Lump, soliton, and interaction solutions to a generalized two-mode higher-order nonlinear evolution equation in plasma physics

Sachin Kumar^{a,*}, Brij Mohan^{b,*}, Raj Kumar^c

^aDepartment of Mathematics, Faculty of Mathematical Sciences, University of Delhi, Delhi-110007, India ^bDepartment of Mathematics, Hansraj College, University of Delhi, Delhi-110007, India ^cDepartment of Mathematics, Kirori Mal College, University of Delhi, Delhi-110007, India

Abstract

This article investigates a nonlinear fifth-order partial differential equation (PDE) in two-mode waves. The equation generalizes two-mode Sawada-Kotera (tmSK), two-mode Lax (tmLax), and two-mode Caudrey-Dodd-Gibbon (tmCDG) equations. In 2017, Wazwaz [1] presented three two-mode fifth-order evolutions equations as tmSK, tmLax, and tmCDG equations for the integrable two-mode KdV equation and established solitons up to three-soliton solutions. In light of the research above, we examine a generalized two-mode evolution equation using a logarithmic transformation concerning the equation's dispersion. It utilizes the simplified technique of the Hirota method to obtain the multiple solitons as a single soliton, two solitons, and three solitons with their interactions. Also, we construct one-lump solutions and their interaction with a soliton and depict the dynamical structures of the obtained solutions for solitons, lump, and their interactions. We show the 3D graphics with their contour plots for the obtained solutions by taking suitable values of the parameters presented in the solutions. These equations simultaneously study the propagation of two-mode waves in the identical direction with different phase velocities, dispersion parameters, and nonlinearity. These equations have applications in several real-life examples, such as gravity-affected waves or gravity-capillary waves, waves in shallow water, propagating waves in fast-mode and the slow-mode with their phase velocity in a strong and weak magnetic field, known as magneto-sound propagation in plasmas.

Keywords: Generalized two-mode evolution equation; Simplified Hirota technique; Multiple solitons; Lump solution; Dependent variable transformation.

1. Introduction

1.1. Motivation

In recent years, the study of the propagation of two-mode different waves in the identical direction simultaneously [1–6] with different phase velocities, nonlinearity, and dispersion parameters have attracted many researchers and investigators to understand the physical significance of such a model in gravity-capillary waves, shallow water waves, and magneto-sound propagation in plasma physics. This model was first noted in 1994 by the Korsunsky [2] to show the deriving of the KdV equation in two-mode, which is a PDE of second-order in temporal coordinate and governs the propagation of two-mode

^{*}Corresponding authors: brijmohan6414@gmail.com (Brij Mohan) and sachinambariya@gmail.com (S. Kumar)

waves in the same direction simultaneously. He proposed the structure of a two-mode equation in a scaled form with a scaled parameter s for any integrable equation as

$$u_{tt} = s^2 u_{xx} - \lambda N(u, u_x, u_{xx}, \dots) - \mu L(u_{px}, p \ge 2), \tag{1}$$

where

$$\lambda = (\partial_t - \xi s \partial_x),$$

$$\mu = (\partial_t - \zeta s \partial_x),$$

with

$$|\xi| \le 1, |\zeta| \le 1, \partial_k = \frac{\partial}{\partial_k}; k = x, t,$$

are multiplicative factors with respect to spatial and temporal coordinates with nonlinear parameter ξ and the dispersion parameter ζ , and $N=N(u,u_x,u_{xx},...)$ and $L=L(u_{px},p\geq 2)$ are nonlinear and linear terms, respectively. If the second and third terms on the right side of the equation (1) are zero, then it represents the standard wave equation that has a solution as a sum of two waves propagating in the opposite directions. One wave with phase x-st propagates in a positive direction, and another wave with phase x+st propagates in a negative direction. Here, the two-mode wave model propagates two waves in identical directions simultaneously, making it the required field of study. It supports several physical models such as gravity-affected waves or gravity-capillary waves, waves in shallow water, and propagating waves in fast-mode and the slow-mode along with their phase velocity in a strong and weak magnetic field, known as magneto-sound propagation in plasma physics.

1.2. Aim of the research

By using the equation (1), one can derive the two-mode evolution equation for a known nonlinear equation. In 2017, Wazwaz [1] formulated two-mode equations of fifth-order for Sawada-Kotera (SK), Caudrey-Dodd-Gibbon (CDG), and Lax equations and discussed some soliton solutions using the simplified Hirota method. Later in the same year, he proposed a two-mode evolution equation for modified KdV equation [3] and constructed the solutions for multiple solitons using the tanh-coth method. The equations

$$u_{tt} = s^2 u_{xx} - \lambda \left[\left(\frac{5}{3} u^3 + 5 u u_{xx} \right)_x \right] - \mu u_{5x}, \tag{2}$$

$$u_{tt} = s^2 u_{xx} - \lambda \left[\left(10u^3 + 10u u_{xx} + 5u_x^2 \right)_x \right] - \mu u_{5x}, \tag{3}$$

$$u_{tt} = s^2 u_{xx} - \lambda \left[\left(60u^3 + 30u u_{xx} \right)_x \right] - \mu u_{5x}, \tag{4}$$

are the tmSK, tmLax, and tmCDG equations, respectively, where λ and μ stand as in the equation (1). The equations (2), (3), and (4) contain three nonlinear terms each. The terms u_{xx} and $u_{5x} = u_{xxxxx}$ are the disperssive terms in all the above said two-mode equations.

This research investigates a generalized two-mode nonlinear equation of fifth-order for SK, CDG, and Lax equations structured as

$$u_{tt} = s^2 u_{xx} - \lambda \left[\left(C_1 u^3 + C_2 u u_{xx} + C_3 u_x^2 \right)_x \right] - \mu u_{5x}, \tag{5}$$

where C_1 , C_2 , and C_3 are the constants and u = u(x, t) is the wave surface in x-direction with respect to the time t. The equation (5) generalizes

- (i) tmSK equation (2) for $C_1 = \frac{5}{3}$, $C_2 = 5$, and $C_3 = 0$,
- (ii) tmLax equation (3) for $C_1 = 10, C_2 = 10$, and $C_3 = 5$,
- (iii) tmCDG equation (4) for $C_1 = 60, C_2 = 30, \text{ and } C_3 = 0.$

We aim to construct the multi-soliton solutions as one, two, and three soliton solutions and their interactions using the simplified technique of the Hirota method and a one-lump solution and its interaction with a single soliton. We also desire to show the dynamical structures of the obtained solutions in 2D and 3D graphics by taking suitable values for the parameters in the solutions for solitons, lump, and their interactions.

1.3. Literature review

Recently, several researchers have established several two-mode equations for different known equations using different techniques and used the abbreviation 'tm' for two-mode before the name of the known equation. In literature review, we found many investigators who examine different two-mode equations for the known equations such as Alguran, Jaradat and Syam [4] studied a two-mode Korteweg-de Vries-Burgers (tmKdVB) equation and obtained soliton solutions using simplified bilinear method and Tanh-coth expension method; Wazwaz [5, 6] observed the kink solutions for two-mode STO (tmSTO) and two-mode fourth-order Burgers (tmfB) equation using simplified Hirota method and also formulated and analysed the multiple soliton solutions for two-wave mode Kadomtsev-Petviashvili (tmKP) equation; Kopçasız, Seadawy and Emrullah [7] found dispersive soliton solutions of two-mode Schrödinger wave equation, using Extended (G'/G) expansion method, Sine-cosine method, and Semiinverse variational method; Yu, Zhang et al. [8] studied double-lump solution for two-mode optical fiber using Hirota method; Gómez [9] constructed exact solutions for a generalized two-mode KdV (tmKdV) Equation using Improved tanh-coth method; Alguran, Jaradat, et al. [10] studied two-mode KdV-Burgers-Kuramoto (tmKBK) and two-mode Hirota-Satsuma (tmHS) equations to construct the soliton solutions using Tanh-coth expension method and Kudryashov method; Kumar, Park et al. [11] found soliton solutions for two-mode Sawada-Kotera (tmSK) equation using modified Kudryashov method and new auxiliary equation method; Xiao, Tian et al. [12] created multi-soliton solutions for two-mode KdV (tmKdV) equation using Bäcklund transformation; Alguran and Jaradat [13] generated solitary wave solutions for two-mode nonlinear Schrödinger (tmNLS) equation with nonlinearity Kerr laws; Jaradat, Syam, et al. [14] studied a new two-mode coupled Burgers (tmCB)equation and obtain kink solutions using simplified Hirota method; Raza, Jhangeer et al. [15] analysied the wave solutions for two-mode Dynamical analysis and phase portraits of two-mode nonlinear Schrödinger (tmNLS) equation using Exp-expansion method; Ali, Alguran et al. [16] constructed solitary wave solutions for two-mode fifth-order Korteweg-de Vries (tmfKdV) equation using Kudryashov-scheme and Sine-cosine function method; Jaradat, Alguran, et al. [17] studied a two-mode Kuramoto-Sivashinsky (tmKS) equation and formulated soliton solutions using simplified Hirota method and Tanh-expansion method.

In reviews of the works mentioned above, we observed that two-mode nonlinear evolution equations have been fascinating to the mathematicians and physicists to observe the propagation of two different waves in the same direction simultaneously with different phase velocity, nonlinearity, and dispersion. Many techniques have been used to construct different solutions, such as multiple soliton solutions, kink solutions, lump solutions, bright-dark solitons, cross-kink waves, rouge waves and others. The different methods are as the (G'/G)-expansion method, the Lie symmetry method [18–23], the tanh expansion method, the Hirota bilinear method [24–28], the Bilinear neural network method [29–35], the Darboux transformation [36, 37], the Kudryshov method, the sech-csch method, the simplified Hirota method, the sine-cosine method, the Exp-expansion method, the tanh-coth method, the Bäcklund transforma-

tion [38–40], the Tanh-expansion method, the sinh-cosh method, the new auxiliary equation method, and many other techniques [41–43].

1.4. Techniques and objective

The simplified Hirota technique [44–47] is a straightforward interpretation of the Hirota method [48–50] given by Hereman et al. [51]. It is a widely proposed methodology that describes and applies approaches relevant to nonlinear integrable evolution equations. This technique delivers promising results for multiple solitons for a broad scope of nonlinear PDEs. This method does not depend on forming the bilinear form of a nonlinear PDE compared to the Hirota bilinear method; instead, it assumes soliton solutions as polynomials in the expression of the exponential functions.

We seek a common dependent variable transformation for the tmSK, tmLax, and tmCDG equations that fulfill the generalized equation's objective to get a logarithmic transformation. This transformation with the simplified Hirota technique assists in constructing the multi-soliton solutions as one, two, and three solitons and the interactions for the generalized equation. We also construct a one-lump solution and its interaction with a single soliton. For the established lump, soliton, and interaction solutions, we showcase the dynamics through 3D graphics with their contour plots by choosing appropriate values for the parameters in the obtained solutions. These solutions in the form of solitons, lumps, and their interactions can be observed as illustrating the natural phenomena of propagations of waves such as waves in shallow water, waves in narrow channels, gravity-affected waves or gravity-capillary waves, and propagating waves in fast-mode and the slow-mode along with their phase velocity in a strong and weak magnetic field, known as magneto-sound propagation in plasma physics, fiber optics, condensed matter, and others nonlinear sciences.

This article's layout is as follows: Section 2 determines a standard logarithmic transformation for the generalized concerned equation. We utilize the simplified technique of the Hirota method to obtain the solutions for multiple solitons as one, two, and three solitons and the interactions with dynamical structures in 3D and their contour plots in Section 3. Section 4 constructs the lump solution and interaction with a soliton and plots the obtained solutions' graphics. Section 5 discusses the results and findings, and the last Section 6 concludes our work.

2. Transformation of dependent variable

Considering the phase variable Θ_i as

$$\Theta_i = \delta_i x - \eta_i t, \tag{6}$$

where δ_i and η_i are the constants and the dispersion, respectively. We create an equation with the linear terms of Eq. (5) as

$$u_{tt} - s^2 u_{xx} + u_{xxxxt} - \zeta s u_{xxxxx} = 0, \tag{7}$$

and substitute $u(x,t) = e^{\Theta_i}$ into it to get

$$-\zeta s \delta_i^6 e^{\delta_i x - \eta_i t} - s^2 \delta_i^2 e^{\delta_i x - \eta_i t} - \delta_i^5 \eta_i e^{\delta_i x - \eta_i t} + w_i^2 e^{\delta_i x - \eta_i t} = 0.$$

$$(8)$$

Now solving the equation (8) for η_i , we get the dispersion which is independent of ξ as

$$\eta_i = \frac{1}{2} \left(\delta_i^5 \pm \delta_i \sqrt{4\zeta s \delta_i^4 + 4s^2 + \delta_i^8} \right). \tag{9}$$

Next, assuming the logarithmic transformation as

$$u = \Lambda(ln\tau)_{2x},\tag{10}$$

or

$$u = \Lambda \left(\frac{\tau \tau_{xx} - \tau_x^2}{\tau^2} \right), \tag{11}$$

where $\tau = \tau(x, t)$ and Λ are the auxiliary function and constant, respectively. By substituting $\tau = 1 + e^{\Theta_i}$ with Eq. (9) into Eq. (5), and solving for Λ , with the scaled parameter s as zero and $\xi = \zeta = 1$, we get (i) $\Lambda = 6$ for tmSK equation (2) with $C_1 = \frac{5}{3}$, $C_2 = 5$, and $C_3 = 0$,

(ii) $\Lambda = 2$ for tmLax equation (3) with $C_1 = 10, C_2 = 10$, and $C_3 = 5$,

(iii) $\Lambda = 1$ for tmCDG equation (4) with $C_1 = 60, C_2 = 30$, and $C_3 = 0$.

We create a system with coefficient matrix M for the values of the constants $\{C_1, C_2, C_3\}$, the coulmn vector D with the values of the contant Λ , and the unknown column vector P for the unknowns $\{p_1, p_2, p_3\}$ as

$$MP = D \Rightarrow \begin{pmatrix} 10 & 10 & 5 \\ \frac{5}{3} & 5 & 0 \\ 60 & 30 & 0 \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 6 \\ 1 \end{pmatrix}.$$
 (12)

We determine the values of p_1, p_2 and p_3 by solving the system (12) as

$$p_1 = -\frac{7}{10}, p_2 = \frac{43}{30}, p_3 = -\frac{16}{15}.$$

So, we get a general value for $\Lambda = p_1C_1 + p_2C_2 + p_3C_3$ as

$$\Lambda = -\frac{1}{30}(21C_1 - 43C_2 + 32C_3),$$

and the dependent variable transformation (11) for the Eq. (5) will be as

$$u(x,t) = -\frac{1}{30}(21C_1 - 43C_2 + 32C_3)\left(\frac{\tau\tau_{xx} - \tau_x^2}{\tau^2}\right). \tag{13}$$

3. Soliton solutions with simplified Hirota method

3.1. Solution for a single soliton

We assume the function τ in Eq. (13) as

$$\tau(x,t) = 1 + e^{\Theta_1} = 1 + e^{\left(\delta_1 x - \frac{1}{2}t\left(\delta_1^5 + \sqrt{4\zeta\delta_1^6 s + 4\delta_1^2 s^2 + \delta_1^{10}}\right)\right)}.$$
 (14)

Deducing the terms τ_x and τ_{xx} from the equation (14) as

$$\tau_x = \delta_1 e^{\left(\delta_1 x - \frac{1}{2} t \left(\delta_1^5 + \sqrt{4\zeta \delta_1^6 s + 4\delta_1^2 s^2 + \delta_1^{10}}\right)\right)},\tag{15}$$

$$\tau_{xx} = \delta_1^2 e^{\left(\delta_1 x - \frac{1}{2}t\left(\delta_1^5 + \sqrt{4\zeta\delta_1^6 s + 4\delta_1^2 s^2 + \delta_1^{10}}\right)\right)}.$$
 (16)

On substituting the expressions from the Eqs. (14), (15) and (16) into Eq. (13), we obtain a single-soliton solution as

$$u(x,t) = -\frac{(21C_1 - 43C_2 + 32C_3)\delta_1^2 e^{\left(\frac{1}{2}t\left(\delta_1^5 + \sqrt{\delta_1^2(4\zeta\delta_1^4 s + \delta_1^8 + 4s^2)}\right) + \delta_1 x\right)}}{30\left(e^{\left(\frac{1}{2}t\left(\delta_1^5 + \sqrt{\delta_1^2(4\zeta\delta_1^4 s + \delta_1^8 + 4s^2)}\right)\right)} + e^{\delta_1 x}\right)^2}.$$
(17)

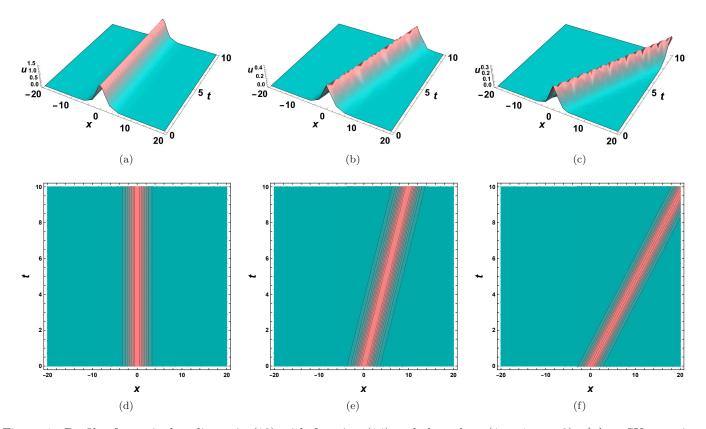


Figure 1: Profiles for a single soliton via (13) with function (14) and the values ($\zeta = 1, s = 0$): (a) tmSK equation: $\delta_1 = 1, C_1 = \frac{5}{3}, C_2 = 5, C_3 = 0$; (b) tmLax equation: $\delta_1 = -1, C_1 = 10, C_2 = 10, C_3 = 5$; and (c) tmCDG equation: $\delta_1 = -1.2, C_1 = 60, C_2 = 30, C_3 = 0$. (d-f) plots the contours with respect to (a-c) in xt-plane.

3.2. Solution for two solitons

For a solution of two solitons, we take the τ as

$$\tau(x,t) = 1 + e^{\Theta_1} + e^{\Theta_2} + \chi_{12}e^{\Theta_1 + \Theta_2}, \tag{18}$$

where χ_{12} is the coefficient of dispersion. It can be calculated by putting τ and its derivatives from Eq. (18) into Eq. (13). We utilized symbolic computation to obtain the values for χ_{12} with existence condition $\xi = \zeta = 1$ as per suggested by [1] as

$$\chi_{12} = \frac{(\delta_1 - \delta_2)^2 (\delta_1^2 - \delta_1 \delta_2 + \delta_2^2)}{(\delta_1 + \delta_2)^2 (\delta_1^2 + \delta_1 \delta_2 + \delta_2^2)},$$

$$\chi_{12} = \frac{(\delta_1 - \delta_2)^2}{(\delta_1 + \delta_2)^2},$$

$$\chi_{12} = \frac{(\delta_1 - \delta_2)^2 (\delta_1^2 - \delta_1 \delta_2 + \delta_2^2)}{(\delta_1 + \delta_2)^2 (\delta_1^2 + \delta_1 \delta_2 + \delta_2^2)},$$

for tmSK, tmLax, and tmCDG, respectively. We create a system for $\{C_1, C_2, C_3\}$ with the variables $\{q_1, q_2, q_3\}$ to be determined corresponding to χ_{12} as

$$\frac{5}{3}q_1 + 5q_2 = \frac{(\delta_1 - \delta_2)^2(\delta_1^2 - \delta_1\delta_2 + \delta_2^2)}{(\delta_1 + \delta_2)^2(\delta_1^2 + \delta_1\delta_2 + \delta_2^2)},$$

$$10q_1 + 10q_2 + 5q_3 = \frac{(\delta_1 - \delta_2)^2}{(\delta_1 + \delta_2)^2},$$

$$60q_1 + 30q_2 = \frac{(\delta_1 - \delta_2)^2(\delta_1^2 - \delta_1\delta_2 + \delta_2^2)}{(\delta_1 + \delta_2)^2(\delta_1^2 + \delta_1\delta_2 + \delta_2^2)}.$$
(19)

We get the values for q_1, q_2 , and q_3 by solving the system (19), given as

$$q_{1} = -\frac{1}{10} \frac{(\delta_{1} - \delta_{2})^{2} (\delta_{1}^{2} - \delta_{1} \delta_{2} + \delta_{2}^{2})}{(\delta_{1} + \delta_{2})^{2} (\delta_{1}^{2} + \delta_{1} \delta_{2} + \delta_{2}^{2})},$$

$$q_{2} = \frac{7}{30} \frac{(\delta_{1} - \delta_{2})^{2} (\delta_{1}^{2} - \delta_{1} \delta_{2} + \delta_{2}^{2})}{(\delta_{1} + \delta_{2})^{2} (\delta_{1}^{2} + \delta_{1} \delta_{2} + \delta_{2}^{2})},$$

$$q_{3} = -\frac{1}{15} \frac{(\delta_{1} - \delta_{2})^{2} (\delta_{1}^{2} - 7\delta_{1} \delta_{2} + \delta_{2}^{2})}{(\delta_{1} + \delta_{2})^{2} (\delta_{1}^{2} + \delta_{1} \delta_{2} + \delta_{2}^{2})}.$$
(20)

Therefore, we constitute a general value for $\chi_{12} = q_1C_1 + q_2C_2 + q_3C_3$ as

$$\chi_{12} = -\frac{(\delta_1 - \delta_2)^2 \{ (3C_1 - 7C_2 + 2C_3)\delta_1^2 - (3C_1 - 7C_2 + 14C_3)\delta_1\delta_2 + (3C_1 - 7C_2 + 2C_3)\delta_2^2 \}}{30(\delta_1 + \delta_2)^2 (\delta_1^2 + \delta_1\delta_2 + \delta_2^2)},$$

and it can be extended in general for the function τ

$$\tau(x,t) = 1 + e^{\Theta_i} + e^{\Theta_j} + \chi_{ij}e^{\Theta_i + \Theta_j}, \tag{21}$$

as

$$\chi_{ij} = -\frac{(\delta_i - \delta_j)^2 \{ (3C_1 - 7C_2 + 2C_3)\delta_i^2 - (3C_1 - 7C_2 + 14C_3)\delta_i\delta_j + (3C_1 - 7C_2 + 2C_3)\delta_j^2 \}}{30(\delta_i + \delta_j)^2 (\delta_i^2 + \delta_i\delta_j + \delta_j^2)}, \quad 1 \le i < j \le N,$$
(22)

where N is a positive integer. Therefore, by Eq. (18) we get

$$\tau_x = \delta_1 e^{\Theta_1} + \delta_2 e^{\Theta_1} + \chi_{12} (\delta_1 + \delta_2) e^{\Theta_1 + \Theta_2}, \tag{23}$$

$$\tau_{xx} = \delta_1^2 e^{\Theta_1} + \delta_2^2 e^{\Theta_1} + \chi_{12} (\delta_1 + \delta_2)^2 e^{\Theta_1 + \Theta_2}. \tag{24}$$

By substituting the Eqs. (18), (23) and (24) into Eq. (13), we obtain a two-soliton solution.

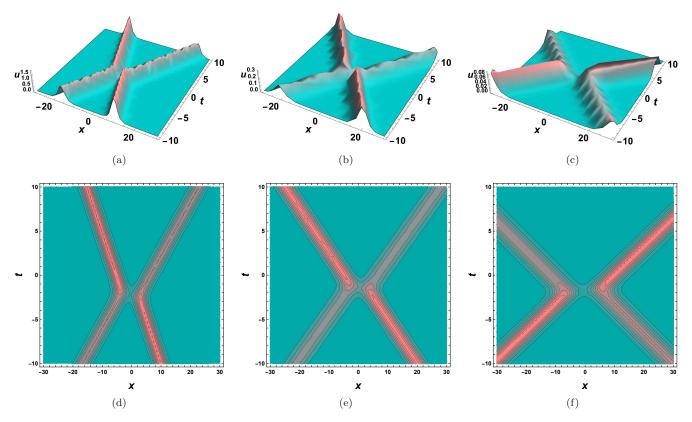


Figure 2: Profiles for the interaction of two solitons via (13) with function (18) and the values: (a) tmSK equation: $\delta_1 = 1.1, \delta_2 = -0.9, C_1 = \frac{5}{3}, C_2 = 5, C_3 = 0, \zeta = 1, s = 1$; (b) tmLax equation: $\delta_1 = -0.6, \delta_2 = 0.8, C_1 = 10, C_2 = 10, C_3 = 5, \zeta = 1, s = 2$; and (c) tmCDG equation: $\delta_1 = 0.5, \delta_2 = -0.6, C_1 = 60, C_2 = 30, C_3 = 0, \zeta = 1, s = 3$. (d-f) plots the contours with respect to (a-c) in xt-plane.

3.3. Solution for three solitons

To achieve a solution for three solitons [1, 44], we pressume the τ as

$$\tau(x,t) = 1 + e^{\Theta_1} + e^{\Theta_2} + e^{\Theta_3} + \chi_{12}e^{\Theta_1 + \Theta_2} + \chi_{13}e^{\Theta_1 + \Theta_3} + \chi_{23}e^{\Theta_2 + \Theta_3} + \chi_{123}e^{\Theta_1 + \Theta_2 + \Theta_3}, \tag{25}$$

where χ_{mn} with $1 \le m < n \le 3$ satisfies the Eq. (22) and χ_{123} is the coefficient of dispersion. The value of χ_{123} can be obtained using symbolic software to fulfill the constraint:

$$\chi_{123} = \chi_{12}\chi_{13}\chi_{23}.\tag{26}$$

Thus, from Eq. (25), we have

$$\tau_x = \sum_{p=1}^{3} \delta_p e^{\Theta_p} + \sum_{1 \le p < q \le 3} (\delta_p + \delta_q) \chi_{pq} e^{\Theta_p + \Theta_q} + \left(\sum_{p=1}^{3} \delta_p\right) \chi_{123} e^{\Theta_1 + \Theta_2 + \Theta_3}, \tag{27}$$

$$\tau_{xx} = \sum_{p=1}^{3} \delta_p^2 e^{\Theta_p} + \sum_{1 \le p < q \le 3} (\delta_p + \delta_q)^2 \chi_{pq} e^{\Theta_p + \Theta_q} + \left(\sum_{p=1}^{3} \delta_p\right)^2 \chi_{123} e^{\Theta_1 + \Theta_2 + \Theta_3}.$$
 (28)

On putting the Eqs. (25), (27) and (28) into Eq. (13), we get a solution for three solitons.

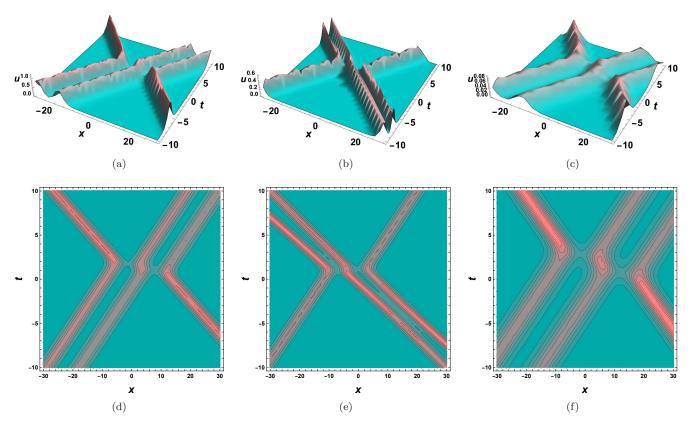


Figure 3: Profiles for the interaction of three solitons via (13) with function (25) and the values ($\zeta = 1, s = 2$): (a) tmSK equation: $\delta_1 = 0.6, \delta_2 = 0.7, \delta_3 = -0.9, C_1 = \frac{5}{3}, C_2 = 5, C_3 = 0$; (b) tmLax equation: $\delta_1 = -1, \delta_2 = -1.1, \delta_3 = 0.9, C_1 = 10, C_2 = 10, C_3 = 5$; and (c) tmCDG equation: $\delta_1 = -0.6, \delta_2 = 0.5, \delta_3 = 0.45, C_1 = 60, C_2 = 30, C_3 = 0$. (d-f) plots the contours with respect to (a-c) in xt-plane.

4. Lump and its interection with solitons

4.1. One lump solution

To establish a solution for lump, we pick the function τ in such a way that solution u comes to be a rational solution, as

$$\tau(x,t) = X^{2} + Y^{2} + h_{7},$$

$$X(x,t) = h_{1}x + h_{2}t + h_{3},$$

$$Y(x,t) = h_{4}x + h_{5}t + h_{6},$$
(29)

where h_i ; $1 \le i \le 7$ are the constants that will be determined. On transforming the equation (5) with dependent variable transformation (13), we get a heptalinear or septalinear equation as

$$12600C_{1}s^{2}\tau_{x}^{3}\tau^{4} + 6300C_{1}\tau_{tt}\tau_{x}\tau^{5} - 12600C_{1}\tau_{t}^{2}\tau_{x}\tau^{4} - 25800C_{2}s^{2}\tau_{x}^{3}\tau^{4} - 12900C_{2}\tau_{tt}\tau_{x}\tau^{5} + 25800C_{2}\tau_{t}^{2}\tau_{x}\tau^{4} + 9600C_{3}\tau_{tt}\tau_{x}\tau^{5} + \dots + 12900C_{2}\tau_{(6x)t}\tau^{6} + 9600\zeta C_{3}s\tau_{(7x)}\tau^{6} - 67200\zeta C_{3}s\tau_{x}\tau_{(6x)}\tau^{5} - 9600C_{3}\tau_{(6x)t}\tau^{6} = 0,$$

$$(30)$$

where midterms are skipped due to lengthy-expression. Using the symbolic computation, we substitute the equation (29) in the heptalinear equation (30) and collect the coefficients of independent variables

x and t. Therefore, we obtain a set of equations in the parameters h_i ; $1 \le i \le 7$. By solving these equations, one can get a set of solutions with some appropriate choices; we show here three sets of solutions as given below:

(i)
$$h_3 = h_6 = h_7 = 0, h_1 = \frac{-h_4 h_5}{h_2}; h_2 \neq 0, h_2 = h_2, h_4 = h_4, h_5 = h_5,$$

(ii) $h_1 = h_5 = h_6 = 0, h_7 = -h_3^2, h_2 = h_2, h_3 = h_3, h_4 = h_4,$
(iii) $h_1 = h_5 = h_6 = 0, h_7 = \frac{3h_3^2}{5}h_2 = h_2, h_3 = h_3, h_4 = h_4.$

(ii)
$$h_1 = h_5 = h_6 = 0, h_7 = -\bar{h}_3^2, h_2 = h_2, h_3 = h_3, h_4 = h_4,$$

(iii)
$$h_1 = h_5 = h_6 = 0, h_7 = \frac{3h_3^2}{5}h_2 = h_2, h_3 = h_3, h_4 = h_4.$$

Thus, we get a one-lump solution by substituting Eq. (29) with a solution set into the Eq. (13) as

$$u(x,t) = \frac{(21C_1 - 43C_2 + 32C_3)h_4^2(h_4^2x^2 - h_2^2t^2)}{15(h_2^2t^2 + h_4^2x^2)^2},$$
(31)

$$u(x,t) = \frac{(21C_1 - 43C_2 + 32C_3)h_4^2 (h_2^2 (-t^2) - 2h_3h_2t + h_4^2x^2)}{15(h_2^2t^2 + 2h_3h_2t + h_4^2x^2)^2},$$
(32)

$$u(x,t) = \frac{-(21C_1 - 43C_2 + 32C_3)h_4^2\left((h_2t + h_3)^2 - h_4^2x^2 + \frac{3h_3^2}{5}\right)}{15\left((h_2t + h_3)^2 + h_4^2x^2 + \frac{3h_3^2}{5}\right)^2},$$
(33)

for the solution set (i), (ii) and (iii), respectively.

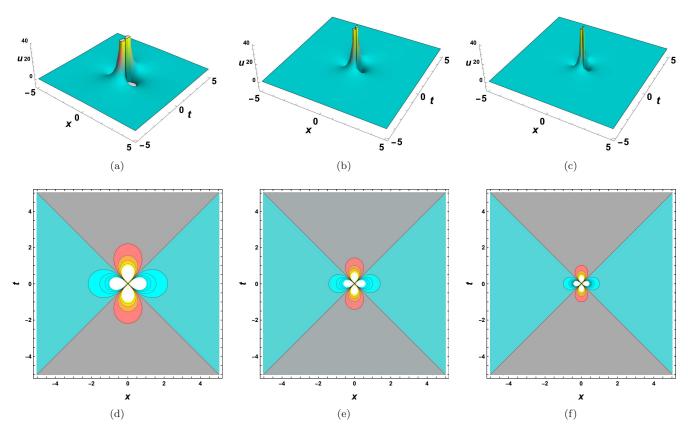


Figure 4: Profiles for one lump via (31) with function (29) and the values: $h_2 = 0.5, h_4 = 0.5$; (a) tmSK equation: $C_1 =$ $\frac{5}{3}$, $C_2 = 5$, $C_3 = 0$; (b) tmLax equation: $C_1 = 10$, $C_2 = 10$, $C_3 = 5$; and (c) tmCDG equation: $C_1 = 60$, $C_2 = 30$, $C_3 = 0$. $(\mathbf{d}-\mathbf{f})$ plots the contours with respect to $(\mathbf{a}-\mathbf{c})$ in xt-plane.



Figure 5: Profiles for one lump via (32) with function (29) and the values: $h_2 = 3, h_3 = 0.5, h_4 = 5$; (a) tmSK equation: $C_1 = \frac{5}{3}, C_2 = 5, C_3 = 0$; (b) For tmLax equation: $C_1 = 10, C_2 = 10, C_3 = 5$; and (c) tmCDG equation: $C_1 = 60, C_2 = 30, C_3 = 0$. (d-f) plots the contours with respect to (a-c) in xt-plane.

4.2. One lump interaction with single soliton

In order to construct an interaction solution of a lump and a soliton, we assume the auxiliary function τ as

$$\tau(x,t) = X^{2} + Y^{2} + h_{7} + e^{k_{1}x + k_{2}t},$$

$$X(x,t) = h_{1}x + h_{2}t + h_{3},$$

$$Y(x,t) = h_{4}x + h_{5}t + h_{6},$$
(34)

where h_i ; $1 \le i \le 7$ and k_i ; $1 \le i \le 2$ are the constants that will be determined. Using the symbolic computation, we substitute the equation (34) in the heptalinear equation (30) and collect the coefficients of independent variables x and t. Therefore, we obtain a set of equations in the parameters h_i ; $1 \le i \le 7$ and k_i ; $1 \le i \le 2$. On solving these equations, one can get a set of solutions with some appropriate choices, we show here a solution as given below:

 $h_2 = \frac{1}{30} (441C_1^3h_1^5 - 1806C_1^2C_2h_1^5 + 1344C_1^2C_3h_1^5 + 1849C_1C_2^2h_1^5 - 7998C_2^2h_1^5 - 2752C_1C_2C_3h_1^5 - 240C_2C_3h_1^5 + 3906C_1C_2h_1^5 + 1024C_1C_3^2h_1^5 + 4608C_3^2h_1^5 + 3024C_1C_3h_1^5 + 113400h_1^5), h_3 = h_6 = h_7 = h_4 = 0, h_1 = h_1, h_5 = h_5, k_1 = k_1, k_2 = k_2$

Therefore, by substituting Eq. (34) with the solution set into the Eq. (13), we get an interaction solution of a lump with a single soliton.

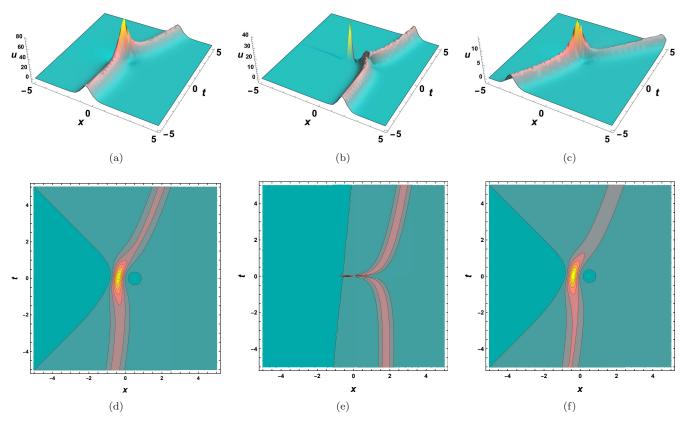


Figure 6: Profiles for the interaction of one lump and a single soliton via (13) with function (34) and the values: $h_1 = 0.8, h_5 = 0.8, k_1 = 4, k_2 = 1$; (a) tmSK equation: $C_1 = \frac{5}{3}, C_2 = 5, C_3 = 0$; (b) tmLax equation: $C_1 = 10, C_2 = 10, C_3 = 5$; and (c) tmCDG equation: $C_1 = 60, C_2 = 30, C_3 = 0$. (d-f) plots the contours with respect to (a-c) in xt-plane.

5. Results and discussion

It is well known that the KdV equations of fifth-order, such as Lax, CDG, and SK equations, are completely integrable. As the tmLax, tmCDG, and tmSK are the two-mode equations for Lax, CDG, and SK equations, respectively; therefore, all convey the same integrable properties and multiple solitons depending on the parameters C_1, C_2, C_3, s, ξ , and ζ . We obtained soliton, lump, and interaction solutions for the said equations and showcased the dynamics for the obtained solutions. Thus, the results can be discussed as

- In figure 1, we illustrate the single soliton solution due to the movable singularity at x=0 with respect to the parameters $\delta_1=1, \zeta=1, s=0, \delta_1=-1.2, \zeta=1, s=0$ and $\delta_1=-1.2, \zeta=1, s=0$ for tmSK, tmLax and tmCDG, respectively.
- Figure 2 shows the interaction between two solitons with their corresponding movable singularities with different scale parameter s=1,2, and 3. We obtain the interaction of two solitons for the parameters $\delta_1=1.1, \delta_2=-0.9, \zeta=1, s=1, \delta_1=-0.6, \delta_2=0.8, \zeta=1, s=2$ and $\delta_1=0.5, \delta_2=-0.6, \zeta=1, s=3,$ for tmSK, tmLax and tmCDG, respectively.

- In figure 3, we depict the three solitons interaction with respect to the movable singularities on fixed scale parameter s=2. We get three solitons interaction for the parameters $\delta_1=1.1, \delta_2=-0.9, \zeta=1, s=1, \delta_1=-0.6, \delta_2=0.8, \zeta=1, s=2$ and $\delta_1=0.5, \delta_2=-0.6, \zeta=1, s=3$, for tmSK, tmLax and tmCDG, respectively.
- Figure 4 illustrate the dynamics of single lump solution due to the singularity at $x = -\frac{h_2}{h_4}t$; $h_4 \neq 0$ with fixed values of parameters $h_2 = h_4 = 0.5$ for the tmSK, tmLax, and tmCDG equations.
- In figure 5, we show the depiction of single lump solution with singularity at $x = \frac{\sqrt{h_2^2 t^2 + 2h_3 h_2 t}}{h_4}$; $h_4 \neq 0$ with respect to the fixed parameters $h_2 = 3$, $h_3 = 0.5$, $h_4 = 5$ for the tmSK, tmLax, and tmCDG equations.
- Figure 6 depicts the interaction between one lump and a single soliton for the fixed parameters $h_1 = h_5 = 0.8, k_1 = 4, k_2 = 1$ for the tmSK, tmLax and tmCDG equations.

6. Conclusions

In summary, we investigated a generalized nonlinear two-mode fifth-order partial differential equation and studied it for tmSK, tmLax, and tmCDG equations. We examined this generalized two-mode evolution equation by a logarithmic transformation concerning the dispersion of the equation. We used the simplified technique of the Hirota method to get the solutions for multiple solitons and constructed one, two, and three solitons and the interactions. Also, We built a one-lump solution and its interaction with a soliton. We showcased the dynamics of the obtained solutions through 3D graphics with their contour plots by choosing appropriate values for the parameters. We utilized the symbolic computational software *Mathematica* to obtain the desired parameters and the solutions for multi-solitons, lump, and their interactions. The tmSK, tmLax, and tmCDG equations simultaneously study the propagation of two-mode waves in the identical direction with different phase velocities, dispersion parameters, and nonlinearity. These equations have applications in several real-life examples, such as gravity-affected waves or gravity-capillary waves, waves in shallow water, propagating waves in fast-mode and the slow-mode with their phase velocity in a strong and weak magnetic field, known as magneto-sound propagation in plasmas.

In the extension work, our focus is on obtaining the different solutions other than the obtained solutions, such as breathers and their interactions with solitons and lumps. Also, anyone will be able to apply the approach methodology to get a general logarithmic transformation for generalized nonlinear equations with different values of R in its dependent variable transformation. Another future work direction is to seek the solutions for different temporal dispersions, such as third-order or more, and analyze their impact or changes concerning the standard known nonlinear equations.

Acknowledgments

The first author, Sachin Kumar, is extremely thankful for financial support from the SERB-DST, India, under project scheme MTR/2020/000531, and the second author, Brij Mohan, is truly thankful for financial support from the Research and Development Cell (RDC), Hansraj College, University of Delhi, under Grant No. HRC/RDC/2021/RP/16.

Data availability statement

The authors traced the dynamics of various solitons and lumps with *Mathematica*. There is no data taken from outside sources.

Conflict of interest

The authors declare that they have no conflict of interest.

References

References

- [1] Wazwaz, A.M.: Two-mode fifth order KdV equations: necessary conditions for multiple-soliton solutions to exist. Nonlinear Dyn. 87(3), 1685-91 (2017)
- [2] Korsunsky, S.V.: Soliton solutions for a second-order KdV equation. Phys. Lett. A 185, 174–176 (1994)
- [3] Wazwaz A.M.: A two-mode modified KdV equation with multiple soliton solutions, Applied Mathematics Letters.70, 1-6 (2017)
- [4] Alquran, M., Jaradat, H. M., Syam, M.I.: A modified approach for a reliable study of new nonlinear equation: two-mode Korteweg-de Vries-Burgers equation. Nonlinear Dyn. 91,1619–1626 (2018)
- [5] Wazwaz A.M.: Two-mode Sharma-Tasso-Olver equation and two-mode fourth-order Burgers equation: Multiple kink solutions. Alexandria Engineering Journal. 57, 1971–1976 (2018)
- [6] Wazwaz A.M.: A study on a two-wave mode Kadomtsev-Petviashvili equation: con- ditions for multiple soliton solutions to exist. Math. Methods Appl. Sci. 40(11) 4128-4133 (2017)
- [7] Kopcasiz, B., Seadawy, A.R., Yasar, E.: Highly dispersive optical soliton molecules to dual-mode nonlinear Schrödinger wave equation in cubic law media. Optical and Quantum Electronics. 54, 194 (2022)
- [8] Yu, W., Zhang, H., Wazwaz A.M., Liu, W.: The collision dynamics between double-hump solitons in two mode optical fibers.Results in Physics. 28, 104618 (2021)
- [9] Gómez, C.A.: A Generalized Two-Mode KdV Equation: Exact Solutions, Contemporary Engineering Sciences, 11(6), 249 255 (2018)
- [10] Alquran, M., Jaradat, I., Ali, M., Al-Ali, N., Momani, S.: Development of spreading symmetric two-waves motion for a family of two-mode nonlinear equations. Heliyon. 6, e04057 (2020)
- [11] Kumar, D., Park, C., Tamanna, N., Paul, G.C., Osman, M.S.: Dynamics of two-mode Sawada-Kotera equation: Mathematical and graphical analysis of its dual-wave solutions. Results in Physics. 19,103581 (2020)

- [12] Xiao, Z.J., Tian, B., Zhen, H.L., Chai, J., Wu, X.Y.: Multi-soliton solutions and Bäcklund transformation for a two-mode KdV equation in a fluid. Waves in Random and Complex Media. (2016). https://doi.org/10.1080/17455030.2016.1185193
- [13] Alquran, M., Jaradat, I.: Multiplicative of dual-waves generated upon increasing the phase velocity parameter embedded in dual-mode Schrödinger with nonlinearity Kerr laws. Nonlinear Dyn. 96, 115–121 (2019)
- [14] Jaradat, H.M., Syam, M., Alquran, M., Al-Shara, S., Abohassn, K.M.: A new two-mode coupled Burgers equation: Conditions for multiple kink solution and singular kink solution to exist. Ain Shams Engineering Journal. 9(4), 3239-3244 (2018)
- [15] Raza, N., Jhangeer, A., Arshed, S., Butt, A.R., Chu, Y.M.: Dynamical analysis and phase portraits of two-mode waves in different media. Results in Physics. 19, 103650 (2020)
- [16] Ali, M., Alquran, M., Jaradat, I., Baleanu, D.: Stationary wave solutions for new developed twowaves fifth-order Korteweg—de Vries equation. Advances in Difference Equations. 263 (2019)
- [17] Jaradat, H.M., Alquran, M., Syam, M.I.: A Reliable Study of New Nonlinear Equation: Two-Mode Kuramoto-Sivashinsky. Int. J. Appl. Comput. Math 4, 64 (2018).
- [18] Kumar, S., Jadaun, V., Ma, W.X.: Application of the Lie symmetry approach to an extended Jimbo–Miwa equation in (3+1) dimensions. Eur. Phys. J. Plus 136, 843 (2021)
- [19] Zhang Y.: Lie symmetry analysis and exact solutions of the Sawada—Kotera equation.Turk. J. Math. 41, 158–167 (2017)
- [20] Kumar, S., Kumar, A.: Lie symmetry reductions and group invariant solutions of (2+ 1)-dimensional modified Veronese web equation. Nonlinear Dyn. 98 (3), 1891-1903 (2019)
- [21] Dorodnitsyn, V., Winternitz, P.: Lie Point Symmetry Preserving Discretizations for Variable Coefficient Korteweg–de Vries Equations. Nonlinear Dyn. 22, 49–59 (2000)
- [22] Kumar, M., Tanwar, D.V., Kumar, R.: On Lie symmetries and soliton solutions of (2+1)-dimensional Bogoyavlenskii equations. Nonlinear Dyn. 94, 2547–2561 (2018)
- [23] Kumar, S., Rani S.: Symmetries of optimal system, various closed-form solutions, and propagation of different wave profiles for the Boussinesq–Burgers system in ocean waves, Physics of Fluids 34(3), 037109 (2022)
- [24] Wang, C., Fang, H., Tang, X.: State transition of lump-type waves for the (2+1)-dimensional generalized KdV equation. Nonlinear Dyn. 95, 2943–2961 (2019)
- [25] Hu, R.: Diversity of Interaction Solutions to the (2+1)-Dimensional Sawada-Kotera Equation. Journal of Applied Mathematics and Physics. 6, 1692-1703 (2018)
- [26] Kumar, S., Mohan, B.: A novel and efficient method for obtaining Hirota's bilinear form for the nonlinear evolution equation in (n+1) dimensions. Partial Differential Equations in Applied Mathematics. 5, 100274 (2022)

- [27] Ma, W.X.: N-soliton solution and the Hirota condition of a (2+1)-dimensional combined equation. Mathematics and Computers in Simulation. 190, 270-279 (2021)
- [28] Zhang, R.F., Bilige, S., Fang, T., Chaolu, T.: New periodic wave, cross-kink wave and the interaction phenomenon for the Jimbo-Miwa-like equation. Comp. Math. Appl. 78(3), 754-764 (2019)
- [29] Zhang, R.F., Bilige, S., Liu, J.G., Li, M.: Bright-dark solitons and interaction phenomenon for p-gBKP equation by using bilinear neural network method. Phys. Scr. 96(2) 025224 (2021)
- [30] Qiao, J.M., Zhang, R.F., Yue, R.X., Rezazadeh, H., Seadawy, A.R.: Three types of periodic solutions of new (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation via bilinear neural network method. Math. Methods Appl. Sci. 45(9), 5612-5621 (2022)
- [31] Zhang, R.F., Li, M.C.: Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equations. Nonlinear Dyn 108, 521–531 (2022)
- [32] Zhang, R.F., Li, M.C., Yin, H.M.: Rogue wave solutions and the bright and dark solitons of the (3+1)-dimensional Jimbo-Miwa equation. Nonlinear Dyn 103, 1071–1079 (2021)
- [33] Zhang, R.F., Bilige, S.: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation. Nonlinear Dyn 95, 3041–3048 (2019)
- [34] Zhang, R.F., Li, M.C., Gan, J.Y., Li, Q., Lan, Z.Z.: Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method. Chaos Sol. Frac. 154, 111692 (2022)
- [35] Zhang, R.F., Li, M.C., Albishari, M., Zheng, F.C., Lan, Z.Z.: Generalized lump solutions, classical lump solutions and rogue waves of the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada-like equation. Applied Mathematics and Computation. 403, 126201 (2021)
- [36] Wang, M., Tian, B., Hu, C.C., Liu, S.H.: Generalized Darboux transformation, solitonic interactions and bound states for a coupled fourth-order nonlinear Schrödinger system in a birefringent optical fiber. Appl. Math. Lett. 119, 106936 (2021)
- [37] Yang, D.Y., Tian, B., Qu, Q.X.,: Lax pair, conservation laws, Darboux transformation and localized waves of a variable-coefficient coupled Hirota system in an inhomogeneous optical fiber. Chaos Sol. Frac. 150, 110487 (2021)
- [38] Shen, Y., Tian, B.: Bilinear auto-Bäcklund transformations and soliton solutions of a (3+1)-dimensional generalized nonlinear evolution equation for the shallow water waves. Appl. Math. Lett. 122, 107301 (2021)
- [39] Yin, Y.H., Lu, X., Ma, W.X.: Bäcklund transformation, exact solutions and diverse interaction phenomena to a (3+1)-dimensional nonlinear evolution equation. Nonlinear Dyn. (2021). https://doi.org/10.1007/s11071-021-06531-y
- [40] Weiss, J.: The Painlevé property for partial differential equations II: Bäcklund transformation, Lax pairs, and the Schwarzian derivative. J. Math. Phys. 24, 1405–13 (1983)

- [41] Li, Q., Li, M., Gong, Z., Tian, Y., Zhang, R.F.: Locating and protecting interdependent facilities to hedge against multiple non-cooperative limited choice attackers, Reliability Engineering and System Safety, 223, 108440 (2022)
- [42] Li, Q., Li, M., Zhang R.F., Gan, J.: A stochastic bilevel model for facility location-protection problem with the most likely interdiction strategy, Reliability Engineering and System Safety. 216, 108005 (2021)
- [43] Wazwaz, A.M., Albalawi, W., El-Tantawy, S.A.: Optical envelope soliton solutions for coupled nonlinear Schrödinger equations applicable to high birefringence fibers. Optik, 255, 168673 (2022)
- [44] Wazwaz, A.M.: Multiple complex soliton solutions for the integrable KdV, fifth-order Lax, modified KdV, Burgers, and Sharma-Tasso-Olver equations. Chinese Journal of Physics. 59, 372-378 (2019)
- [45] Kumar, S., Mohan, B.: Generalized fifth-order nonlinear evolution equation for the Sawada-Kotera, Lax, and Caudrey-Dodd-Gibbon equations in plasma physics: Painlevé analysis and multi-soliton solutions. Phys. Scr. 97(3), 035201 (2022)
- [46] Wazwaz, A. M.: A new generalized fifth-order nonlinear integrable equation. Phys. Scr. 83(3), 035003 (2011)
- [47] Wazwaz, A. M.: New (3 + 1)-dimensional Painleveé integrable fifth-order equation with third-order temporal dispersion. Nonlinear Dyn. 106, 891–897 (2021)
- [48] Hirota, R.: The direct method in soliton theory. Cambridge University Press. (2004). https://doi.org/10.1017/CBO9780511543043
- [49] Kumar, S., Mohan, B.: A study of multi-soliton solutions, breather, lumps, and their interactions for Kadomtsev-Petviashvili equation with variable time coefficient using Hirota method. Phys. Scr. 96(12) 125255 (2021)
- [50] Wazwaz, A. M.: The Hirota's direct method for multiple soliton solutions for three model equations of shallow water waves. Appl. Math. Comput. 201 489–503 (2008)
- [51] Hereman, W., Zhuang, W.: Symbolic Software for Soliton Theory. Acta Applicandae Mathematicae. 39(1-3), 361-378 (1995)