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Abstract

We establish a generalized nonlinear fifth-order KdV-type equation using the recursion operator. This
equation generalizes the Sawada-Kotera equation and the Lax equation that study the vibrations in
mechanical engineering, nonlinear waves in shallow water, and other sciences. To determine the in-
tegrability, we use Painlevé analysis and construct solutions for multiple solitons by employing the
Hirota bilinear technique to the established equation. It creates a bilinear form for the driven equation
and utilizes the Lagrange interpolation to create a dependent variable transformation. We construct the
solutions for multiple solitons and show the graphics for these built solutions. The Sawada-Kotera equa-
tion and Lax equation have various applications in mechanical engineering, plasma physics, nonlinear
water waves, soliton theory, mathematical physics, and other nonlinear fields.

Keywords: Generalized KdV-type equation, Bilinear form, Painlevé analysis, Hirota technique,
Logarithmic transformation, multiple solitons.

1. Introduction

In soliton theory, two discoveries play an essential role: the direct method developed by Hirota
[1] to obtain the exact solutions as a soliton, lump, breather, and rogue wave and the algorithm for
Painlevé analysis [2, 3] to determine the integrability of a nonlinear partial differential equation (PDE).
Investigating integrability for a PDE helps construct multiple-soliton solutions, which are exponentially
localized in nature and can be reviewed by applying Painlevé analysis using symbolic systems such as
Mathematica, Matlab, Maple, or other software.

The nonlinearity in real-world problems has attracted numerous researchers to understand a prob-
lem’s dynamical behavior using nonlinear PDEs [4–9]. Xu et al. [10] and Baldwin et al. [11] gave a
symbolic computation for the Painlevé test, making it more accessible for a new researcher to check the
integrability of a nonlinear PDE. The Hirota technique gets the soliton solutions for a nonlinear PDE if
the equation fulfills integrability. Investigators use the Hirota bilinear method in different areas such as
mechanical engineering, nonlinear dynamics, mathematical physics, oceanography, soliton theory, and
other sciences. Many techniques other than the Hirota bilinear method construct the exact or closed-
form solutions of a nonlinear PDE. These include the Inverse scattering method [12, 13], Equivalence
transformation [14], Velocity resonance method [15], Lie symmetry analysis [16, 17], simplified Hirota
method [18, 19], Darboux transformation [20, 21], Bäcklund transformation [22, 23], and others.
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The nonlinear evolution equation

ut + λuux + uxxx = 0, (1)

where u = u(x, t) and λ is a constant, gives the standard Korteweg-de Vries (KdV) equation [1] for
λ = 6 that studies shallow-water waves, dispersive waves, and integrable systems in various domains of
nonlinear sciences. The KdV equation has a recursion operator [24–26]

L := ∂xx + 4u+ 2ux∂
−1
x , (2)

and can be represented as
ut + L(ux) = 0. (3)

The recursion operator (2) can be used to develop the higher-order nonlinear equations for a PDE if
exist. The equation (3) with operator (2) gives the fifth-order nonlinear evolution equation for the
equation (1) as

ut + 5λu2ux + (2 + 3λ)uxuxx + (4 + λ)uuxxx + uxxxxx = 0, (4)

for the parameter λ, and can be written in the standard form as

ut + Au2ux +Buxuxx + Cuuxxx + uxxxxx = 0, (5)

where A = 5λ, B = 2 + 3λ, and C = 4 + λ.
(i) For λ = 1, equation (5) results to the Sawada-Kotera (SK) equation [27–30] as

ut + 5u2ux + 5uxuxx + 5uuxxx + uxxxxx = 0. (6)

(ii) For λ = 6, equation (5) results to the Lax equation [29–32] as

ut + 30u2ux + 20uxuxx + 10uuxxx + uxxxxx = 0. (7)

Both equations are nonlinear KdV-type equations with three nonlinear terms; they share the same
integrable properties and provide multiple-soliton solutions. We apply a logarithmic transformation
to the Hirota bilinear technique to construct the numerous soliton solutions for these equations by
generalized equation.

This research work establishes a generalized nonlinear evolution equation using the recursion opera-
tor and reviews the integrability of this developed equation with Painlevé analysis. General logarithmic
transformation for the selected equation is achieved using Lagrange interpolation. Ensuring the integra-
bility of an equation is essential before applying Hirota’s direct method. We apply the Hirota bilinear
technique to obtain multiple-soliton solutions up to fourth order with their dynamical structures.

The research is organized as follows: In Section 2, we determine the integrability of generalized
equation using Painlevé analysis. Section 3 formulates the general transformation and constructs the
bilinear form for the governed equation. In Section 4, we apply the Hirota bilinear technique to obtain
multiple solitons and display the dynamical structures, and section 5 concludes the results and findings.
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2. Painlevé analysis

To investigate the integrability of the nonlinear Eq. (5) by Painlevé analysis, we assume the solution
as a Laurent series about a singular manifold ξ(x, t) as

u(x, t) =

∞
∑

r=0

ur(x, t)ξ
r−η, (8)

where η is a positive integer, and ur = ur(x, t); r = 0, 1, 2, ...;. We get the value of η by substituting the
Eq. (8) into Eq. (5), and by comparing the terms with dominance as

η = 2.

We find the behavior of leading order with respect to the resonance r as

u0(x, t) =

[

−6ξ2x
−12ξ2x
a

; r = −1, 6,Λ, (9)

where Λ are resonances correspond to the constant λ, and it is determined as
(1) For Eq. (6), when λ = 1

u0 = −6ξ2x; r = −1, 2, 3, 6, 10,

u0 = −12ξ2x; r = −1, 5, 6, 12.

(2) For Eq. (7), when λ = 6

u0 = −6ξ2x; r = −1, 6, 8, 10,

u0 = −2ξ2x; r = −1, 2, 5, 6, 8.

The resonance r = −1 in all of the above statements occurs for singular manifold ξ(x, t) = 0 with its
choice of irrational. The explicit expressions for uk; k = 1, 2, 3, ... exist with arbitrary functions for some
k. Resonances r satisfy the compatibility condition identically. It shows that the established Eq. (5) is
completely integrable depending on the parameter λ.

3. Logarithmic transformation and bilinear form

Considering the phase ψi in Eq. (5) as

ψi = σix+ µit, (10)

where σi and µi are the constants and dispersions for i = 1, 2, 3, ..., respectively. By putting u(x, t) = eψi

in the Eq. (5) for its linear terms, we get the dispersion on solving the equation for µi as

µi = −σ5
i . (11)

We assume the transformation in Eq. (5) as

u = K(lnV )xx, (12)
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where K is a constant and V = V (x, t). We get the values of K by substituting V = 1 + eψi into the
equation (5) as

K = 6 for λ = 1,

K = 2 for λ = 6.

Now, creating a set of pairs for λ with respect to K as (λ,K) = {(1, 6), (6, 2)} = {(λ,K1), (λ,K2)}, we
apply Lagrange interpolation to get the general term for K with respect to the constant λ as

K =

(

λ− λ2

λ1 − λ2

)

K1 +

(

λ− λ1

λ2 − λ1

)

K2

K =
34− 4λ

5
. (13)

Thus, we get the transformation (12) for the Eq. (5) with Eq. (13) as

u(x, t) =

(

34− 4λ

5

)

(lnV )xx, (14)

or

u(x, t) =

(

34− 4λ

5

)(

V Vxx − V 2
x

V 2

)

. (15)

On utilizing the algorithm by Kumar-Mohan [33] for constructing the bilinear form for a class of KdV-
type equations, the equation (5) with equation (15) can be transformed into the biliner form as

s(DxDt +D6
x)V.V = 0, (16)

where s = 3K and D is the Hirota’s bilinear operator [1], defined as

Dm
XD

n
TP (X, T )Q(X, T ) =

(

∂

∂X
−

∂

∂X′

)m(
∂

∂T
−

∂

∂T ′

)n

P (X, T )Q(X ′, T ′)|X=X′,T=T ′. (17)

For s 6= 0, we can write the bilinear form as

Dx(Dt +D5
x)V.V = 0. (18)

4. Formulation of multiple solitons

4.1. One soliton

To get one soliton, we consider the function V in Eq. (18) as

V (x, t) = 1 + eψ1 = 1 + eσ1x+µ1t. (19)

From equation (19), we can easily determine

Vx = σ1e
σ1x+µ1t, (20)

Vxx = σ2
1e
σ1x+µ1t. (21)

On substituting the equations (19), (20) and (21) into the equation (15), we get single-soliton solution

u(x, t) =

(

34− 4λ

5

)

exσ1+tσ
5

1σ2
1

(exσ1 + etσ
5

1 )2
. (22)
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(a) λ = 1 (SK equation). (b) λ = 6 (Lax equation).

Figure 1: Single-soliton solutions with their contour plots via (15) for the function (19) with values: (a) σ1 = 0.25; and
(b) σ1 = 0.5.

4.2. Two solitons

In the equation (5), assuming V as

V (x, t) = 1 + eψ1 + eψ2 + α12e
ψ1+ψ2, (23)

where α12 is the dispersion that can be find out by putting the equations (23) and (15) into the Eq.
(18). Symbolic system is used to get the values of α12 as

α12 =
(σ1 − σ2)

2(σ2
1 − σ1σ2 + σ2

2)

(σ1 + σ2)2(σ2
1 + σ1σ2 + σ2

2)
for λ = 1,

α12 =
(σ1 − σ2)

2

(σ1 + σ2)2
for λ = 6.

On considering the pairs (λ, α12) with respect to the parameter λ as in above expressions, we apply
Lagrange interpolation to get the general term for α12 as

α12 =
(σ1 − σ2)

2{(5σ2
1 + (2λ− 7)σ1σ2 + 5σ2

2}

5(σ1 + σ2)2(σ
2
1 + σ1σ2 + σ2

2)
. (24)

We can envisioned the function V as follow:

V (x, t) = 1 + eψi + eψj + αije
ψi+ψj , (25)

as

αij =
(σi − σj)

2{(5σ2
i + (2λ− 7)σiσj + 5σ2

j}

5(σi + σj)2(σ2
i + σiσj + σ2

j )
; 1 ≤ i < j ≤M, (26)
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where M is a positive integer. Thus, by the equation (23), we can get

Vx = σ1e
ψ1 + σ2e

ψ1 + α12(σ1 + σ2)e
ψ1+ψ2 , (27)

Vxx = σ2
1e
ψ1 + σ2

2e
ψ1 + α12(σ1 + σ2)

2eψ1+ψ2 . (28)

By puttting the Eqs (23), (27) and (28) into the Eq. (15), we determine a solution for two solitons for
the equation (5).

(a) λ = 1 (SK equation). (b) λ = 6 (Lax equation).

Figure 2: Two solitons solutions with their contour plots via (15) for the function (23) with values: (a) σ1 = 0.9, σ2 = 1.2;
and (b) σ1 = 1, σ2 = 1.2.

4.3. Three solitons

For three solitons, we assume V in (5) as

V (x, t) = 1 + eψ1 + eψ2 + eψ3 + α12e
ψ1+ψ2 + α13e

ψ1+ψ3 + α23e
ψ2+ψ3 + β123e

ψ1+ψ2+ψ3, (29)

where αij ; 1 ≤ i < j ≤ 3 can be composed from (26) and the dispersion β123 can be computed using
symbolic computation as

β123 = α12α13α23, (30)

which can be extrapolated for the function

V = 1 + eψp + eψq + eψr + αpqe
ψp+ψq + αpre

ψp+ψr + αqre
ψq+ψr + βpqre

ψp+ψq+ψr , (31)

where the dispersion βpqr upholds

βpqr = αpqαprαqr; 1 ≤ p < q < r ≤M, (32)
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where M is a positive integer and αij; 1 ≤ i < j ≤ M is deduced by (26). Thus, by equation (29), we
have

Vx =

3
∑

m=1

σme
ψm +

∑

1≤m<n≤3

(σm + σn)αmne
ψm+ψn +

(

3
∑

m=1

σm

)

β123e
ψ1+ψ2+ψ3 , (33)

Vxx =

3
∑

m=1

σ2
me

ψm +
∑

1≤m<n≤3

(σm + σn)
2αmne

ψm+ψn +

(

3
∑

m=1

σm

)2

β123e
ψ1+ψ2+ψ3 . (34)

By putting the equations (29), (33) and (34) into (15), we get the three-soliton solution.

(a) λ = 1 (SK equation). (b) λ = 6 (Lax equation).

Figure 3: Three-soliton solutions with their contour plots via (15) for the function (29) with values: (a) σ1 = 0.9, σ2 =
1.2, σ3 = 0.8; and (b) σ1 = 0.8, σ2 = 1.2, σ3 = 0.9.

4.4. Four solitons

To determine a solution for four solitons, we consider the function V in Eq. (5) as

V (x, t) = 1 +

4
∑

a=1

eψa +
∑

1≤a<b≤4

αabe
ψa+ψb +

∑

1≤a<b<c≤4

βabce
ψa+ψb+ψc + γ1234e

∑
4

i=1
eψi , (35)

where αab; 1 ≤ a < b ≤ 4 and βabc; 1 ≤ a < b < c ≤ 4 conform the equations (26) and (32), respectively.
Using symbolic computation, we can obtain the value of γ1234 as

γ1234 = α12α13α14α23α24α34. (36)

We deduce from (35) the following

Vx =
4
∑

a=1

σae
ψa+

∑

1≤a<b≤4

(σa+σb)αabe
ψa+ψb+

∑

1≤a<b<c≤4

(σa+σb+σc)βabce
ψa+ψb+ψc+

(

4
∑

a=1

σa

)

γ1234e
∑

4

i=1
eψi ,

(37)
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Vxx =

4
∑

a=1

σ2
ae
ψa+

∑

1≤a<b≤4

(σa+σb)
2αabe

ψa+ψb+
∑

1≤a<b<c≤4

(σa+σb+σc)
2βabce

ψa+ψb+ψc+

(

4
∑

a=1

σa

)2

γ1234e
∑

4

i=1
eψi .

(38)
By putting the equations (35), (37) and (38) in the Eq. (15), we get the four solitons solution.

(a) λ = 1 (SK equation). (b) λ = 6 (Lax equation).

Figure 4: Four-soliton solutions with their contour plots via (15) for the function (35) with values: (a) σ1 = 1, σ2 =
1.2, σ3 = 0.8, σ4 = 0.9; and (b) σ1 = 0.8, σ2 = 0.9, σ3 = 1.2, σ4 = 1.1.

5. Conclusions

This research established a generalized nonlinear fifth-order KdV-type equation using a recursion
operator. The Sawada-Kotera equation and Lax equation were generalized from the driven equation.
These equations have many applications in plasma physics to study ion-acoustic waves, soliton theory
to understand nonlinear waves, mechanical engineering to investigate vibrations, and other sciences.
We determined the integrability of the produced equation by Painlevé analysis and constructed the
solutions for multiple solitons by the Hirota bilinear method with its bilinear form. We used Lagrange
interpolation to build a general transformation. We generated soliton solutions for one-to-four solitons
by applying the Hirota technique and showcased dynamics for these solutions graphically. With the
generalization of the SK equation and Lax equation, the established equation has many applications in
nonlinear dynamics, soliton theory, oceanography, mechanical engineering, plasma physics, and other
fields.
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[22] Carillo S. KdV-type equations linked via Bäcklund transformations: Remarks and perspectives.
Applied Numerical Mathematics. 2019;141:81-90.

[23] Zang L, Liu QP. A super KdV equation of Kupershmidt: Bäcklund transformation, Lax pair and
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