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Abstract: This study explores the behavior of higher-order rogue waves within a (341)-dimensional
generalized nonlinear wave equation in liquid-containing gas bubbles. It creates the investigated equation’s
Hirota D-operator bilinear form. We employ a generalized formula with real parameters to obtain the rogue
waves up to the third order using the direct symbolic technique. The analysis reveals that the second and
third-order rogue solutions produce two and three-waves, respectively. To gain deeper insights, we use the
Cole-Hopf transformation on the transformed variables £ and 7 to produce a bilinear equation. Using system
software Mathematica, the dynamic analysis presents the graphics for the obtained solutions in transformed
&, n and original spatial-temporal coordinates x,y, z,t. These visualizations reveal rogue waves’ intricate
structure and evolution, capturing their localized interactions and significant presence within nonlinear sys-
tems. We demonstrate that rogue waves, characterized by their substantial height and sudden appearance,
are prevalent in various nonlinear events. The equation examined in this study offers valuable insights into
the evolution of longer waves with smaller amplitudes, which is particularly relevant in fields such as fluid
dynamics, dispersive media, and plasmas. The implications of this research extend across multiple scientific
domains, including fiber optics, oceanography, dusty plasma, and nonlinear systems, where understanding
the behavior of rogue waves is crucial for both theoretical and practical applications.

Keywords: Cole-Hopf transformation; Bilinear form; Dispersion; Direct symbolic approach; Higher-
order waves.

1 Introduction

Partial differential equations (PDEs) [1-9] containing dependent variable functions and their partial deriva-
tives are a significant topic in applied mathematics and mathematical physics. Several nonlinear sciences
and engineering fields employ PDEs to represent complex physical procedures. Mathematicians have utilized
nonlinear PDEs to explain various scientific phenomena, including gravitational research and fluid dynam-
ics. Analyzing and solving nonlinear PDEs can be challenging because no universal method exists. In many
different nonlinear sciences, PDEs represent and comprehend physical phenomena that contain numerous
variables and their derivatives. The wave equation [10], heat equation [11], and the well-known Schrédinger
equation [12] from quantum mechanics are a few examples of PDEs. The Bécklund transformation [3,4],
Hirota’s bilinearization method [5H7], Darboux transformation [8}|9], inverse scattering method [13}14], bi-
linear neural network method [154/16], simplified Hirota’s approach [17,/18], Lie symmetry approach [19-21],
and other techniques are used to solve nonlinear evolution equations and obtain the analytical and exact
solutions.
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Rogue waves, sometimes known as extreme waves [22H32], are large scaled localized waves in space and
time. They threaten sea-farers, ships and vessels, and other entities. However, it may also help extract
useful information about a system and its behavior in non-oceanic cases. For example, it can lead to the
formation of extreme wave localization in optics. The evolution of rogue waves is an important topic for
many scholars. Unlike typical ocean waves, rogue waves can reach towering heights of 20-30 meters or more,
often appearing unexpectedly in relatively calm seas or during storms, making them extremely dangerous
for ships and offshore structures. The height of rogue waves distinguishes them from neighboring waves.
Rogue waves are investigated in nonlinear wave dynamics because they violate widely accepted linear wave
theories. The goal of scientific study on exceptional or large waves is to predict their occurrence and com-
prehend the fundamental principles that underlie them. When shorter waves concentrate their energy on
a narrow area, rogue waves occurs from nowhere. The sea safety is one such improvement use. In order
to prevent the harm that these waves can impose, the evolving models and algorithms give early warning
and detections. The marine sector, the coastal region, and offshore oil and gas areas could all benefit from
knowing this information. Thus, knowing the mechanics of rogue waves helps develop safe structures and
mitigation techniques. Thus, getting operational safety and reasonable solutions are feasible. Furthermore,
examining the dynamics and origins adds to our understanding of complicated procedures and the formation
of extreme processes in various nonlinear sciences.

In this work, we examine newly constructed rogue waves of a generalized (341)-dimensional nonlinear wave

equation , in liquid with gas bubbles as
(ue + Uty + Q2Uagre + 3UL ) g + Qulyy + sz =0, (1)

where u(z,y,2,t) is a wave function representing the amplitude of the propagating wave as a function of
space and time, and a1<;<5 are non-zero constants. The nonlinear term aquu, represents the self-interaction
of the wave, which captures the formation of rogue waves, vast and unexpected waves that occur in the non-
linear system. The term «oug., accounts for the dispersive effects in the medium, where different waves
travel at different speeds, conducting the spreading of the wave packet. The dissipative term asu, represents
the energy loss or dissipation in the medium due to factors like viscosity in the liquid and the cross-diffusion
terms a4y, and asu.. are a diffusion of the wave in the transverse directions y and z describing the nature
of wave propagation.

This research concentrates on originating rogue wave solutions to this generalized nonlinear evolution equa-
tion and investigating their dynamics. The rogue waves in this model emphasize the possibility for sudden,
large amplitude waves in the liquid medium with gas bubbles. This is relevant in comprehending underwater
explosions, sonic booms, or extreme oceanic rogue waves. By exploring the dynamics of these rogue waves,
the study provides wisdom into how such waves form, evolve, and dissipate over time. This learning can
potentially guide the development of processes to predict and mitigate the consequences of rogue waves in
real-world scenarios, offering hope in the face of these unforeseen natural phenomena. The relevance of this
research to understanding and predicting rogue waves in various scenarios keeps the researchers engaged and
interested in the topic. Overall, the physical relevance of this model lies in its ability to capture complex
wave phenomena in a nonlinear medium with multiple interacting effects (nonlinearity, dispersion, dissipa-
tion, and cross-diffusion), providing a more profound understanding of the mechanisms after rogue wave
appearance and propagation.

The equation models the propagation of waves in a liquid medium containing gas bubbles. This equation
accounts for the complex behavior of waves as they interact with the bubbles within the liquid, capturing
the effects of non-linearity, dispersion, and scattering in a three-dimensional space over time. Such model-
ing is crucial in various physical and engineering applications, including underwater acoustics, bio-medical
ultrasound, and industrial processes involving cavitation. The exact solutions and symmetry reductions
explored in the studies offer valuable insights into the fundamental dynamics of these wave phe-
nomena, making the equation a vital tool for predicting and understanding how waves behave in bubbly



liquids. The associated conservation laws also ensure that the model adheres to essential physical principles,
such as energy conservation and momentum, further validating its applicability in real-world scenarios. This
equation generalizes the well-known equations from different areas of nonlinear science as

e (3+1)-dimensional nonlinear wave equation [35] for a; = 1,9 = %, azg=—1,and ag = a5 = % as
1 3
(ut + Uty + Zu:r:mv - um):p + Z (Uyy + uzz) =0, (2)
e (341)-dimensional Kadomtsev—Petviashvili equation [36] for a1 = —6,a0 = 1,3 = 0, and ay = a5 = 3
as
(up — Uty + Uggz)a + 3 (Uyy + uzz) =0, (3)
e (3+1)-dimensional nonlinear wave equation [37] for ;1 = as =1,a3 =0, and ay = a5 = % as
1
(ut + uty + ummx)x + 5 (uyy + uzz) =0, (4)

(2+1)-dimensional Kadomtsev—Petviashvili equation [38] for a1 = a3 = 1,a3 = 0,4 = 1, and a5 =0
as
(ut + wty + Uggy)z + Uyy =0, (5)

e (1+1)-dimensional Korteweg—de Vries equation [39] for ay = ae = 1, and a3 = ay = a5 = 0 as

Up + Uy + Uggpr = 0, (6)

These equations —@, derived from various physical systems, often describe wave phenomena. The KdV-
type equations are crucial in the field of plasma physics, as they provide insights into the behavior and
structures of waves. Our study is significant as it constructs the bilinear form for the examined equation
in transformed variables and uses a direct symbolic technique to visually evaluate the new rogue waves.
This technique transforms the studied equation into a new (1+1)-dimensional evolution equation in the
transformed variables. Importantly, we show that the investigated equation can be transformed into a bi-
linear form in the auxiliary function using the Cole-Hopf transformation, which has practical implications
for understanding and predicting nonlinear wave behavior in plasmas.

Our study advances by deriving higher-order rogue wave solutions for investigating (3+1)-dimensional gen-
eralized nonlinear wave equation in liquid-containing gas bubbles using its Hirota bilinear form. While
previous studies [33-38] have primarily focused on lower-order rogue waves or different nonlinear solutions,
our research extends this understanding to more complex scenarios involving second and third-order rogue
waves. This is particularly significant from a mathematical viewpoint, as it applies advanced techniques like
the Cole-Hopf transformation and direct symbolic methods to obtain and analyze these solutions. From a
physical perspective, our model’s depiction of higher-order rogue waves is crucial as it reveals the intricate
dynamics and interactions that occur in nonlinear systems, which are not captured by lower-order solu-
tions. These higher-order rogue waves provide a more comprehensive understanding of the evolution of large
waves from smaller amplitudes, which is essential for accurately modeling real-world phenomena in various
scientific domains, including oceanography, dusty plasma, and fiber optics.

In this manuscript, the next section details the direct symbolic technique for identifying the solutions
for rogue waves to the analyzed equation. It involves using the Cole-Hopf transformation in transformed
variables to obtain a bilinear equation and determines the rogue waves up to the 3"%-order alongwith their
dynamics. Section 3 will present and discuss the results and findings, while the final section will conclude
the research study.



2 Rogue waves via direct symbolic approach
We transform the equation withé=x+tn=y+zinu(zr,y,2,t) =u(,n) as
Uge + al(uu& + ug) + QoUgeee + Q3Uee + Qqlpy + a5y, = 0. (7)

Taking the phase 6;cn in equation as
0; = pi§ — win, (8)

having constants p;cny and dispersions w;cn. In linear terms of Eq. , having u(&,n) = e’ gives

+ipiy/1+as + ozzp% )

w; =
‘ vog+as
Considering the dependent variable transformation as
u(&,n) = K(log f)ee, (10)

with nonzero constant K and auxiliary function f(§, 7). Substitution of equation with f = 14 €% in
equation gives

12
K= -2
a1

Thus, the equation can be transformed using the transformation ([10]) into a bilinear equation in f as

az(f fecee — Afefece +3f%) + (L + as)(f fee — f2) + (a+ as)(ffu — £7) =0, (11)

that further gives a bilinear form in Hirota D-operator [39] as
[Oéng + (1 + Oég)Dg + (044 + 045)D727] ff=0, (12)

where differential operators D;—; , is defined as

0 o\ [0 a\"
T1 1Y)r2 — _ - ! ! gy
DLE Dy U(ZE7 y)V($7 y) a (am 8x/> <ay ay/) U(x’ y)V(x Y )|x:x e

with formal variables 2,3’ and positive integers ri—1 2.
We construct the rogue waves by assuming the function f [40,41] as

n(n+1)
2 q

f(§7 77) - Z Qn(n—H)—2q,2i§n(n+1)_2qn2i7 (13)
q=0 =0

where $; ,¢(0,2,- q(q+1)} are the real parameters.

2.1 First-order rogue waves

Having n = 1 in equation , we get f as

F(Em) = f1 = 8206 + s0.20% + 50,0- (14)



We get a system of equations by putting the equation in Eq. (11) with equating all coefficients of
distinct powers of £ and 7 to zero as

2 (0450,050,2 + @550,050,2 + 52,0 (a3 + 1) 50,0 + 6c2529)) = 0,
2590 (cusp2 + assp2 — (a3 + 1) s29) = 0,
2502 (—ousp2 — assp2 + (a3 + 1) s29) = 0. (15)

On solving the system gives parameter values as

50,0 = _ 302520 50,2 = Q5%20 F 520 §2,0 = 82,0 (16)
’ az+ 17 ’ oy +os ’ "
So, the function (14)) becomes
(s +1)n? 3o 2>
=fi=s — + ) 17
f=h 2,0( o2t o PO § (17)
So, we get the solution by putting the equation (17)) into (L0]) as
2
2409 ((013+1)77 o 30421 _ €2>
agtas a3+ (18)

U(fﬂ?) =u; = 5
(a3+1)n? 3
a1 ( Ooécd4+a;7 - asa-fl + f2) 2

2.2 Second-order rogue waves
Considering the function f for n = 2 in equation as
F(&n) = fo = 560" + s42m*E" + s4,06" + 524" €% + 52917 + 52,067 + s0,6n° + 041" + 5020 + 500 (19)

Substitution of Eq. into gives a system on equating to zero the coefficients of distinct powers of &
and 7. On solving, we get the parameters as

I _625@% (g + a5) S4.2 o 4750354 2 o 1702842 I (g +1)2s42
0,0 — (063—1—1)4 5 0,2 — 3(@3_1_1)2’ 0,4 — 3(0[44‘0&5)7 0,6 — 3(@4+O¢5)2 )
o 12503 (a4 + as) S4,2 oo 30284, N (g +1) 8542 I 250 (o + a5) S4.2
2,0 3 (a3 + 1) 3 ; 2,2 as + 1 ) 2.4 o+ as 3 4,0 3 <a3 n 1) B 3
(0g + a5) S4.2
sgp = AT A5) %42 20
6,0 3 (ag + 1) ( )

Therefore, the function becomes

s12 2503 (19a3n® — bauu€? — basE? +19n?)  (asn? + cué® + as&? + %) 3
?( (Oé3+1)3 (Ozg—i—l) <O¢4—|-C¥5)2 B

1704 90n%€2 2508t 250564 1875 (cq + a5) a3
a2<044+045+043+1+(063+1)2 (034-1)2)_ (az+1)4

f(§777) :f2 =

), (21)

which gives the solution on substituting it into ({L0))

120&2

u(€,n) =uz = (log f2)¢e. (22)

aq



Figure 1: Dynamics of 1¥-order rogue waves for in transformed variables ¢ and 7. (d)-(f) are the
contours for (a)-(c) in &n-plane.

2.3 Third-order rogue waves

Having n = 3 in Eq. gives the function f as

F(&,m) = f3 =00 + 5021% + s0.4n* + 50,61° + 50,87 + 50,10m™ + 50,121 + 52,067 + 52,2670 + 52.4670*
+ 52,6625 + 52,8820 + 591062 0™ + 5406 + qu o€ + 54460  + 5466 0 + 54880 + 56,06°
+ 56,2607 + 56,465 + 56,6610 + 55,0€° + 8326%07 + 53.4E50" + 510,060 + 51026007 + 512062, (23)

On putting the Eq. into , we get a system on equating to zero the coefficients of distinct powers of
¢ and 7. On solving the system, we get the parameters as

— 87882602505 (s + ai5) $10.2 5g — _ 15044837505510,9 504 — 1639172503510 2
00 54 (a3 +1)7 0 9(as+1)5 " "7 18(ag+1)3 (ay + as)’
o 39949003510 2 — 144503 (a3 + 1) s10,2 o 290 (a3 + 1) 3s10,2
0.6 9 (a3 + 1) (a4 + 045) 2’ 0.8 2 (044 + 045) 3 ’ 0,10 3 (a4 + 045) 4 ’
oo (s D00 7989327505 (u+a5)si02 9432505510,
0,12 6 (g +as)d ’ 20 9(az+1)9 ’ 2.2 (s +1) 47
o — 245004%81072 - 177100[%81072 - _950[2 (013 + 1) 2810,2
M s+ )2 (gt as) TP B(agtag)? PP (g + a5)3
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Figure 2: Dynamical profiles of in the starting variables x, ¥, z,t under transformations £ = x + t and
n=1y+z. (a)-(c) and (d)-(f) depict 3D profiles in zt- and xy-planes, respectively.
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We obtain the solution by putting the equation with the values into (10]) as
12&2
u(§,m) = uz = o (log f3)ee- (25)



Figure 3: Dynamics of 2"%-order rogue waves for in transformed variables ¢ and 7. (d)-(f) are the
contours for (a)-(c) in &n-plane.

3 Results and Analysis

This work studied the rogue waves as an extraordinary oceanic phenomenon characterized by their immense
height, steepness, and sudden appearance. Their formation shows the link to nonlinear interactions, where
energy from smaller waves combines through constructive interference or the interaction between ocean
currents and opposing waves. Despite their rarity, rogue waves concentrate immense power in a small
area capable of causing catastrophic damage. Predicting these waves remains a significant and ongoing
challenge in oceanography, though advances in wave modeling and satellite technology continue to improve
our understanding of these formidable forces of nature. The investigated equation showed the rogue wave
structures in transformed variables & and n with appropriate parameter values utilizing direct symbolic
approach. The first-order rogue solution generated single rogue wave solution, and second and third-order
rogue solutions gave the interactions of two and three rogue waves, respectively. The dynamics of rogue
wave solutions have been shown in transformed variables £, n, and in the starting variables z,y, z,t in &n,
xt, and zy planes. The analytical and dynamical findings are as follows:

- Figuredl] and [2] depicts the single rogue waves of first order having singularities at £ = n = 0. For all
three plots in Figurel] positive and negative direction of ¢ shows the bright and the dark part of the
rogue wave dynamics. Depending on the constant parameters, the rogue wave shows the nature of
steeped and immense height from 15 to 40 units of u in the forming local region. Figuref2illustrates



Figure 4: Dynamical profiles of in the starting variables x, ¥, z,t under transformations £ = x + t and
n=y+ z. (a)-(c) and (d)-(f) depict 3D profiles in xt- and xy-planes, respectively.

the single rogue wave structures in the original variables x,y, z,t. (a)-(c) shows the soliton nature
w.r.t. time variable in zt-plane with spacial coordinates as y = z = 0, and (d)-(f) shows the single
rogue waves in xy-plane with z =t = 3. The showed rogue waves for both figures have the parameter
values as (a) a1 = —l,as = —l,as=as=a5 =1; (b) s = 1,0 = =1, a3 = 5,y = 1,5 = 1; and
(c)ar=—-1l,aa=-2,a3 =5,y = 1,5 = 2.

- In Figure{3| and [ we illustrate the rogue waves of second order which show the interactions of two
rogue waves. For all three graphs in Figure{3] the two rogue waves intersect at £ = 7 = 0 with having a
void area between their bight and dark wave parts which makes them dangerous to sail the ships near
them. Interaction of these two rogue waves is dominating to each other to form a larger wave than the
small waves in a relatively small area. Figure{d] shows the two rogue wave structures in the original
variables x,y, z,t. (a)-(c) shows the solitoninc nature w.r.t. time variable, in zt-plane with y = z =0,
and (d)-(f) shows the two rogue waves in zy-plane with z = ¢ = 3. The showed second-order rogue
waves for both figures have the parameter values as (a) a; = —1,a3 = —1,a3 = a4 = a5 = 1; (b)
a1 =2, =—-l,ag=2,a4 =1,a5 =2; and (c) a1 = —-3,as = -1,y = 1,3 = a5 = 2.

- Figure and |§| show the 3"%order rogue waves that depict the three rogue waves having their in-
teractions and creating a void area among their interactions with a sharp and steeped wave forms.



Figure 5: Dynamics of 3"%-order rogue waves for in transformed variables ¢ and 7. (d)-(f) are the
contours for (a)-(c) in &n-plane.

Interaction of these three rogue waves is dominating to each other to form larger waves than the small
waves in a relatively small area which makes them harmful than the ordinary waves. For all plots in
Figure{5| the three rogue waves depict their bight and dark parts on intersections. Figure{6] shows the
three rogue wave structures in the original variables x,y, z,¢. (a)-(c) shows the soliton behavior with
respect to time variable in zt-plane with y = z = 0, and (d)-(f) shows the three rogue waves in zy-plane.
with zy-plane with z = ¢t = 3. The showed third-order rogue waves for both figures have the parameter
values as (a) a; = =3, = —2,a3 = ag = 2,a5 = 1; (b) oy = 3,0 = =2, a3 = a4 = 1,5 = 3; and
() a1 =-3,a0=—-2,a3 =4,a4 = 1,05 = 3.

4 Conclusions

This study successfully derived higher-order rogue wave solutions for a (3+1)-dimensional generalized non-
linear wave equation in liquid-containing gas bubbles using its Hirota bilinear form. We obtained rogue
waves up to the third order through the direct symbolic technique, revealing that second and third-order
solutions generate two and three rogue waves, respectively. By applying the Cole-Hopf transformation, we
transformed variables £ and 1 to produce a bilinear equation, facilitating dynamic analysis using Mathemat-
ica. The graphical representations in the transformed and original variables illustrate the complex dynamics
and interactions of rogue waves in nonlinear systems. Our findings highlight the significant presence and
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Figure 6: Dynamical profiles of in the starting variables x, ¥, z,t under transformations £ = x + t and
n=y+ z. (a)-(c) and (d)-(f) depict 3D profiles in xt- and xy-planes, respectively.

intricate behavior of rogue waves, underlining their importance in understanding the evolution of large waves
from smaller amplitudes. These insights are particularly relevant in nonlinear dynamics, dispersive media,
and plasma physics.

The implications of this research extend across multiple scientific domains, including dusty plasma,
oceanography, fiber optics, and other complex nonlinear systems. By deepening our understanding of rogue
wave phenomena, this study contributes to the broader knowledge base. It paves the way for future explo-
rations and applications in fields where critical nonlinear events are pivotal.
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