their phase velocity in a strong and weak
magnetic field, known as magneto-sound propagation in plasma physics, fiber optics, condensed matter,
and others nonlinear sciences.

This article’s layout is as follows: Section 2 determines a standard logarithmic transformation for
the generalized concerned equation. We utilize the simplified technique of the Hirota method to obtain
the solutions for multiple solitons as one, two, and three solitons and the interactions with dynamical
structures in 3D and their contour plots in Section 3. Section 4 constructs the lump solution and
interaction with a soliton and plots the obtained solutions’ graphics. Section 5 discusses the results and
findings, and the last Section 6 concludes our work.

2. Transformation of dependent variable

Considering the phase variable Θi as

Θi = δix− ηit, (6)

where δi and ηi are the constants and the dispersion, respectively. We create an equation with the linear
terms of Eq. (5) as

utt − s2uxx + uxxxxxt − ζsuxxxxxx = 0, (7)

and substitute u(x, t) = eΘi into it to get

−ζsδ6i e
δix−ηit − s2δ2i e

δix−ηit − δ5i ηie
δix−ηit + w2

i e
δix−ηit = 0. (8)

Now solving the equation (8) for ηi, we get the dispersion which is independent of ξ as

ηi =
1

2

(

δ5i ± δi

√

4ζsδ4i + 4s2 + δ8i

)

. (9)
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Next, assuming the logarithimic transformation as

u = Λ(lnτ)2x, (10)

or

u = Λ

(

ττxx − τ 2x
τ 2

)

, (11)

where τ = τ(x, t) and Λ are the auxiliary function and constant, respectively. By substituting τ = 1+eΘi

with Eq. (9) into Eq. (5), and solving for Λ, with the scaled parameter s as zero and ξ = ζ = 1, we get
(i) Λ = 6 for tmSK equation (2) with C1 =

5
3
, C2 = 5, and C3 = 0,

(ii) Λ = 2 for tmLax equation (3) with C1 = 10, C2 = 10, and C3 = 5,
(iii) Λ = 1 for tmCDG equation (4) with C1 = 60, C2 = 30, and C3 = 0.
We create a system with coefficient matrix M for the values of the constants {C1, C2, C3}, the coulmn
vector D with the values of the contant Λ, and the unkown column vector P for the unkowns {p1, p2, p3}
as

MP = D ⇒





10 10 5
5
3

5 0
60 30 0









p1
p2
p3



 =





2
6
1



 . (12)

We determine the values of p1, p2 and p3 by solving the system (12) as

p1 = − 7

10
, p2 =

43

30
, p3 = −16

15
.

So, we get a general value for Λ = p1C1 + p2C2 + p3C3 as

Λ = − 1

30
(21C1 − 43C2 + 32C3),

and the dependent variable transformation (11) for the Eq. (5) will be as

u(x, t) = − 1

30
(21C1 − 43C2 + 32C3)

(

ττxx − τ 2x
τ 2

)

. (13)

3. Soliton solutions with simplified Hirota method

3.1. Solution for a single soliton

We assume the function τ in Eq. (13) as

τ(x, t) = 1 + eΘ1 = 1 + e

(

δ1x−
1

2
t
(

δ5
1
+
√

4ζδ6
1
s+4δ2

1
s2+δ10

1

))

. (14)

Deducing the terms τx and τxx from the equation (14) as

τx = δ1e

(

δ1x−
1

2
t
(

δ5
1
+
√

4ζδ6
1
s+4δ2

1
s2+δ10

1

))

, (15)

τxx = δ21e

(

δ1x−
1

2
t
(

δ5
1
+
√

4ζδ6
1
s+4δ2

1
s2+δ10

1

))

. (16)

On substituting the expressions from the Eqs. (14), (15) and (16) into Eq. (13), we obtain a single-
soliton solution as

u(x, t) = −(21C1 − 43C2 + 32C3)δ
2
1e

(

1

2
t
(

δ5
1
+
√

δ2
1(4ζδ41s+δ8

1
+4s2)

)

+δ1x
)

30

(

e

(

1

2
t
(

δ5
1
+
√

δ2
1(4ζδ41s+δ8

1
+4s2)

))

+ eδ1x
)2 . (17)
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Figure 1: Profiles for a single soliton via (13) with function (14) and the values (ζ = 1, s = 0): (a) tmSK equation:
δ1 = 1, C1 = 5

3
, C2 = 5, C3 = 0; (b) tmLax equation: δ1 = −1, C1 = 10, C2 = 10, C3 = 5; and (c) tmCDG equation:

δ1 = −1.2, C1 = 60, C2 = 30, C3 = 0. (d-f) plots the contours with respect to (a-c) in xt-plane.

3.2. Solution for two solitons

For a solution of two solitons, we take the τ as

τ(x, t) = 1 + eΘ1 + eΘ2 + χ12e
Θ1+Θ2, (18)

where χ12 is the coefficient of dispersion. It can be calculated by putting τ and its derivatives from
Eq. (18) into Eq. (13). We utilized symbolic computation to obtain the values for χ12 with existence
condition ξ = ζ = 1 as per suggested by [1] as

χ12 =
(δ1 − δ2)

2(δ21 − δ1δ2 + δ22)

(δ1 + δ2)2(δ21 + δ1δ2 + δ22)
,

χ12 =
(δ1 − δ2)

2

(δ1 + δ2)2
,

χ12 =
(δ1 − δ2)

2(δ21 − δ1δ2 + δ22)

(δ1 + δ2)2(δ
2
1 + δ1δ2 + δ22)

,
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for tmSK, tmLax, and tmCDG, respectively. We create a system for {C1, C2, C3} with the variables
{q1, q2, q3} to be determined correcponding to χ12 as

5

3
q1 + 5q2 =

(δ1 − δ2)
2(δ21 − δ1δ2 + δ22)

(δ1 + δ2)2(δ
2
1 + δ1δ2 + δ22)

,

10q1 + 10q2 + 5q3 =
(δ1 − δ2)

2

(δ1 + δ2)2
,

60q1 + 30q2 =
(δ1 − δ2)

2(δ21 − δ1δ2 + δ22)

(δ1 + δ2)2(δ21 + δ1δ2 + δ22)
. (19)

We get the values for q1, q2, and q3 by solving the system (19), given as

q1 = − 1

10

(δ1 − δ2)
2(δ21 − δ1δ2 + δ22)

(δ1 + δ2)2(δ21 + δ1δ2 + δ22)
,

q2 =
7

30

(δ1 − δ2)
2(δ21 − δ1δ2 + δ22)

(δ1 + δ2)2(δ21 + δ1δ2 + δ22)
,

q3 = − 1

15

(δ1 − δ2)
2(δ21 − 7δ1δ2 + δ22)

(δ1 + δ2)2(δ21 + δ1δ2 + δ22)
. (20)

Therefore, we constitute a general value for χ12 = q1C1 + q2C2 + q3C3 as

χ12 = −(δ1 − δ2)
2{(3C1 − 7C2 + 2C3)δ

2
1 − (3C1 − 7C2 + 14C3)δ1δ2 + (3C1 − 7C2 + 2C3)δ

2
2}

30(δ1 + δ2)2(δ21 + δ1δ2 + δ22)
,

and it can be extended in general for the function τ

τ(x, t) = 1 + eΘi + eΘj + χije
Θi+Θj , (21)

as

χij = −
(δi − δj)

2{(3C1 − 7C2 + 2C3)δ
2
i − (3C1 − 7C2 + 14C3)δiδj + (3C1 − 7C2 + 2C3)δ

2
j}

30(δi + δj)2(δ
2
i + δiδj + δ2j )

, 1 ≤ i < j ≤ N,

(22)
where N is a positive integer. Therefore, by Eq. (18) we get

τx = δ1e
Θ1 + δ2e

Θ1 + χ12(δ1 + δ2)e
Θ1+Θ2, (23)

τxx = δ21e
Θ1 + δ22e

Θ1 + χ12(δ1 + δ2)
2eΘ1+Θ2 . (24)

By substituting the Eqs. (18), (23) and (24) into Eq. (13), we obtain a two-soliton solution.
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Figure 2: Profiles for the interaction of two solitons via (13) with function (18) and the values: (a) tmSK equation:
δ1 = 1.1, δ2 = −0.9, C1 = 5

3
, C2 = 5, C3 = 0, ζ = 1, s = 1; (b) tmLax equation: δ1 = −0.6, δ2 = 0.8, C1 = 10, C2 =

10, C3 = 5, ζ = 1, s = 2; and (c) tmCDG equation: δ1 = 0.5, δ2 = −0.6, C1 = 60, C2 = 30, C3 = 0, ζ = 1, s = 3. (d-f)
plots the contours with respect to (a-c) in xt-plane.

3.3. Solution for three solitons

To achieve a solution for three solitons [1, 44], we pressume the τ as

τ(x, t) = 1 + eΘ1 + eΘ2 + eΘ3 + χ12e
Θ1+Θ2 + χ13e

Θ1+Θ3 + χ23e
Θ2+Θ3 + χ123e

Θ1+Θ2+Θ3 , (25)

where χmn with 1 ≤ m < n ≤ 3 satisfies the Eq. (22) and χ123 is the coefficient of dispersion. The value
of χ123 can be obtained using symbolic software to fulfill the constraint:

χ123 = χ12χ13χ23. (26)

Thus, from Eq. (25), we have

τx =
3
∑

p=1

δpe
Θp +

∑

1≤p<q≤3

(δp + δq)χpqe
Θp+Θq +

(

3
∑

p=1

δp

)

χ123e
Θ1+Θ2+Θ3 , (27)

τxx =
3
∑

p=1

δ2pe
Θp +

∑

1≤p<q≤3

(δp + δq)
2χpqe

Θp+Θq +

(

3
∑

p=1

δp

)2

χ123e
Θ1+Θ2+Θ3 . (28)

On putting the Eqs. (25), (27) and (28) into Eq. (13), we get a solution for three solitons.
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Figure 3: Profiles for the interaction of three solitons via (13) with function (25) and the values (ζ = 1, s = 2): (a) tmSK
equation: δ1 = 0.6, δ2 = 0.7, δ3 = −0.9, C1 = 5

3
, C2 = 5, C3 = 0; (b) tmLax equation: δ1 = −1, δ2 = −1.1, δ3 = 0.9, C1 =

10, C2 = 10, C3 = 5; and (c) tmCDG equation: δ1 = −0.6, δ2 = 0.5, δ3 = 0.45, C1 = 60, C2 = 30, C3 = 0. (d-f) plots the
contours with respect to (a-c) in xt-plane.

4. Lump and its interection with solitons

4.1. One lump solution

To establish a solution for lump, we pick the function τ in such a way that solution u comes to be
a rational solution, as

τ(x, t) = X2 + Y 2 + h7, (29)

X(x, t) = h1x+ h2t + h3,

Y (x, t) = h4x+ h5t+ h6,

where hi; 1 ≤ i ≤ 7 are the constants that will be determined. On transforming the equation (5) with
dependent variable transformation (13), we get a heptalinear or septalinear equation as

12600C1s
2τ 3xτ

4 + 6300C1τttτxτ
5 − 12600C1τ

2
t τxτ

4 − 25800C2s
2τ 3xτ

4 − 12900C2τttτxτ
5 + 25800C2τ

2
t τxτ

4

+9600C3τttτxτ
5 + . . .+12900C2τ(6x)tτ

6 +9600ζC3sτ(7x)τ
6 − 67200ζC3sτxτ(6x)τ

5 − 9600C3τ(6x)tτ
6 = 0,

(30)

where midterms are skipped due to lengthy-expression. Using the symbolic computation, we substitute
the equation (29) in the heptalinear equation (30) and collect the coefficients of independent variables
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x and t. Therefore, we obtain a set of equations in the parameters hi; 1 ≤ i ≤ 7. By solving these
equations, one can get a set of solutions with some appropriate choices; we show here three sets of
solutions as given below:
(i) h3 = h6 = h7 = 0, h1 =

−h4h5

h2
; h2 6= 0, h2 = h2, h4 = h4, h5 = h5,

(ii) h1 = h5 = h6 = 0, h7 = −h2
3, h2 = h2, h3 = h3, h4 = h4,

(iii) h1 = h5 = h6 = 0, h7 =
3h2

3

5
h2 = h2, h3 = h3, h4 = h4.

Thus, we get a one-lump solution by substituting Eq. (29) with a solution set into the Eq. (13) as

u(x, t) =
(21C1 − 43C2 + 32C3)h

2
4 (h

2
4x

2 − h2
2t

2)

15 (h2
2t

2 + h2
4x

2)
2 , (31)

u(x, t) =
(21C1 − 43C2 + 32C3)h

2
4 (h

2
2 (−t2)− 2h3h2t + h2

4x
2)

15 (h2
2t

2 + 2h3h2t+ h2
4x

2)
2 , (32)

u(x, t) =
−(21C1 − 43C2 + 32C3)h

2
4

(

(h2t+ h3)
2 − h2

4x
2 +

3h2

3

5

)

15
(

(h2t+ h3) 2 + h2
4x

2 +
3h2

3

5

)2 , (33)

for the solution set (i), (ii) and (iii), respectively.
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Figure 4: Profiles for one lump via (31) with function (29) and the values: h2 = 0.5, h4 = 0.5; (a) tmSK equation: C1 =
5

3
, C2 = 5, C3 = 0; (b) tmLax equation: C1 = 10, C2 = 10, C3 = 5; and (c) tmCDG equation: C1 = 60, C2 = 30, C3 = 0.

(d-f) plots the contours with respect to (a-c) in xt-plane.
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Figure 5: Profiles for one lump via (32) with function (29) and the values: h2 = 3, h3 = 0.5, h4 = 5; (a) tmSK
equation: C1 = 5

3
, C2 = 5, C3 = 0; (b) For tmLax equation: C1 = 10, C2 = 10, C3 = 5; and (c) tmCDG equation:

C1 = 60, C2 = 30, C3 = 0. (d-f) plots the contours with respect to (a-c) in xt-plane.

4.2. One lump interaction with single soliton

In order to construct an interaction solution of a lump and a soliton, we assume the auxiliary function
τ as

τ(x, t) = X2 + Y 2 + h7 + ek1x+k2t, (34)

X(x, t) = h1x+ h2t+ h3,

Y (x, t) = h4x+ h5t + h6,

where hi; 1 ≤ i ≤ 7 and ki; 1 ≤ i ≤ 2 are the constants that will be determined. Using the symbolic
computation, we substitute the equation (34) in the heptalinear equation (30) and collect the coefficients
of independent variables x and t. Therefore, we obtain a set of equations in the parameters hi; 1 ≤ i ≤ 7
and ki; 1 ≤ i ≤ 2. On solving these equations, one can get a set of solutions with some appropriate
choices, we show here a solution as given below:
h2 =

1
30
(441C3

1h
5
1−1806C2

1C2h
5
1+1344C2

1C3h
5
1+1849C1C

2
2h

5
1−7998C2

2h
5
1−2752C1C2C3h

5
1−240C2C3h

5
1+

3906C1C2h
5
1+1024C1C

2
3h

5
1+4608C2

3h
5
1+3024C1C3h

5
1+113400h5

1), h3 = h6 = h7 = h4 = 0, h1 = h1, h5 =
h5, k1 = k1, k2 = k2
Therefore, by substituting Eq. (34) with the solution set into the Eq. (13), we get an interaction
solution of a lump with a single soliton.
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Figure 6: Profiles for the interaction of one lump and a single soliton via (13) with function (34) and the values: h1 =
0.8, h5 = 0.8, k1 = 4, k2 = 1; (a) tmSK equation: C1 = 5

3
, C2 = 5, C3 = 0; (b) tmLax equation: C1 = 10, C2 = 10, C3 = 5;

and (c) tmCDG equation: C1 = 60, C2 = 30, C3 = 0. (d-f) plots the contours with respect to (a-c) in xt-plane.

5. Results and discussion

It is well known that the KdV equations of fifth-order, such as Lax, CDG, and SK equations, are
completely integrable. As the tmLax, tmCDG, and tmSK are the two-mode equations for Lax, CDG,
and SK equations, respectively; therefore, all convey the same integrable properties and multiple solitons
depending on the parameters C1, C2, C3, s, ξ, and ζ . We obtained soliton, lump, and interaction solutions
for the said equations and showcased the dynamics for the obtained solutions. Thus, the results can be
discussed as

• In figure 1, we illustrate the single soliton solution due to the movable singularity at x = 0 with
respect to the parameters δ1 = 1, ζ = 1, s = 0, δ1 = −1.2, ζ = 1, s = 0 and δ1 = −1.2, ζ = 1, s = 0
for tmSK, tmLax and tmCDG, respectively.

• Figure 2 shows the interaction between two solitons with their corresponding movable singularities
with different scale parameter s = 1, 2, and 3. We obtain the interaction of two solitons for the
parameters δ1 = 1.1, δ2 = −0.9, ζ = 1, s = 1, δ1 = −0.6, δ2 = 0.8, ζ = 1, s = 2 and δ1 = 0.5, δ2 =
−0.6, ζ = 1, s = 3, for tmSK, tmLax and tmCDG, respectively.

12



• In figure 3, we depict the three solitons interaction with respect to the movable singularities on
fixed scale parameter s = 2. We get three solitons interaction for the parameters δ1 = 1.1, δ2 =
−0.9, ζ = 1, s = 1, δ1 = −0.6, δ2 = 0.8, ζ = 1, s = 2 and δ1 = 0.5, δ2 = −0.6, ζ = 1, s = 3, for
tmSK, tmLax and tmCDG, respectively.

• Figure 4 illustrate the dynamics of single lump solution due to the singularity at x = −h2

h4

t; h4 6= 0
with fixed values of parameters h2 = h4 = 0.5 for the tmSK, tmLax, and tmCDG equations.

• In figure 5, we show the depiction of single lump solution with singularity at x =

√
h2

2
t2+2h3h2t

h4
; h4 6=

0 with respect to the fixed parameters h2 = 3, h3 = 0.5, h4 = 5 for the tmSK, tmLax, and tmCDG
equations.

• Figure 6 depicts the interaction between one lump and a single soliton for the fixed parameters
h1 = h5 = 0.8, k1 = 4, k2 = 1 for the tmSK, tmLax and tmCDG equations.

6. Conclusions

In summary, we investigated a generalized nonlinear two-mode fifth-order partial differential equation
and studied it for tmSK, tmLax, and tmCDG equations. We examined this generalized two-mode
evolution equation by a logarithmic transformation concerning the dispersion of the equation. We used
the simplified technique of the Hirota method to get the solutions for multiple solitons and constructed
one, two, and three solitons and the interactions. Also, We built a one-lump solution and its interaction
with a soliton. We showcased the dynamics of the obtained solutions through 3D graphics with their
contour plots by choosing appropriate values for the parameters. We utilized the symbolic computational
software Mathematica to obtain the desired parameters and the solutions for multi-solitons, lump, and
their interactions. The tmSK, tmLax, and tmCDG equations simultaneously study the propagation of
two-mode waves in the identical direction with different phase velocities, dispersion parameters, and
nonlinearity. These equations have applications in several real-life examples, such as gravity-affected
waves or gravity-capillary waves, waves in shallow water, propagating waves in fast-mode and the
slow-mode with their phase velocity in a strong and weak magnetic field, known as magneto-sound
propagation in plasmas.

In the extension work, our focus is on obtaining the different solutions other than the obtained
solutions, such as breathers and their interactions with solitons and lumps. Also, anyone will be able to
apply the approach methodology to get a general logarithmic transformation for generalized nonlinear
equations with different values of R in its dependent variable transformation. Another future work
direction is to seek the solutions for different temporal dispersions, such as third-order or more, and
analyze their impact or changes concerning the standard known nonlinear equations.
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